num4anova 0.0.2-java → 0.0.4-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 3987057ab3576c0da8a66256901cf7548ad7bf4bef7aaafccf128b083655333d
4
- data.tar.gz: 4b35674f595de9f05b4056ec6c20d671549341aad88083e5dfd928a881de5c7a
3
+ metadata.gz: ca0164a7092861bfca67f257129332375e90bfae762365194ced78ef75a293a7
4
+ data.tar.gz: 16f17fb717e3d92c27c4c651e034704cd81609a3adc293555eac54f9209884be
5
5
  SHA512:
6
- metadata.gz: 75fd29b81f0c79fa4f72520ced191bccc543d1cf86875425f9408a7c25aeeb8dc0b3417a3af3838bbc2dadee641da79f1fd43b46dc3a02f7e920ffafc1f6e1e7
7
- data.tar.gz: 4a9226cc5d20f86fda993eecc91048edc77a7157da8b2d44c305fdcbf9849aeb0c2c6d4c270b623d62a061daee67aff8864e039280282fc8c2a415453f8e8334
6
+ metadata.gz: e14efb373cde03fc5872f3dfb1d4186e5d2263b0b7597970d1629c562cfb6696ecf2cdbfc3325aa2d732e252241de093c156b7d9da21b51a8ea305f3e24e0e0f
7
+ data.tar.gz: c9b7f310d00d060d1c6fee3e8e9f5c43fce812a65d51b192315c72a378de7e2bc775e1118346373a93047c1cd8880240d03d52309ec0d8f567481923f14e31b4
data/CHANGELOG.md CHANGED
@@ -2,6 +2,16 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
+ ## [0.0.4] - 2024-01-30
6
+ ### add
7
+ - add function of replicate_plot
8
+ - add function of replicate_test
9
+
10
+ ## [0.0.3] - 2024-01-26
11
+
12
+ ### add
13
+ - add function of dunnet_test
14
+
5
15
  ## [0.0.2] - 2024-01-23
6
16
 
7
17
  ### add
@@ -23,6 +23,28 @@ public class MultiComp {
23
23
  double[][] statistic = hypoth.calcTestStatistic(xi);
24
24
  return hypoth.executeTest(statistic, a * 0.5);
25
25
  }
26
+ public boolean scheffe_test(double[][] xi, double a) {
27
+ return false;
28
+ }
29
+
30
+ public boolean[][] twosideTest(double[][] xi, double a) {
31
+ HypothesisTest hypoth = new TwoSideTest();
32
+ double[][] statistic = hypoth.calcTestStatistic(xi);
33
+
34
+ return hypoth.executeTest(statistic, a / 2.0);
35
+ }
36
+ public boolean[][] rightsideTest(double[][] xi, double a) {
37
+ HypothesisTest hypoth = new RightSideTest();
38
+ double[][] statistic = hypoth.calcTestStatistic(xi);
39
+
40
+ return hypoth.executeTest(statistic, a);
41
+ }
42
+ public boolean[][] leftsideTest(double[][] xi, double a) {
43
+ HypothesisTest hypoth = new LeftSideTest();
44
+ double[][] statistic = hypoth.calcTestStatistic(xi);
45
+
46
+ return hypoth.executeTest(statistic, a);
47
+ }
26
48
  /*********************************/
27
49
  /* interface define */
28
50
  /*********************************/
@@ -145,7 +167,6 @@ public class MultiComp {
145
167
  TDistribution tDist = new TDistribution(v);
146
168
  double t =
147
169
  tDist.inverseCumulativeProbability(p);
148
-
149
170
  return Math.sqrt(2) * t;
150
171
  }
151
172
  }
@@ -220,6 +241,130 @@ public class MultiComp {
220
241
  return sumSq / na;
221
242
  }
222
243
  }
244
+ // ダネット法
245
+ private class DunnetTest{
246
+ private int k = 0;
247
+ private int v = 0;
248
+ private double[] mean = null;
249
+ private double[] n = null;
250
+ protected int getK() { return k;}
251
+ protected int getV() { return v;}
252
+
253
+ public double[][] calcTestStatistic(double[][] xi) {
254
+ k = xi.length;
255
+ mean = new double[k];
256
+ n = new double[k];
257
+ double[][] statistic = new double[k][k];
258
+ double ve = calcVe(xi);
259
+
260
+ for(int i = 0; i < k; i++) {
261
+ for(int j = 0; j < k; j++) {
262
+ statistic[i][j] = (mean[j] - mean[i])
263
+ / Math.sqrt(ve * (1.0 / n[j] + 1.0 / n[i]));
264
+ }
265
+ }
266
+ return statistic;
267
+ }
268
+ private double calcVe(double[][] xi) {
269
+ double sumSq = 0.0;
270
+ int sumN = 0;
271
+
272
+ for(int i = 0; i < k; i++) {
273
+ DescriptiveStatistics stat = new DescriptiveStatistics();
274
+
275
+ Arrays.stream(xi[i]).forEach(stat::addValue);
276
+ mean[i] = stat.getMean();
277
+ n[i] = stat.getN();
278
+ sumSq += (n[i] - 1) * stat.getVariance();
279
+ sumN += n[i];
280
+ stat.clear();
281
+ }
282
+ v = sumN - k;
283
+ return sumSq / v;
284
+ }
285
+ }
286
+ private class TwoSideTest extends DunnetTest
287
+ implements HypothesisTest {
288
+ public boolean[][] executeTest(double[][] statistic, double a) {
289
+ int v = super.getV();
290
+ int k = super.getK();
291
+ double den = k - 1;
292
+
293
+ TDistribution tDist = new TDistribution(v);
294
+ double l_val = tDist.inverseCumulativeProbability(a / den);
295
+ double r_val = tDist.inverseCumulativeProbability(1.0 - a / den);
296
+ boolean[][] ret = new boolean[k][k];
297
+
298
+ for(int i = 0; i < k; i++) {
299
+ for(int j = 0; j < k; j++) {
300
+ ret[i][j] = evaluation(statistic[i][j], l_val, r_val );
301
+ }
302
+ }
303
+ return ret;
304
+ }
305
+ private boolean evaluation(double statistic, double l_val, double r_val) {
306
+ boolean ret = true;
307
+
308
+ if ((l_val < statistic) && (statistic < r_val)) {
309
+ ret = false;
310
+ }
311
+ return ret;
312
+ }
313
+ }
314
+ private class RightSideTest extends DunnetTest
315
+ implements HypothesisTest {
316
+ public boolean[][] executeTest(double[][] statistic, double a) {
317
+ int v = super.getV();
318
+ int k = super.getK();
319
+ double den = k - 1;
320
+ double p = 1.0 - a / den;
321
+ TDistribution tDist = new TDistribution(v);
322
+ double r_val = tDist.inverseCumulativeProbability(1.0 - a);
323
+ boolean[][] ret = new boolean[k][k];
324
+
325
+ for(int i = 0; i < k; i++) {
326
+ for(int j = 0; j < k; j++) {
327
+ ret[i][j] = evaluation(statistic[i][j], r_val );
328
+ }
329
+ }
330
+ return ret;
331
+ }
332
+ private boolean evaluation(double statistic, double r_val) {
333
+ boolean ret = true;
334
+
335
+ if (statistic < r_val) {
336
+ ret = false;
337
+ }
338
+ return ret;
339
+ }
340
+ }
341
+ private class LeftSideTest extends DunnetTest
342
+ implements HypothesisTest {
343
+ public boolean[][] executeTest(double[][] statistic, double a) {
344
+ int v = super.getV();
345
+ int k = super.getK();
346
+ double den = k - 1;
347
+ double p = a / den;
348
+ TDistribution tDist = new TDistribution(v);
349
+ double l_val = tDist.inverseCumulativeProbability(a);
350
+ boolean[][] ret = new boolean[k][k];
351
+
352
+ for(int i = 0; i < k; i++) {
353
+ for(int j = 0; j < k; j++) {
354
+ ret[i][j] = evaluation(statistic[i][j], l_val );
355
+ }
356
+ }
357
+ return ret;
358
+ }
359
+ private boolean evaluation(double statistic, double l_val) {
360
+ boolean ret = true;
361
+
362
+ if (l_val < statistic) {
363
+ ret = false;
364
+ }
365
+ return ret;
366
+ }
367
+ }
223
368
  }
224
369
  }
225
370
 
@@ -28,6 +28,7 @@ import java.util.ArrayList;
28
28
  import org.apache.commons.math3.stat.inference.OneWayAnova;
29
29
  import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
30
30
  import org.apache.commons.math3.distribution.ChiSquaredDistribution;
31
+ import org.apache.commons.math3.distribution.FDistribution;
31
32
  import java.util.Map;
32
33
  public class OneWayLayout {
33
34
  private static OneWayLayout oneWay = new OneWayLayout();
@@ -59,6 +60,18 @@ public class OneWayLayout {
59
60
  double statistic = oneway.calcTestStatistic(xi);
60
61
  return oneway.test(statistic, a);
61
62
  }
63
+ public void replicatePlot(String dname, Map<String, double[]> vals) {
64
+ ChartPlot plot = new ReplicateChartPlot();
65
+
66
+ JFreeChart chart = plot.createChart("反復測定", dname, vals);
67
+ plot.writeJPEG("replicate.jpeg", chart, 800, 500);
68
+ }
69
+ public boolean replicateTest(double[][] xi, double a) {
70
+ OneWayAnovaTest oneway = new ReplicateTest();
71
+
72
+ double statistic = oneway.calcTestStatistic(xi);
73
+ return oneway.test(statistic, a);
74
+ }
62
75
  /*********************************/
63
76
  /* interface define */
64
77
  /*********************************/
@@ -196,6 +209,7 @@ public class OneWayLayout {
196
209
  }
197
210
  }
198
211
  }
212
+ // バートレット検定
199
213
  private class BartletTest implements OneWayAnovaTest {
200
214
  private int n = 0;
201
215
  public double calcTestStatistic(double[][] xi) {
@@ -226,6 +240,7 @@ public class OneWayLayout {
226
240
  double invSumN = 0.0;
227
241
  int sumN = 0;
228
242
  DescriptiveStatistics stat = new DescriptiveStatistics();
243
+
229
244
  for(int i = 0; i < n; i++) {
230
245
  Arrays.stream(xi[i]).forEach(stat::addValue);
231
246
  invSumN += 1.0 / (stat.getN() - 1.0);
@@ -243,5 +258,127 @@ public class OneWayLayout {
243
258
  return (r_val < statistic) ? true : false;
244
259
  }
245
260
  }
261
+ // 反復測定Plot
262
+ private class ReplicateChartPlot implements ChartPlot {
263
+ public JFreeChart createChart(String title, String dname, Map<String, double[]> vals) {
264
+ CategoryPlot plot = createPlot(dname, vals);
265
+ ChartFactory.setChartTheme(StandardChartTheme.createLegacyTheme());
266
+ JFreeChart chart = new JFreeChart(title, plot);
267
+
268
+ ChartUtils.applyCurrentTheme(chart);
269
+ return chart;
270
+ }
271
+ private CategoryPlot createPlot( String dname, Map<String, double[]> vals) {
272
+ CreatePlot plotImpl = new ReplicatePlot();
273
+
274
+ return plotImpl.createPlot(dname, vals);
275
+ }
276
+ private class ReplicatePlot implements CreatePlot {
277
+ public CategoryPlot createPlot(String dname, Map<String, double[]> vals) {
278
+ LineAndShapeRenderer renderer = new LineAndShapeRenderer(true, true);
279
+
280
+ renderer.setDefaultToolTipGenerator(
281
+ new StandardCategoryToolTipGenerator()
282
+ );
283
+ CategoryPlot plot = new CategoryPlot();
284
+
285
+ plot.setOrientation(PlotOrientation.VERTICAL);
286
+ plot.mapDatasetToRangeAxis(0,0);
287
+ plot.setDatasetRenderingOrder(DatasetRenderingOrder.FORWARD);
288
+
289
+ /*--- 横軸 ---*/
290
+ CategoryAxis categoryAxis = new CategoryAxis("因子");
291
+ plot.setDomainAxis(categoryAxis);
292
+
293
+ /*--- 縦軸 ---*/
294
+ NumberAxis valueAxis0 = new NumberAxis("推定周辺平均");
295
+ plot.setRangeAxis(valueAxis0);
296
+
297
+ plot.setRenderer(0, renderer);
298
+ plot.setDataset(0, createDataset(dname, vals));
299
+ return plot;
300
+ }
301
+ private CategoryDataset createDataset(String dname, Map<String, double[]> vals) {
302
+ DefaultCategoryDataset data = new DefaultCategoryDataset();
303
+ DescriptiveStatistics stat = new DescriptiveStatistics();
304
+
305
+ for(Map.Entry<String, double[]> entry : vals.entrySet()) {
306
+ double[] v = entry.getValue();
307
+
308
+ Arrays.stream(v).forEach(stat::addValue);
309
+ data.addValue(stat.getMean(), dname, entry.getKey());
310
+ stat.clear();
311
+ }
312
+ return data;
313
+ }
314
+ }
315
+ }
316
+ private class ReplicateTest implements OneWayAnovaTest {
317
+ private int a1 = 0;
318
+ private int b1 = 0;
319
+ public double calcTestStatistic(double[][] xi) {
320
+ b1 = xi[0].length;
321
+ a1 = xi.length;
322
+ double st = calcSt(xi, a1, b1);
323
+ double sa = calcSa(xi, a1, b1);
324
+ double sb = calcSb(xi, a1, b1);
325
+ double se = st - sa - sb;
326
+ double meanSa = sa / (a1 - 1);
327
+ double meanSe = se / ((a1 - 1) * (b1 - 1));
328
+
329
+ return meanSa / meanSe ;
330
+ }
331
+ private double calcSt(double[][] xi, int a, int b) {
332
+ DescriptiveStatistics stat = new DescriptiveStatistics();
333
+ double sumSt1 = 0.0;
334
+ double sumSt2 = 0.0;
335
+
336
+ for(int i = 0; i < a; i++) {
337
+ Arrays.stream(xi[i]).forEach(stat::addValue);
338
+ sumSt1 += stat.getSumsq();
339
+ sumSt2 += stat.getSum();
340
+ stat.clear();
341
+ }
342
+ return sumSt1 - sumSt2 * sumSt2 / (a * b);
343
+ }
344
+ private double calcSa(double[][] xi, int a, int b) {
345
+ double sumSa1 = 0.0;
346
+ double sumSa2 = 0.0;
347
+ double[] an = new double[a];
348
+
349
+ for(int i = 0; i < a; i++) {
350
+ for(int j = 0; j < b; j++) {
351
+ an[i] += xi[i][j];
352
+ sumSa2 += xi[i][j];
353
+ }
354
+ }
355
+ DescriptiveStatistics stat = new DescriptiveStatistics();
356
+ Arrays.stream(an).forEach(stat::addValue);
357
+ sumSa1 = stat.getSumsq() / b;
358
+ return sumSa1 - sumSa2 * sumSa2 / (a * b);
359
+ }
360
+ private double calcSb(double[][] xi, int a, int b) {
361
+ double[] bn = new double[b];
362
+ double sumSb1 = 0.0;
363
+ double sumSb2 = 0.0;
364
+
365
+ for(int i = 0; i < a; i++) {
366
+ for(int j = 0; j < b; j++) {
367
+ bn[j] += xi[i][j];
368
+ sumSb2 += xi[i][j];
369
+ }
370
+ }
371
+ DescriptiveStatistics stat = new DescriptiveStatistics();
372
+ Arrays.stream(bn).forEach(stat::addValue);
373
+ sumSb1 = stat.getSumsq() / a;
374
+ return sumSb1 - sumSb2 * sumSb2 / (a * b);
375
+ }
376
+ public boolean test(double statistic, double a) {
377
+ FDistribution fDist = new FDistribution(a1 - 1, (a1 - 1) * (b1 - 1));
378
+ double f = fDist.inverseCumulativeProbability(1.0 - a);
379
+
380
+ return (statistic >= f) ? true : false;
381
+ }
382
+ }
246
383
  }
247
384
 
data/lib/dunnet.rb ADDED
@@ -0,0 +1,89 @@
1
+ # Dunnet検定
2
+ # (Apache commoms math3使用)
3
+ module DunnetTestLib
4
+ # Dunnet検定の両側検定
5
+ #
6
+ # @overload twoside_test(xi, a)
7
+ # @param [array] xi データ(double[][])
8
+ # @param [double] a 有意水準
9
+ # @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
10
+ # @example
11
+ # xi = [
12
+ # [12.2, 18.8, 18.2],
13
+ # [22.2, 20.5, 14.6],
14
+ # [20.8, 19.5, 26.3],
15
+ # [26.4, 32.5, 31.3],
16
+ # [24.5, 21.2, 22.4],
17
+ # ]
18
+ # paraTest = MultiCompLib::ParametrixTestLib.new
19
+ # paraTest.twoside_test(xi, 0.05)
20
+ # =>
21
+ # res = [
22
+ # [false, false, false, true, false],
23
+ # [false, false, false, true, false],
24
+ # [false, false, false, false, false],
25
+ # [true, true, false, false, false],
26
+ # [false, false, false, false, false],
27
+ # ]
28
+ def twoside_test(xi, a)
29
+ ret = @paramTest.twosideTest(xi.to_java(Java::double[]), a)
30
+ return ret.to_a
31
+ end
32
+ # Dunnet検定の右側検定
33
+ #
34
+ # @overload rightside_test(xi, a)
35
+ # @param [array] xi データ(double[][])
36
+ # @param [double] a 有意水準
37
+ # @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
38
+ # @example
39
+ # xi = [
40
+ # [12.2, 18.8, 18.2],
41
+ # [22.2, 20.5, 14.6],
42
+ # [20.8, 19.5, 26.3],
43
+ # [26.4, 32.5, 31.3],
44
+ # [24.5, 21.2, 22.4],
45
+ # ]
46
+ # paraTest = MultiCompLib::ParametrixTestLib.new
47
+ # paraTest.rightside_test(xi, 0.05)
48
+ # =>
49
+ # res = [
50
+ # [false, false, true, true, true],
51
+ # [false, false, false, true, false],
52
+ # [false, false, false, true, false],
53
+ # [false, false, false, false, false],
54
+ # [false, false, false, true, false],
55
+ # ]
56
+ def rightside_test(xi, a)
57
+ ret = @paramTest.rightsideTest(xi.to_java(Java::double[]), a)
58
+ return ret.to_a
59
+ end
60
+ # Dunnet検定の左側検定
61
+ #
62
+ # @overload leftside_test(xi, a)
63
+ # @param [array] xi データ(double[][])
64
+ # @param [double] a 有意水準
65
+ # @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
66
+ # @example
67
+ # xi = [
68
+ # [12.2, 18.8, 18.2],
69
+ # [22.2, 20.5, 14.6],
70
+ # [20.8, 19.5, 26.3],
71
+ # [26.4, 32.5, 31.3],
72
+ # [24.5, 21.2, 22.4],
73
+ # ]
74
+ # paraTest = MultiCompLib::ParametrixTestLib.new
75
+ # paraTest.leftside_test(xi, 0.05)
76
+ # =>
77
+ # res = [
78
+ # [false, false, false, false, false],
79
+ # [false, false, false, false, false],
80
+ # [true, false, false, false, false],
81
+ # [true, true, true, false, true],
82
+ # [true, false, false, false, false],
83
+ # ]
84
+ def leftside_test(xi, a)
85
+ ret = @paramTest.leftsideTest(xi.to_java(Java::double[]), a)
86
+ return ret.to_a
87
+ end
88
+ end
89
+
data/lib/multicomp.rb CHANGED
@@ -3,12 +3,15 @@ require 'num4anova.jar'
3
3
  require 'jfreechart-1.5.4.jar'
4
4
  require 'commons-math3-3.6.1.jar'
5
5
 
6
+ require_relative('dunnet')
7
+
6
8
  java_import 'MultiComp'
7
9
  # 多重比較を行う
8
10
  # (Apache commoms math3使用)
9
11
  module MultiCompLib
10
12
  # パラメトリック検定
11
13
  class ParametrixTestLib
14
+ include DunnetTestLib
12
15
  def initialize
13
16
  @paramTest = MultiComp::ParametrixTest.getInstance()
14
17
  end
@@ -26,7 +29,8 @@ module MultiCompLib
26
29
  # [26.4, 32.5, 31.3],
27
30
  # [24.5, 21.2, 22.4],
28
31
  # ]
29
- # paraTest.turkey_test(xi, a)
32
+ # paraTest = MultiCompLib::ParametrixTestLib.new
33
+ # paraTest.turkey_test(xi, 0.05)
30
34
  # =>
31
35
  # [
32
36
  # [false, false, false, true, false],
@@ -53,7 +57,8 @@ module MultiCompLib
53
57
  # [26.4, 32.5, 31.3],
54
58
  # [24.5, 21.2, 22.4],
55
59
  # ]
56
- # paraTest.bonferrono_test(xi, a)
60
+ # paraTest = MultiCompLib::ParametrixTestLib.new
61
+ # paraTest.bonferrono_test(xi, 0.05)
57
62
  # =>
58
63
  # [
59
64
  # [false, false, false, true, false],
data/lib/num4anova.rb CHANGED
@@ -72,13 +72,13 @@ module Num4AnovaLib
72
72
  # @param [double] a 有意水準
73
73
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
74
74
  # @example
75
- # xi = [
76
- # [12.2, 18.8, 18.2],
77
- # [22.2, 20.5, 14.6],
78
- # [20.8, 19.5, 26.3],
79
- # [26.4, 32.5, 31.3],
80
- # [24.5, 21.2, 22.4],
81
- # ]
75
+ # xi = [
76
+ # [12.2, 18.8, 18.2],
77
+ # [22.2, 20.5, 14.6],
78
+ # [20.8, 19.5, 26.3],
79
+ # [26.4, 32.5, 31.3],
80
+ # [24.5, 21.2, 22.4],
81
+ # ]
82
82
  # oneWay = Num4AnovaLib::OneWayLayoutLib.new
83
83
  # oneWay.oneWay.oneway_anova(xi, 0.05)
84
84
  # => true
@@ -92,19 +92,63 @@ module Num4AnovaLib
92
92
  # @param [double] a 有意水準
93
93
  # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
94
94
  # @example
95
- # xi = [
96
- # [12.2, 18.8, 18.2],
97
- # [22.2, 20.5, 14.6],
98
- # [20.8, 19.5, 26.3],
99
- # [26.4, 32.5, 31.3],
100
- # [24.5, 21.2, 22.4],
101
- # ]
95
+ # xi = [
96
+ # [12.2, 18.8, 18.2],
97
+ # [22.2, 20.5, 14.6],
98
+ # [20.8, 19.5, 26.3],
99
+ # [26.4, 32.5, 31.3],
100
+ # [24.5, 21.2, 22.4],
101
+ # ]
102
102
  # oneWay = Num4AnovaLib::OneWayLayoutLib.new
103
103
  # oneWay.bartlet(xi, 0.05)
104
104
  # => true
105
105
  def bartlet(xi, a)
106
106
  return @oneWay.bartletTest(xi.to_java(Java::double[]), a)
107
107
  end
108
+ # 反復測定Plot
109
+ #
110
+ # @overload replicate_plot(dname, vals)
111
+ # @param [String] dname データ名
112
+ # @param [Hash] vals Hash(String, double[])
113
+ # @return [void] replicate.jpegファイルを出力
114
+ # @example
115
+ # vals = {
116
+ # "stageA1" => [27, 52, 18, 21, 32],
117
+ # "stageA2" => [52, 72, 31, 50, 45],
118
+ # "stageA3" => [47, 54, 29, 43, 32],
119
+ # "stageA4" => [28, 50, 22, 26, 29],
120
+ # }
121
+ # oneWay = Num4AnovaLib::OneWayLayoutLib.new
122
+ # oneWay.replicate_plot("LDH", vals)
123
+ # => replicate.jpeg
124
+ # @note
125
+ # グラフは、jfreechartを使用
126
+ def replicate_plot(dname, vals)
127
+ o = HashMap.new
128
+ vals.each{|k, v|
129
+ o[k] = v.to_java(Java::double)
130
+ }
131
+ return @oneWay.replicatePlot(dname, o)
132
+ end
133
+ # 反復測定検定
134
+ #
135
+ # @overload replicate_test(xi, a)
136
+ # @param [array] xi データ(double[][])
137
+ # @param [double] a 有意水準
138
+ # @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
139
+ # @example
140
+ # xi = [
141
+ # [27, 52, 18, 21, 32],
142
+ # [52, 72, 31, 50, 45],
143
+ # [47, 54, 29, 43, 32],
144
+ # [28, 50, 22, 26, 29],
145
+ # ]
146
+ # oneWay = Num4AnovaLib::OneWayLayoutLib.new
147
+ # oneWay.replicate_test("LDH", vals)
148
+ # => true
149
+ def replicate_test(xi, a)
150
+ return @oneWay.replicateTest(xi.to_java(Java::double[]), a)
151
+ end
108
152
  end
109
153
  end
110
154
 
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4anova
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.2
4
+ version: 0.0.4
5
5
  platform: java
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-01-23 00:00:00.000000000 Z
11
+ date: 2024-01-30 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake
@@ -64,6 +64,7 @@ files:
64
64
  - ext/num4anova/MultiComp.java
65
65
  - ext/num4anova/OneWayLayout.java
66
66
  - lib/commons-math3-3.6.1.jar
67
+ - lib/dunnet.rb
67
68
  - lib/jcommon-1.0.23.jar
68
69
  - lib/jfreechart-1.5.4.jar
69
70
  - lib/multicomp.rb