num4anova 0.0.14-java → 0.0.15-java
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/ext/num4anova/OneWayLayout.java +73 -1
- data/lib/num4anova.rb +19 -0
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 81c39fe39ac94774f6ce94343e91c968190c63c510c9742d0a4b1e33c6f1a399
|
4
|
+
data.tar.gz: 9ba93973bdf9ad7237dd02702b67cd493335659a9b9f9162976ecb703ae351db
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: c2d3ffd3cbf0bcb0c4955c64c587b48da9d878bb61ce5c3a2b547de4c6563bafbf6852aa032e378d318419e55d6583f4af6467a7456a598501d6acea5f2b9c91
|
7
|
+
data.tar.gz: 7d97f9780f7d68f601810ac5ba5bcda923050b80e11fbff53b78017ceb61d954a788bb62f9a1dc85bc79c7e4fd0be857c538d6647d7506f91c6100295891238d
|
data/CHANGELOG.md
CHANGED
@@ -30,6 +30,11 @@ import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
|
|
30
30
|
import org.apache.commons.math3.distribution.ChiSquaredDistribution;
|
31
31
|
import org.apache.commons.math3.distribution.FDistribution;
|
32
32
|
import java.util.Map;
|
33
|
+
|
34
|
+
import org.apache.commons.math3.stat.ranking.NaNStrategy;
|
35
|
+
import org.apache.commons.math3.stat.ranking.NaturalRanking;
|
36
|
+
import org.apache.commons.math3.stat.ranking.TiesStrategy;
|
37
|
+
import java.util.stream.IntStream;
|
33
38
|
public class OneWayLayout {
|
34
39
|
private static OneWayLayout oneWay = new OneWayLayout();
|
35
40
|
public static OneWayLayout getInstance() {
|
@@ -72,6 +77,12 @@ public class OneWayLayout {
|
|
72
77
|
double statistic = oneway.calcTestStatistic(xi);
|
73
78
|
return oneway.execute_test(statistic, a);
|
74
79
|
}
|
80
|
+
public boolean kruskalWallisTest(double[][] xi, double a) {
|
81
|
+
OneWayAnovaTest oneway = new KruskalWallisTest();
|
82
|
+
|
83
|
+
double statistic = oneway.calcTestStatistic(xi);
|
84
|
+
return oneway.execute_test(statistic, a);
|
85
|
+
}
|
75
86
|
/*********************************/
|
76
87
|
/* interface define */
|
77
88
|
/*********************************/
|
@@ -380,5 +391,66 @@ public class OneWayLayout {
|
|
380
391
|
return (statistic >= f) ? true : false;
|
381
392
|
}
|
382
393
|
}
|
383
|
-
|
394
|
+
// クラスカル・ウォリス検定
|
395
|
+
private class KruskalWallisTest implements OneWayAnovaTest {
|
396
|
+
private NaturalRanking naturalRanking;
|
397
|
+
private int[] ni = null;
|
398
|
+
public KruskalWallisTest() {
|
399
|
+
naturalRanking = new NaturalRanking(NaNStrategy.FIXED,
|
400
|
+
TiesStrategy.AVERAGE);
|
401
|
+
}
|
402
|
+
public double calcTestStatistic(double[][] xi) {
|
403
|
+
double[] z = concatSample(xi); // 全てのデータをつなぐ
|
404
|
+
double[] ranks = naturalRanking.rank(z); // rankに順位値に変換
|
405
|
+
double[] sumRankXi = calcSumRankXi(ranks);
|
406
|
+
double kw = 0.0;
|
407
|
+
int n = z.length;
|
408
|
+
|
409
|
+
for(int i = 0; i < sumRankXi.length; i++) {
|
410
|
+
kw += sumRankXi[i] * sumRankXi[i] / ni[i];
|
411
|
+
}
|
412
|
+
return 12.0 / (n * (n + 1.0)) * kw - 3.0 * (n + 1.0);
|
413
|
+
}
|
414
|
+
public boolean execute_test(double statistic, double a) {
|
415
|
+
ChiSquaredDistribution chi2Dist = new ChiSquaredDistribution(ni.length - 1);
|
416
|
+
double r_val = chi2Dist.inverseCumulativeProbability(1.0 - a);
|
417
|
+
|
418
|
+
return (r_val < statistic) ? true : false;
|
419
|
+
}
|
420
|
+
private int[] calcNi(double[][] xi) {
|
421
|
+
int[] ni = new int[xi.length];
|
422
|
+
|
423
|
+
for(int i = 0; i < ni.length; i++) {
|
424
|
+
ni[i] = xi[i].length;
|
425
|
+
}
|
426
|
+
return ni;
|
427
|
+
}
|
428
|
+
private double[] concatSample(double[][] xi) {
|
429
|
+
DescriptiveStatistics stat = new DescriptiveStatistics();
|
430
|
+
ni = calcNi(xi);
|
431
|
+
Arrays.stream(ni).forEach(stat::addValue);
|
432
|
+
int n = Double.valueOf(stat.getSum()).intValue();
|
433
|
+
|
434
|
+
double[] z = new double[n];
|
435
|
+
int idx = 0;
|
436
|
+
for(int cnt = 0; cnt < xi.length; cnt++) {
|
437
|
+
System.arraycopy(xi[cnt], 0, z, idx, ni[cnt]);
|
438
|
+
idx += ni[cnt];
|
439
|
+
}
|
440
|
+
return z;
|
441
|
+
}
|
442
|
+
private double[] calcSumRankXi(double[] ranks) {
|
443
|
+
double[] sumRi = new double[ni.length];
|
444
|
+
int idx = 0;
|
445
|
+
|
446
|
+
for(int cnt = 0; cnt < ni.length; cnt++) {
|
447
|
+
sumRi[cnt] = IntStream.range(idx, idx + ni[cnt])
|
448
|
+
.mapToDouble(i -> ranks[i])
|
449
|
+
.sum();
|
450
|
+
idx += ni[cnt];
|
451
|
+
}
|
452
|
+
return sumRi;
|
453
|
+
}
|
454
|
+
}
|
455
|
+
}
|
384
456
|
|
data/lib/num4anova.rb
CHANGED
@@ -151,6 +151,25 @@ module Num4AnovaLib
|
|
151
151
|
def replicate_test(xi, a)
|
152
152
|
return @oneWay.replicateTest(xi.to_java(Java::double[]), a)
|
153
153
|
end
|
154
|
+
# クラスカル・ウォリスの検定
|
155
|
+
#
|
156
|
+
# @overload kruskalwallis_test(xi, a)
|
157
|
+
# @param [array] xi データ(double[][])
|
158
|
+
# @param [double] a 有意水準
|
159
|
+
# @return [boolean] 検定結果(true:棄却域内 false:棄却域外)
|
160
|
+
# xi = [
|
161
|
+
# [12.2, 18.8, 18.2],
|
162
|
+
# [22.2, 20.5, 14.6],
|
163
|
+
# [20.8, 19.5, 26.3],
|
164
|
+
# [26.4, 32.5, 31.3],
|
165
|
+
# [24.5, 21.2, 22.4],
|
166
|
+
# ]
|
167
|
+
# oneWay = Num4AnovaLib::OneWayLayoutLib.new
|
168
|
+
# oneWay.kruskalwallis_test(xi, 0.05)
|
169
|
+
# => true
|
170
|
+
def kruskalwallis_test(xi, a)
|
171
|
+
return @oneWay.kruskalWallisTest(xi.to_java(Java::double[]), a)
|
172
|
+
end
|
154
173
|
end
|
155
174
|
|
156
175
|
# 二元配置の分散分析
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.15
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-04-
|
11
|
+
date: 2024-04-13 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|