num4anova 0.0.2-java → 0.0.3-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/ext/num4anova/MultiComp.java +143 -1
- data/lib/dunnet.rb +89 -0
- data/lib/multicomp.rb +7 -2
- metadata +3 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 89f91d9c210bb998f14a726f1c7147470cba19fba721724625b7ec87e4c88ad9
|
4
|
+
data.tar.gz: a79f6e3ca4adc650193065ae62037cfed0580e5f7b9c5e1d06109d74f17a05d6
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 97a1409dfb791766292e8d6c0a49502555911529632d45b72aa6c68bc6fda7e82ed813fff4c005c9c76745a2ad05fe79d1131e23879da18afcc88d0652617c29
|
7
|
+
data.tar.gz: 4cd28879971daf44d20ff8122120327e8a74519f658a22e052724af316387c057cfb315a6d1cb23324bbd08634c066c1045594d6c8804f1f87e12d31b6acd0fb
|
data/CHANGELOG.md
CHANGED
@@ -23,6 +23,28 @@ public class MultiComp {
|
|
23
23
|
double[][] statistic = hypoth.calcTestStatistic(xi);
|
24
24
|
return hypoth.executeTest(statistic, a * 0.5);
|
25
25
|
}
|
26
|
+
public boolean scheffe_test(double[][] xi, double a) {
|
27
|
+
return false;
|
28
|
+
}
|
29
|
+
|
30
|
+
public boolean[][] twosideTest(double[][] xi, double a) {
|
31
|
+
HypothesisTest hypoth = new TwoSideTest();
|
32
|
+
double[][] statistic = hypoth.calcTestStatistic(xi);
|
33
|
+
|
34
|
+
return hypoth.executeTest(statistic, a / 2.0);
|
35
|
+
}
|
36
|
+
public boolean[][] rightsideTest(double[][] xi, double a) {
|
37
|
+
HypothesisTest hypoth = new RightSideTest();
|
38
|
+
double[][] statistic = hypoth.calcTestStatistic(xi);
|
39
|
+
|
40
|
+
return hypoth.executeTest(statistic, a);
|
41
|
+
}
|
42
|
+
public boolean[][] leftsideTest(double[][] xi, double a) {
|
43
|
+
HypothesisTest hypoth = new LeftSideTest();
|
44
|
+
double[][] statistic = hypoth.calcTestStatistic(xi);
|
45
|
+
|
46
|
+
return hypoth.executeTest(statistic, a);
|
47
|
+
}
|
26
48
|
/*********************************/
|
27
49
|
/* interface define */
|
28
50
|
/*********************************/
|
@@ -145,7 +167,6 @@ public class MultiComp {
|
|
145
167
|
TDistribution tDist = new TDistribution(v);
|
146
168
|
double t =
|
147
169
|
tDist.inverseCumulativeProbability(p);
|
148
|
-
|
149
170
|
return Math.sqrt(2) * t;
|
150
171
|
}
|
151
172
|
}
|
@@ -220,6 +241,127 @@ public class MultiComp {
|
|
220
241
|
return sumSq / na;
|
221
242
|
}
|
222
243
|
}
|
244
|
+
// ダネット法
|
245
|
+
private class DunnetTest{
|
246
|
+
private int k = 0;
|
247
|
+
private int v = 0;
|
248
|
+
private double[] mean = null;
|
249
|
+
private double[] n = null;
|
250
|
+
protected int getK() { return k;}
|
251
|
+
protected int getV() { return v;}
|
252
|
+
public double[][] calcTestStatistic(double[][] xi) {
|
253
|
+
k = xi.length;
|
254
|
+
mean = new double[k];
|
255
|
+
n = new double[k];
|
256
|
+
double[][] statistic = new double[k][k];
|
257
|
+
double ve = calcVe(xi);
|
258
|
+
|
259
|
+
for(int i = 0; i < k; i++) {
|
260
|
+
for(int j = 0; j < k; j++) {
|
261
|
+
statistic[i][j] = (mean[j] - mean[i])
|
262
|
+
/ Math.sqrt(ve * (1.0 / n[j] + 1.0 / n[i]));
|
263
|
+
}
|
264
|
+
}
|
265
|
+
return statistic;
|
266
|
+
}
|
267
|
+
private double calcVe(double[][] xi) {
|
268
|
+
double sumSq = 0.0;
|
269
|
+
int sumN = 0;
|
270
|
+
for(int i = 0; i < k; i++) {
|
271
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
272
|
+
Arrays.stream(xi[i]).forEach(stat::addValue);
|
273
|
+
mean[i] = stat.getMean();
|
274
|
+
n[i] = stat.getN();
|
275
|
+
sumSq += (n[i] - 1) * stat.getVariance();
|
276
|
+
sumN += n[i];
|
277
|
+
stat.clear();
|
278
|
+
}
|
279
|
+
v = sumN - k;
|
280
|
+
return sumSq / v;
|
281
|
+
}
|
282
|
+
}
|
283
|
+
private class TwoSideTest extends DunnetTest
|
284
|
+
implements HypothesisTest {
|
285
|
+
public boolean[][] executeTest(double[][] statistic, double a) {
|
286
|
+
int v = super.getV();
|
287
|
+
int k = super.getK();
|
288
|
+
double den = k - 1;
|
289
|
+
double p = 1.0 - a / den;
|
290
|
+
TDistribution tDist = new TDistribution(v);
|
291
|
+
double l_val = tDist.inverseCumulativeProbability(a / den);
|
292
|
+
double r_val = tDist.inverseCumulativeProbability(1.0 - a / den);
|
293
|
+
boolean[][] ret = new boolean[k][k];
|
294
|
+
|
295
|
+
for(int i = 0; i < k; i++) {
|
296
|
+
for(int j = 0; j < k; j++) {
|
297
|
+
ret[i][j] = evaluation(statistic[i][j], l_val, r_val );
|
298
|
+
}
|
299
|
+
}
|
300
|
+
return ret;
|
301
|
+
}
|
302
|
+
private boolean evaluation(double statistic, double l_val, double r_val) {
|
303
|
+
boolean ret = true;
|
304
|
+
|
305
|
+
if ((l_val < statistic) && (statistic < r_val)) {
|
306
|
+
ret = false;
|
307
|
+
}
|
308
|
+
return ret;
|
309
|
+
}
|
310
|
+
}
|
311
|
+
private class RightSideTest extends DunnetTest
|
312
|
+
implements HypothesisTest {
|
313
|
+
public boolean[][] executeTest(double[][] statistic, double a) {
|
314
|
+
int v = super.getV();
|
315
|
+
int k = super.getK();
|
316
|
+
double den = k - 1;
|
317
|
+
double p = 1.0 - a / den;
|
318
|
+
TDistribution tDist = new TDistribution(v);
|
319
|
+
double r_val = tDist.inverseCumulativeProbability(1.0 - a);
|
320
|
+
boolean[][] ret = new boolean[k][k];
|
321
|
+
|
322
|
+
for(int i = 0; i < k; i++) {
|
323
|
+
for(int j = 0; j < k; j++) {
|
324
|
+
ret[i][j] = evaluation(statistic[i][j], r_val );
|
325
|
+
}
|
326
|
+
}
|
327
|
+
return ret;
|
328
|
+
}
|
329
|
+
private boolean evaluation(double statistic, double r_val) {
|
330
|
+
boolean ret = true;
|
331
|
+
|
332
|
+
if (statistic < r_val) {
|
333
|
+
ret = false;
|
334
|
+
}
|
335
|
+
return ret;
|
336
|
+
}
|
337
|
+
}
|
338
|
+
private class LeftSideTest extends DunnetTest
|
339
|
+
implements HypothesisTest {
|
340
|
+
public boolean[][] executeTest(double[][] statistic, double a) {
|
341
|
+
int v = super.getV();
|
342
|
+
int k = super.getK();
|
343
|
+
double den = k - 1;
|
344
|
+
double p = a / den;
|
345
|
+
TDistribution tDist = new TDistribution(v);
|
346
|
+
double l_val = tDist.inverseCumulativeProbability(a);
|
347
|
+
boolean[][] ret = new boolean[k][k];
|
348
|
+
|
349
|
+
for(int i = 0; i < k; i++) {
|
350
|
+
for(int j = 0; j < k; j++) {
|
351
|
+
ret[i][j] = evaluation(statistic[i][j], l_val );
|
352
|
+
}
|
353
|
+
}
|
354
|
+
return ret;
|
355
|
+
}
|
356
|
+
private boolean evaluation(double statistic, double l_val) {
|
357
|
+
boolean ret = true;
|
358
|
+
|
359
|
+
if (l_val < statistic) {
|
360
|
+
ret = false;
|
361
|
+
}
|
362
|
+
return ret;
|
363
|
+
}
|
364
|
+
}
|
223
365
|
}
|
224
366
|
}
|
225
367
|
|
data/lib/dunnet.rb
ADDED
@@ -0,0 +1,89 @@
|
|
1
|
+
# Dunnet検定
|
2
|
+
# (Apache commoms math3使用)
|
3
|
+
module DunnetTestLib
|
4
|
+
# Dunnet検定の両側検定
|
5
|
+
#
|
6
|
+
# @overload twoside_test(xi, a)
|
7
|
+
# @param [array] xi データ(double[][])
|
8
|
+
# @param [double] a 有意水準
|
9
|
+
# @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
|
10
|
+
# @example
|
11
|
+
# xi = [
|
12
|
+
# [12.2, 18.8, 18.2],
|
13
|
+
# [22.2, 20.5, 14.6],
|
14
|
+
# [20.8, 19.5, 26.3],
|
15
|
+
# [26.4, 32.5, 31.3],
|
16
|
+
# [24.5, 21.2, 22.4],
|
17
|
+
# ]
|
18
|
+
# paraTest = MultiCompLib::ParametrixTestLib.new
|
19
|
+
# paraTest.twoside_test(xi, 0.05)
|
20
|
+
# =>
|
21
|
+
# res = [
|
22
|
+
# [false, false, false, true, false],
|
23
|
+
# [false, false, false, true, false],
|
24
|
+
# [false, false, false, false, false],
|
25
|
+
# [true, true, false, false, false],
|
26
|
+
# [false, false, false, false, false],
|
27
|
+
# ]
|
28
|
+
def twoside_test(xi, a)
|
29
|
+
ret = @paramTest.twosideTest(xi.to_java(Java::double[]), a)
|
30
|
+
return ret.to_a
|
31
|
+
end
|
32
|
+
# Dunnet検定の右側検定
|
33
|
+
#
|
34
|
+
# @overload rightside_test(xi, a)
|
35
|
+
# @param [array] xi データ(double[][])
|
36
|
+
# @param [double] a 有意水準
|
37
|
+
# @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
|
38
|
+
# @example
|
39
|
+
# xi = [
|
40
|
+
# [12.2, 18.8, 18.2],
|
41
|
+
# [22.2, 20.5, 14.6],
|
42
|
+
# [20.8, 19.5, 26.3],
|
43
|
+
# [26.4, 32.5, 31.3],
|
44
|
+
# [24.5, 21.2, 22.4],
|
45
|
+
# ]
|
46
|
+
# paraTest = MultiCompLib::ParametrixTestLib.new
|
47
|
+
# paraTest.rightside_test(xi, 0.05)
|
48
|
+
# =>
|
49
|
+
# res = [
|
50
|
+
# [false, false, true, true, true],
|
51
|
+
# [false, false, false, true, false],
|
52
|
+
# [false, false, false, true, false],
|
53
|
+
# [false, false, false, false, false],
|
54
|
+
# [false, false, false, true, false],
|
55
|
+
# ]
|
56
|
+
def rightside_test(xi, a)
|
57
|
+
ret = @paramTest.rightsideTest(xi.to_java(Java::double[]), a)
|
58
|
+
return ret.to_a
|
59
|
+
end
|
60
|
+
# Dunnet検定の左側検定
|
61
|
+
#
|
62
|
+
# @overload leftside_test(xi, a)
|
63
|
+
# @param [array] xi データ(double[][])
|
64
|
+
# @param [double] a 有意水準
|
65
|
+
# @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
|
66
|
+
# @example
|
67
|
+
# xi = [
|
68
|
+
# [12.2, 18.8, 18.2],
|
69
|
+
# [22.2, 20.5, 14.6],
|
70
|
+
# [20.8, 19.5, 26.3],
|
71
|
+
# [26.4, 32.5, 31.3],
|
72
|
+
# [24.5, 21.2, 22.4],
|
73
|
+
# ]
|
74
|
+
# paraTest = MultiCompLib::ParametrixTestLib.new
|
75
|
+
# paraTest.leftside_test(xi, 0.05)
|
76
|
+
# =>
|
77
|
+
# res = [
|
78
|
+
# [false, false, false, false, false],
|
79
|
+
# [false, false, false, false, false],
|
80
|
+
# [true, false, false, false, false],
|
81
|
+
# [true, true, true, false, true],
|
82
|
+
# [true, false, false, false, false],
|
83
|
+
# ]
|
84
|
+
def leftside_test(xi, a)
|
85
|
+
ret = @paramTest.leftsideTest(xi.to_java(Java::double[]), a)
|
86
|
+
return ret.to_a
|
87
|
+
end
|
88
|
+
end
|
89
|
+
|
data/lib/multicomp.rb
CHANGED
@@ -3,12 +3,15 @@ require 'num4anova.jar'
|
|
3
3
|
require 'jfreechart-1.5.4.jar'
|
4
4
|
require 'commons-math3-3.6.1.jar'
|
5
5
|
|
6
|
+
require_relative('dunnet')
|
7
|
+
|
6
8
|
java_import 'MultiComp'
|
7
9
|
# 多重比較を行う
|
8
10
|
# (Apache commoms math3使用)
|
9
11
|
module MultiCompLib
|
10
12
|
# パラメトリック検定
|
11
13
|
class ParametrixTestLib
|
14
|
+
include DunnetTestLib
|
12
15
|
def initialize
|
13
16
|
@paramTest = MultiComp::ParametrixTest.getInstance()
|
14
17
|
end
|
@@ -26,7 +29,8 @@ module MultiCompLib
|
|
26
29
|
# [26.4, 32.5, 31.3],
|
27
30
|
# [24.5, 21.2, 22.4],
|
28
31
|
# ]
|
29
|
-
# paraTest.
|
32
|
+
# paraTest = MultiCompLib::ParametrixTestLib.new
|
33
|
+
# paraTest.turkey_test(xi, 0.05)
|
30
34
|
# =>
|
31
35
|
# [
|
32
36
|
# [false, false, false, true, false],
|
@@ -53,7 +57,8 @@ module MultiCompLib
|
|
53
57
|
# [26.4, 32.5, 31.3],
|
54
58
|
# [24.5, 21.2, 22.4],
|
55
59
|
# ]
|
56
|
-
# paraTest.
|
60
|
+
# paraTest = MultiCompLib::ParametrixTestLib.new
|
61
|
+
# paraTest.bonferrono_test(xi, 0.05)
|
57
62
|
# =>
|
58
63
|
# [
|
59
64
|
# [false, false, false, true, false],
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.3
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-01-
|
11
|
+
date: 2024-01-26 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|
@@ -64,6 +64,7 @@ files:
|
|
64
64
|
- ext/num4anova/MultiComp.java
|
65
65
|
- ext/num4anova/OneWayLayout.java
|
66
66
|
- lib/commons-math3-3.6.1.jar
|
67
|
+
- lib/dunnet.rb
|
67
68
|
- lib/jcommon-1.0.23.jar
|
68
69
|
- lib/jfreechart-1.5.4.jar
|
69
70
|
- lib/multicomp.rb
|