num4anova 0.0.14-java → 0.0.16-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/num4anova/OneWayLayout.java +73 -1
- data/ext/num4anova/TwoWayLayout.java +78 -4
- data/lib/num4anova.rb +39 -0
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: fb1dd347cd1156e1cc9e06ee7b4daff32442d6fc721e35553cbb406ae5d94cf1
|
4
|
+
data.tar.gz: 17d4c4084a40fe8e721829169e2551455d258f64dd4ef6c537b499ef9a5dab15
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 768b64803a235265e1dae41341428a0bda9fb12245e7f2fae54a3f75f8aeee607a4cd3709b578b1c7aeb6869fcc7f227b287d2142b99411ed8955248eeafedd4
|
7
|
+
data.tar.gz: da4c649d32a38c9f9a83adadc54d20605bfebe42f822fdd353df7ba8e00df8e3be8fbd8c4775474da5299957a477ec98c4912ec1ac5b8fb0d305c0f11ad91ff0
|
data/CHANGELOG.md
CHANGED
@@ -2,6 +2,16 @@
|
|
2
2
|
|
3
3
|
## Unreleased
|
4
4
|
|
5
|
+
## [0.0.16] - 2024-04-16
|
6
|
+
|
7
|
+
### add
|
8
|
+
- add fuction of bonferrono_test in friedman_test.
|
9
|
+
|
10
|
+
## [0.0.15] - 2024-04-13
|
11
|
+
|
12
|
+
### add
|
13
|
+
- add fuction of bonferrono_test in kruskalwallis_test.
|
14
|
+
|
5
15
|
## [0.0.14] - 2024-04-08
|
6
16
|
|
7
17
|
### add
|
@@ -30,6 +30,11 @@ import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
|
|
30
30
|
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
|
31
31
|
import org.apache.commons.math3.distribution.FDistribution;
|
32
32
|
import java.util.Map;
|
33
|
+
|
34
|
+
import org.apache.commons.math3.stat.ranking.NaNStrategy;
|
35
|
+
import org.apache.commons.math3.stat.ranking.NaturalRanking;
|
36
|
+
import org.apache.commons.math3.stat.ranking.TiesStrategy;
|
37
|
+
import java.util.stream.IntStream;
|
33
38
|
public class OneWayLayout {
|
34
39
|
private static OneWayLayout oneWay = new OneWayLayout();
|
35
40
|
public static OneWayLayout getInstance() {
|
@@ -72,6 +77,12 @@ public class OneWayLayout {
|
|
72
77
|
double statistic = oneway.calcTestStatistic(xi);
|
73
78
|
return oneway.execute_test(statistic, a);
|
74
79
|
}
|
80
|
+
public boolean kruskalWallisTest(double[][] xi, double a) {
|
81
|
+
OneWayAnovaTest oneway = new KruskalWallisTest();
|
82
|
+
|
83
|
+
double statistic = oneway.calcTestStatistic(xi);
|
84
|
+
return oneway.execute_test(statistic, a);
|
85
|
+
}
|
75
86
|
/*********************************/
|
76
87
|
/* interface define */
|
77
88
|
/*********************************/
|
@@ -380,5 +391,66 @@ public class OneWayLayout {
|
|
380
391
|
return (statistic >= f) ? true : false;
|
381
392
|
}
|
382
393
|
}
|
383
|
-
|
394
|
+
// クラスカル・ウォリス検定
|
395
|
+
private class KruskalWallisTest implements OneWayAnovaTest {
|
396
|
+
private NaturalRanking naturalRanking;
|
397
|
+
private int[] ni = null;
|
398
|
+
public KruskalWallisTest() {
|
399
|
+
naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
|
400
|
+
TiesStrategy.AVERAGE);
|
401
|
+
}
|
402
|
+
public double calcTestStatistic(double[][] xi) {
|
403
|
+
double[] z = concatSample(xi); // 全てのデータをつなぐ
|
404
|
+
double[] ranks = naturalRanking.rank(z); // rankに順位値に変換
|
405
|
+
double[] sumRankXi = calcSumRankXi(ranks);
|
406
|
+
double kw = 0.0;
|
407
|
+
int n = z.length;
|
408
|
+
|
409
|
+
for(int i = 0; i < sumRankXi.length; i++) {
|
410
|
+
kw += sumRankXi[i] * sumRankXi[i] / ni[i];
|
411
|
+
}
|
412
|
+
return 12.0 / (n * (n + 1.0)) * kw - 3.0 * (n + 1.0);
|
413
|
+
}
|
414
|
+
public boolean execute_test(double statistic, double a) {
|
415
|
+
ChiSquaredDistribution chi2Dist = new ChiSquaredDistribution(ni.length - 1);
|
416
|
+
double r_val = chi2Dist.inverseCumulativeProbability(1.0 - a);
|
417
|
+
|
418
|
+
return (r_val < statistic) ? true : false;
|
419
|
+
}
|
420
|
+
private int[] calcNi(double[][] xi) {
|
421
|
+
int[] ni = new int[xi.length];
|
422
|
+
|
423
|
+
for(int i = 0; i < ni.length; i++) {
|
424
|
+
ni[i] = xi[i].length;
|
425
|
+
}
|
426
|
+
return ni;
|
427
|
+
}
|
428
|
+
private double[] concatSample(double[][] xi) {
|
429
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
430
|
+
ni = calcNi(xi);
|
431
|
+
Arrays.stream(ni).forEach(stat::addValue);
|
432
|
+
int n = Double.valueOf(stat.getSum()).intValue();
|
433
|
+
|
434
|
+
double[] z = new double[n];
|
435
|
+
int idx = 0;
|
436
|
+
for(int cnt = 0; cnt < xi.length; cnt++) {
|
437
|
+
System.arraycopy(xi[cnt], 0, z, idx, ni[cnt]);
|
438
|
+
idx += ni[cnt];
|
439
|
+
}
|
440
|
+
return z;
|
441
|
+
}
|
442
|
+
private double[] calcSumRankXi(double[] ranks) {
|
443
|
+
double[] sumRi = new double[ni.length];
|
444
|
+
int idx = 0;
|
445
|
+
|
446
|
+
for(int cnt = 0; cnt < ni.length; cnt++) {
|
447
|
+
sumRi[cnt] = IntStream.range(idx, idx + ni[cnt])
|
448
|
+
.mapToDouble(i -> ranks[i])
|
449
|
+
.sum();
|
450
|
+
idx += ni[cnt];
|
451
|
+
}
|
452
|
+
return sumRi;
|
453
|
+
}
|
454
|
+
}
|
455
|
+
}
|
384
456
|
|
@@ -1,6 +1,11 @@
|
|
1
1
|
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
|
2
2
|
import org.apache.commons.math3.distribution.FDistribution;
|
3
|
+
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
|
3
4
|
import java.util.Arrays;
|
5
|
+
|
6
|
+
import org.apache.commons.math3.stat.ranking.NaNStrategy;
|
7
|
+
import org.apache.commons.math3.stat.ranking.NaturalRanking;
|
8
|
+
import org.apache.commons.math3.stat.ranking.TiesStrategy;
|
4
9
|
public class TwoWayLayout {
|
5
10
|
private static TwoWayLayout twoWay = new TwoWayLayout();
|
6
11
|
public static TwoWayLayout getInstance() {
|
@@ -18,16 +23,26 @@ public class TwoWayLayout {
|
|
18
23
|
double[] statistic = twoway.calcTestStatistic(xij);
|
19
24
|
return twoway.execute_test(statistic, a);
|
20
25
|
}
|
26
|
+
public boolean friedmanTest(double[][] xij, double a) {
|
27
|
+
OneWayAnovaTest twoway = new FriedmanTest();
|
28
|
+
|
29
|
+
double statistic = twoway.calcTestStatistic(xij);
|
30
|
+
return twoway.execute_test(statistic, a);
|
31
|
+
}
|
21
32
|
/*********************************/
|
22
33
|
/* interface define */
|
23
34
|
/*********************************/
|
24
35
|
private interface TwoWayAnovaTest {
|
25
36
|
double[] calcTestStatistic(double[][][] xij);
|
26
|
-
boolean[] execute_test(double statistic
|
37
|
+
boolean[] execute_test(double[] statistic, double a);
|
27
38
|
}
|
28
39
|
private interface TwoWay2AnovaTest {
|
29
40
|
double[] calcTestStatistic(double[][] xij);
|
30
|
-
boolean[] execute_test(double statistic
|
41
|
+
boolean[] execute_test(double[] statistic, double a);
|
42
|
+
}
|
43
|
+
private interface OneWayAnovaTest {
|
44
|
+
double calcTestStatistic(double[][] xi);
|
45
|
+
boolean execute_test(double statistic, double a);
|
31
46
|
}
|
32
47
|
/*********************************/
|
33
48
|
/* class define */
|
@@ -162,7 +177,7 @@ public class TwoWayLayout {
|
|
162
177
|
}
|
163
178
|
return sumDrift;
|
164
179
|
}
|
165
|
-
public boolean[] execute_test(double statistic
|
180
|
+
public boolean[] execute_test(double[] statistic, double a) {
|
166
181
|
boolean[] ret = new boolean[3];
|
167
182
|
|
168
183
|
ret[0] = evaluation(new FDistribution(an, en), statistic[0], a);
|
@@ -269,7 +284,7 @@ public class TwoWayLayout {
|
|
269
284
|
return sumDrift;
|
270
285
|
}
|
271
286
|
|
272
|
-
public boolean[] execute_test(double statistic
|
287
|
+
public boolean[] execute_test(double[] statistic, double a) {
|
273
288
|
boolean[] ret = new boolean[2];
|
274
289
|
|
275
290
|
ret[0] = evaluation(new FDistribution(an, en), statistic[0], a);
|
@@ -282,5 +297,64 @@ public class TwoWayLayout {
|
|
282
297
|
return (statistic >= r_val) ? true : false;
|
283
298
|
}
|
284
299
|
}
|
300
|
+
// フリードマンの検定
|
301
|
+
private class FriedmanTest implements OneWayAnovaTest{
|
302
|
+
private NaturalRanking naturalRanking;
|
303
|
+
private int n = 0;
|
304
|
+
private int k = 0;
|
305
|
+
public FriedmanTest() {
|
306
|
+
naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
|
307
|
+
TiesStrategy.AVERAGE);
|
308
|
+
}
|
309
|
+
public double calcTestStatistic(double[][] xij) {
|
310
|
+
n = xij[0].length;
|
311
|
+
k = xij.length;
|
312
|
+
double[][] z = concatSample(xij);
|
313
|
+
double[][] ranks = calcRankij(z);
|
314
|
+
double[] sumRankXi = calcSumRankXi(ranks);
|
315
|
+
double kw = 0.0;
|
316
|
+
|
317
|
+
for(int i = 0; i < sumRankXi.length; i++) {
|
318
|
+
kw += sumRankXi[i] * sumRankXi[i];
|
319
|
+
}
|
320
|
+
return 12.0 / (n * k * (k + 1.0)) * kw - 3.0 * n * (k + 1.0);
|
321
|
+
}
|
322
|
+
public boolean execute_test(double statistic, double a) {
|
323
|
+
ChiSquaredDistribution chi2Dist = new ChiSquaredDistribution(k - 1);
|
324
|
+
|
325
|
+
double r_val = chi2Dist.inverseCumulativeProbability(1.0 - a);
|
326
|
+
|
327
|
+
return (r_val < statistic) ? true : false;
|
328
|
+
}
|
329
|
+
private double[][] concatSample(double[][] xi) {
|
330
|
+
double[][] z = new double[n][k];
|
331
|
+
|
332
|
+
for(int i = 0; i < k; i++) {
|
333
|
+
for(int j = 0; j < n; j++) {
|
334
|
+
z[j][i] = xi[i][j];
|
335
|
+
}
|
336
|
+
}
|
337
|
+
return z;
|
338
|
+
}
|
339
|
+
private double[][] calcRankij(double[][] z) {
|
340
|
+
double[][] ranks = new double[n][k];
|
341
|
+
|
342
|
+
for(int i = 0; i < n; i++) {
|
343
|
+
ranks[i] = naturalRanking.rank(z[i]);
|
344
|
+
}
|
345
|
+
return ranks;
|
346
|
+
}
|
347
|
+
private double[] calcSumRankXi(double[][] ranks) {
|
348
|
+
double[] sumRi = new double[k];
|
349
|
+
|
350
|
+
for(int i = 0; i < k; i++) {
|
351
|
+
sumRi[i] = 0.0;
|
352
|
+
for(int j = 0; j < n; j++) {
|
353
|
+
sumRi[i] += ranks[j][i];
|
354
|
+
}
|
355
|
+
}
|
356
|
+
return sumRi;
|
357
|
+
}
|
358
|
+
}
|
285
359
|
}
|
286
360
|
|
data/lib/num4anova.rb
CHANGED
@@ -151,6 +151,24 @@ module Num4AnovaLib
|
|
151
151
|
def replicate_test(xi, a)
|
152
152
|
return @oneWay.replicateTest(xi.to_java(Java::double[]), a)
|
153
153
|
end
|
154
|
+
# クラスカル・ウォリスの検定
|
155
|
+
#
|
156
|
+
# @overload kruskalwallis_test(xi, a)
|
157
|
+
# @param [array] xi データ(double[][])
|
158
|
+
# @param [double] a 有意水準
|
159
|
+
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
160
|
+
# @example
|
161
|
+
# xi = [
|
162
|
+
# [12.2, 18.8, 18.2],
|
163
|
+
# [22.2, 20.5, 14.6, 20.8, 19.5, 26.3],
|
164
|
+
# [26.4, 32.5, 31.3, 24.5, 21.2, 22.4],
|
165
|
+
# ]
|
166
|
+
# oneWay = Num4AnovaLib::OneWayLayoutLib.new
|
167
|
+
# oneWay.kruskalwallis_test(xi, 0.05)
|
168
|
+
# => true
|
169
|
+
def kruskalwallis_test(xi, a)
|
170
|
+
return @oneWay.kruskalWallisTest(xi.to_java(Java::double[]), a)
|
171
|
+
end
|
154
172
|
end
|
155
173
|
|
156
174
|
# 二元配置の分散分析
|
@@ -217,6 +235,27 @@ module Num4AnovaLib
|
|
217
235
|
def twoway2_anova(xij, a)
|
218
236
|
ret = @twoWay.twoway2Anova(xij.to_java(Java::double[]), a)
|
219
237
|
return ret.to_a
|
238
|
+
end
|
239
|
+
# フリードマン検定
|
240
|
+
#
|
241
|
+
# @overload friedman_test(xij, a)
|
242
|
+
# @param [array] xij データ(double[][])
|
243
|
+
# @param [double] a 有意水準
|
244
|
+
# @return [boolean] 検定結果(boolean true:棄却域内 false:棄却域外)
|
245
|
+
# @example
|
246
|
+
# xij = [
|
247
|
+
# [13.6, 15.6, 9.2],
|
248
|
+
# [22.3, 23.3, 13.3],
|
249
|
+
# [26.7, 28.8, 15.0],
|
250
|
+
# [28.0, 31.2, 15.8],
|
251
|
+
# ]
|
252
|
+
# twoWay = Num4AnovaLib::TwoWayLayoutLib.new
|
253
|
+
# twoWay.friedman_test(xij, 0.05)
|
254
|
+
# =>
|
255
|
+
# true
|
256
|
+
def friedman_test(xij, a)
|
257
|
+
ret = @twoWay.friedmanTest(xij.to_java(Java::double[]), a)
|
258
|
+
return ret
|
220
259
|
end
|
221
260
|
end
|
222
261
|
# 共分散分析
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.16
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-04-
|
11
|
+
date: 2024-04-16 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|