num4anova 0.0.12-java → 0.0.14-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 87febfd8031fd924430223c93fad6b0606aa212ab109e1b758db2c1d23b6dace
4
- data.tar.gz: 48b610b93d2c5341f05c25ef230acea09b02fa75c924129f5dafba56fcb6051f
3
+ metadata.gz: 844b392125f78a4966a67dd1162bef6676857f03ed9f49e48d4f00e9f294d6e9
4
+ data.tar.gz: da4999753cf5b2b73336b365c53e79ad5eb084fcb44151fdf6c05b5c691a40d2
5
5
  SHA512:
6
- metadata.gz: 979fe122d0cf17086e80a45ff6c44b67153822a8d89d83bceb84a25d3d68190f087c3ed8bf4b192e9afd48a38b3ec0d1456fa0821c84256113154e04d5a6e461
7
- data.tar.gz: 0bcad9f7a234a96759697440f540f0caddf70c1a25cf46409dead11478faa0017cfe9e98d2a23feaad2648bea641d5bca80cb73adab5001ec46d93ef8899ce70
6
+ metadata.gz: 6c8e9884146305d0db99633f36997de0dc3ec4593e2b497fa6f97c1d9cf957721ad233914454e2eb1f8334b86871fdb389f073d62492904432da76415f9a302f
7
+ data.tar.gz: 79b9cc886c7f2f8b794c204db714ca5663e9b9acb0388eee8afd60cef393b9f107e3f32f05855f848c53e39fc67f42212d352d87c0fdc2262718178f6d36d1d1
data/CHANGELOG.md CHANGED
@@ -2,6 +2,16 @@
2
2
 
3
3
  ## Unreleased
4
4
 
5
+ ## [0.0.14] - 2024-04-08
6
+
7
+ ### add
8
+ - add fuction of bonferrono_test in NonParametrixTestLib.
9
+
10
+ ## [0.0.13] - 2024-04-04
11
+
12
+ ### chg
13
+ - chg fuction of interval_estim.
14
+
5
15
  ## [0.0.12] - 2024-03-27
6
16
 
7
17
  ### add
@@ -24,7 +24,7 @@ public class Ancova {
24
24
  double statistic = hypoth.calcTestStatistic(xi);
25
25
  return hypoth.executeTest(statistic, a);
26
26
  }
27
- public Interval intervalEstim(double[][][] xi, double a) {
27
+ public Interval[] intervalEstim(double[][][] xi, double a) {
28
28
  Estim estim = new IntervalEstim();
29
29
 
30
30
  return estim.calcInterval(xi, a);
@@ -37,7 +37,7 @@ public class Ancova {
37
37
  boolean executeTest(double statistic, double a);
38
38
  }
39
39
  private interface Estim {
40
- Interval calcInterval(double[][][] xi, double a);
40
+ Interval[] calcInterval(double[][][] xi, double a);
41
41
  }
42
42
  /*********************************/
43
43
  /* class define */
@@ -346,7 +346,8 @@ public class Ancova {
346
346
  private int n = 0;
347
347
  private int[] ni = null;
348
348
  private double sumex = 0.0;
349
- public Interval calcInterval(double[][][] xi, double a) {
349
+ public Interval[] calcInterval(double[][][] xi, double a) {
350
+ Interval[] ret = new Interval[xi.length];
350
351
  ni = calcNi(xi);
351
352
  int sumn = calcSumn(xi);
352
353
  n = sumn - xi.length - 1;
@@ -360,12 +361,16 @@ public class Ancova {
360
361
 
361
362
  TDistribution tDist = new TDistribution(n);
362
363
  double t = tDist.inverseCumulativeProbability(1.0 - a / 2.0);
363
- double wk = (meanxi[0] - meanx);
364
- double wk2 = t * Math.sqrt((1/ni[0] + wk * wk / sumex) * ve);
365
- double min = meanyi[0] - b * wk - wk2;
366
- double max = meanyi[0] - b * wk + wk2;
364
+ for(int i = 0; i < ret.length; i++) {
365
+ double wk = (meanxi[i] - meanx);
366
+ double wk2 = t * Math.sqrt((1/ni[i] + wk * wk / sumex) * ve);
367
+ double min = meanyi[i] - b * wk - wk2;
368
+ double max = meanyi[i] - b * wk + wk2;
367
369
 
368
- return new Interval(min, max);
370
+ ret[i] = new Interval(min, max);
371
+ }
372
+
373
+ return ret;
369
374
  }
370
375
  private int[] calcNi(double[][][] xi) {
371
376
  int[] ni = new int[xi.length];
@@ -3,9 +3,17 @@ import java.util.Arrays;
3
3
  import java.util.List;
4
4
  import java.util.ArrayList;
5
5
  import org.apache.commons.math3.distribution.TDistribution;
6
+ import org.apache.commons.math3.stat.inference.MannWhitneyUTest;
6
7
 
7
8
  import org.apache.commons.math3.util.Combinations;
8
9
  public class MultiComp {
10
+ /*********************************/
11
+ /* interface define */
12
+ /*********************************/
13
+ private interface HypothesisTest {
14
+ double[][] calcTestStatistic(double[][] xi);
15
+ boolean[][] executeTest(double[][] statistic, double a);
16
+ }
9
17
  public static class ParametrixTest {
10
18
  private static ParametrixTest paramTest = new ParametrixTest();
11
19
  public static ParametrixTest getInstance() {
@@ -46,13 +54,6 @@ public class MultiComp {
46
54
  return hypoth.executeTest(statistic, a);
47
55
  }
48
56
  /*********************************/
49
- /* interface define */
50
- /*********************************/
51
- private interface HypothesisTest {
52
- double[][] calcTestStatistic(double[][] xi);
53
- boolean[][] executeTest(double[][] statistic, double a);
54
- }
55
- /*********************************/
56
57
  /* Class define */
57
58
  /*********************************/
58
59
  // turkey法
@@ -366,5 +367,55 @@ public class MultiComp {
366
367
  }
367
368
  }
368
369
  }
370
+ public static class NonParametrixTest {
371
+ private static NonParametrixTest nonParamTest = new NonParametrixTest();
372
+ public static NonParametrixTest getInstance() {
373
+ return nonParamTest;
374
+ }
375
+ public boolean[][] bonferronoTest(double[][] xi, double a) {
376
+ HypothesisTest hypoth = new BonferroniTest();
377
+
378
+ double[][] statistic = hypoth.calcTestStatistic(xi);
379
+ return hypoth.executeTest(statistic, a * 0.5);
380
+ }
381
+ /*********************************/
382
+ /* Class define */
383
+ /*********************************/
384
+ // ボンフェロー法
385
+ private class BonferroniTest implements HypothesisTest {
386
+ private int n = 0;
387
+ private int k = 0;
388
+ public double[][] calcTestStatistic(double[][] xi) {
389
+ n = xi.length;
390
+ double[][] statistic = new double[n][n];
391
+ //
392
+ Combinations c = new Combinations(n, 2);
393
+ List<int[]> al = new ArrayList<>();
394
+ for(int[] iterate : c) {
395
+ al.add(iterate);
396
+ }
397
+ k = al.size();
398
+ //
399
+ MannWhitneyUTest utest = new MannWhitneyUTest();
400
+ for(int[] array : al) {
401
+ int i = array[0];
402
+ int j = array[1];
403
+
404
+ statistic[i][j] = utest.mannWhitneyUTest(xi[i], xi[j]);
405
+ }
406
+ return statistic;
407
+ }
408
+ public boolean[][] executeTest(double[][] statistic, double a) {
409
+ boolean[][] ret = new boolean[n][n];
410
+
411
+ for(int i = 0; i < n; i++) {
412
+ for(int j = i+1; j < n; j++) {
413
+ ret[i][j] = (statistic[i][j] < a * k) ? true : false;
414
+ }
415
+ }
416
+ return ret;
417
+ }
418
+ }
419
+ }
369
420
  }
370
421
 
data/lib/multicomp.rb CHANGED
@@ -43,7 +43,7 @@ module MultiCompLib
43
43
  ret = @paramTest.turkeyTest(xi.to_java(Java::double[]), a)
44
44
  return ret.to_a
45
45
  end
46
- # ボンフェロー二の不等式による多重比較
46
+ # ボンフェロー二の不等式による多重比較(T検定)
47
47
  #
48
48
  # @overload bonferrono_test(xi, a)
49
49
  # @param [array] xi データ(double[][])
@@ -74,5 +74,37 @@ module MultiCompLib
74
74
  end
75
75
  # ノンパラメトリック検定
76
76
  class NonParametrixTestLib
77
+ def initialize
78
+ @nonParamTest = MultiComp::NonParametrixTest.getInstance()
79
+ end
80
+ # ボンフェロー二の不等式による多重比較(マン・ホイットニーU検定)
81
+ #
82
+ # @overload bonferrono_test(xi, a)
83
+ # @param [array] xi データ(double[][])
84
+ # @param [double] a 有意水準
85
+ # @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
86
+ # @example
87
+ # xi = [
88
+ # [12.2, 18.8, 18.2],
89
+ # [22.2, 20.5, 14.6],
90
+ # [20.8, 19.5, 26.3],
91
+ # [26.4, 32.5, 31.3],
92
+ # [24.5, 21.2, 22.4],
93
+ # ]
94
+ # nonParaTest = MultiCompLib::NonParametrixTestLib.new
95
+ # nonParaTest.bonferrono_test(xi, 0.05)
96
+ # =>
97
+ # [
98
+ # [false, false, true, true, true],
99
+ # [false, false, false, true, true],
100
+ # [false, false, false, true, false],
101
+ # [false, false, false, false, true],
102
+ # [false, false, false, false, false],
103
+ # ]
104
+ def bonferrono_test(xi, a)
105
+ ret = @nonParamTest.bonferronoTest(xi.to_java(Java::double[]), a)
106
+ return ret.to_a
107
+ end
108
+
77
109
  end
78
110
  end
data/lib/num4anova.rb CHANGED
@@ -341,14 +341,24 @@ module Num4AnovaLib
341
341
  # ancova = Num4AnovaLib::Num4AncovaLib.new
342
342
  # ancova.interval_estim(xi, 0.05)
343
343
  # =>
344
- # {:min=>4.466605469341916, :max=>7.1909253948556096}
344
+ # {:min=>4.466605469341916, :max=>7.1909253948556096}
345
+ # {:min=>5.05699825110459, :max=>6.386335082228742}
346
+ # {:min=>2.510804295684195, :max=>4.250430272217034}
347
+ # {:min=>2.8089257316042135, :max=>2.9566298239513418}
348
+ # {:min=>-6.303283147572267, :max=>-0.6577045067487104}
345
349
  def interval_estim(xi, a)
350
+ retRb = []
346
351
  retJava = @ancova.intervalEstim(xi.to_java(Java::double[][]), a)
347
- retHash = {
348
- "min": retJava.getMin(),
349
- "max": retJava.getMax()
350
- }
351
- return retHash
352
+ sz = retJava.size
353
+ sz.times do |i|
354
+ retRb.push(
355
+ {
356
+ "min": retJava[i].getMin(),
357
+ "max": retJava[i].getMax()
358
+ }
359
+ )
360
+ end
361
+ return retRb
352
362
  end
353
363
  end
354
364
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: num4anova
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.12
4
+ version: 0.0.14
5
5
  platform: java
6
6
  authors:
7
7
  - siranovel
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2024-03-27 00:00:00.000000000 Z
11
+ date: 2024-04-08 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake