num4anova 0.0.12-java → 0.0.14-java
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/num4anova/Ancova.java +13 -8
- data/ext/num4anova/MultiComp.java +58 -7
- data/lib/multicomp.rb +33 -1
- data/lib/num4anova.rb +16 -6
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 844b392125f78a4966a67dd1162bef6676857f03ed9f49e48d4f00e9f294d6e9
|
4
|
+
data.tar.gz: da4999753cf5b2b73336b365c53e79ad5eb084fcb44151fdf6c05b5c691a40d2
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6c8e9884146305d0db99633f36997de0dc3ec4593e2b497fa6f97c1d9cf957721ad233914454e2eb1f8334b86871fdb389f073d62492904432da76415f9a302f
|
7
|
+
data.tar.gz: 79b9cc886c7f2f8b794c204db714ca5663e9b9acb0388eee8afd60cef393b9f107e3f32f05855f848c53e39fc67f42212d352d87c0fdc2262718178f6d36d1d1
|
data/CHANGELOG.md
CHANGED
data/ext/num4anova/Ancova.java
CHANGED
@@ -24,7 +24,7 @@ public class Ancova {
|
|
24
24
|
double statistic = hypoth.calcTestStatistic(xi);
|
25
25
|
return hypoth.executeTest(statistic, a);
|
26
26
|
}
|
27
|
-
public Interval intervalEstim(double[][][] xi, double a) {
|
27
|
+
public Interval[] intervalEstim(double[][][] xi, double a) {
|
28
28
|
Estim estim = new IntervalEstim();
|
29
29
|
|
30
30
|
return estim.calcInterval(xi, a);
|
@@ -37,7 +37,7 @@ public class Ancova {
|
|
37
37
|
boolean executeTest(double statistic, double a);
|
38
38
|
}
|
39
39
|
private interface Estim {
|
40
|
-
Interval calcInterval(double[][][] xi, double a);
|
40
|
+
Interval[] calcInterval(double[][][] xi, double a);
|
41
41
|
}
|
42
42
|
/*********************************/
|
43
43
|
/* class define */
|
@@ -346,7 +346,8 @@ public class Ancova {
|
|
346
346
|
private int n = 0;
|
347
347
|
private int[] ni = null;
|
348
348
|
private double sumex = 0.0;
|
349
|
-
public Interval calcInterval(double[][][] xi, double a) {
|
349
|
+
public Interval[] calcInterval(double[][][] xi, double a) {
|
350
|
+
Interval[] ret = new Interval[xi.length];
|
350
351
|
ni = calcNi(xi);
|
351
352
|
int sumn = calcSumn(xi);
|
352
353
|
n = sumn - xi.length - 1;
|
@@ -360,12 +361,16 @@ public class Ancova {
|
|
360
361
|
|
361
362
|
TDistribution tDist = new TDistribution(n);
|
362
363
|
double t = tDist.inverseCumulativeProbability(1.0 - a / 2.0);
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
|
364
|
+
for(int i = 0; i < ret.length; i++) {
|
365
|
+
double wk = (meanxi[i] - meanx);
|
366
|
+
double wk2 = t * Math.sqrt((1/ni[i] + wk * wk / sumex) * ve);
|
367
|
+
double min = meanyi[i] - b * wk - wk2;
|
368
|
+
double max = meanyi[i] - b * wk + wk2;
|
367
369
|
|
368
|
-
|
370
|
+
ret[i] = new Interval(min, max);
|
371
|
+
}
|
372
|
+
|
373
|
+
return ret;
|
369
374
|
}
|
370
375
|
private int[] calcNi(double[][][] xi) {
|
371
376
|
int[] ni = new int[xi.length];
|
@@ -3,9 +3,17 @@ import java.util.Arrays;
|
|
3
3
|
import java.util.List;
|
4
4
|
import java.util.ArrayList;
|
5
5
|
import org.apache.commons.math3.distribution.TDistribution;
|
6
|
+
import org.apache.commons.math3.stat.inference.MannWhitneyUTest;
|
6
7
|
|
7
8
|
import org.apache.commons.math3.util.Combinations;
|
8
9
|
public class MultiComp {
|
10
|
+
/*********************************/
|
11
|
+
/* interface define */
|
12
|
+
/*********************************/
|
13
|
+
private interface HypothesisTest {
|
14
|
+
double[][] calcTestStatistic(double[][] xi);
|
15
|
+
boolean[][] executeTest(double[][] statistic, double a);
|
16
|
+
}
|
9
17
|
public static class ParametrixTest {
|
10
18
|
private static ParametrixTest paramTest = new ParametrixTest();
|
11
19
|
public static ParametrixTest getInstance() {
|
@@ -46,13 +54,6 @@ public class MultiComp {
|
|
46
54
|
return hypoth.executeTest(statistic, a);
|
47
55
|
}
|
48
56
|
/*********************************/
|
49
|
-
/* interface define */
|
50
|
-
/*********************************/
|
51
|
-
private interface HypothesisTest {
|
52
|
-
double[][] calcTestStatistic(double[][] xi);
|
53
|
-
boolean[][] executeTest(double[][] statistic, double a);
|
54
|
-
}
|
55
|
-
/*********************************/
|
56
57
|
/* Class define */
|
57
58
|
/*********************************/
|
58
59
|
// turkey法
|
@@ -366,5 +367,55 @@ public class MultiComp {
|
|
366
367
|
}
|
367
368
|
}
|
368
369
|
}
|
370
|
+
public static class NonParametrixTest {
|
371
|
+
private static NonParametrixTest nonParamTest = new NonParametrixTest();
|
372
|
+
public static NonParametrixTest getInstance() {
|
373
|
+
return nonParamTest;
|
374
|
+
}
|
375
|
+
public boolean[][] bonferronoTest(double[][] xi, double a) {
|
376
|
+
HypothesisTest hypoth = new BonferroniTest();
|
377
|
+
|
378
|
+
double[][] statistic = hypoth.calcTestStatistic(xi);
|
379
|
+
return hypoth.executeTest(statistic, a * 0.5);
|
380
|
+
}
|
381
|
+
/*********************************/
|
382
|
+
/* Class define */
|
383
|
+
/*********************************/
|
384
|
+
// ボンフェロー法
|
385
|
+
private class BonferroniTest implements HypothesisTest {
|
386
|
+
private int n = 0;
|
387
|
+
private int k = 0;
|
388
|
+
public double[][] calcTestStatistic(double[][] xi) {
|
389
|
+
n = xi.length;
|
390
|
+
double[][] statistic = new double[n][n];
|
391
|
+
//
|
392
|
+
Combinations c = new Combinations(n, 2);
|
393
|
+
List<int[]> al = new ArrayList<>();
|
394
|
+
for(int[] iterate : c) {
|
395
|
+
al.add(iterate);
|
396
|
+
}
|
397
|
+
k = al.size();
|
398
|
+
//
|
399
|
+
MannWhitneyUTest utest = new MannWhitneyUTest();
|
400
|
+
for(int[] array : al) {
|
401
|
+
int i = array[0];
|
402
|
+
int j = array[1];
|
403
|
+
|
404
|
+
statistic[i][j] = utest.mannWhitneyUTest(xi[i], xi[j]);
|
405
|
+
}
|
406
|
+
return statistic;
|
407
|
+
}
|
408
|
+
public boolean[][] executeTest(double[][] statistic, double a) {
|
409
|
+
boolean[][] ret = new boolean[n][n];
|
410
|
+
|
411
|
+
for(int i = 0; i < n; i++) {
|
412
|
+
for(int j = i+1; j < n; j++) {
|
413
|
+
ret[i][j] = (statistic[i][j] < a * k) ? true : false;
|
414
|
+
}
|
415
|
+
}
|
416
|
+
return ret;
|
417
|
+
}
|
418
|
+
}
|
419
|
+
}
|
369
420
|
}
|
370
421
|
|
data/lib/multicomp.rb
CHANGED
@@ -43,7 +43,7 @@ module MultiCompLib
|
|
43
43
|
ret = @paramTest.turkeyTest(xi.to_java(Java::double[]), a)
|
44
44
|
return ret.to_a
|
45
45
|
end
|
46
|
-
# ボンフェロー二の不等式による多重比較
|
46
|
+
# ボンフェロー二の不等式による多重比較(T検定)
|
47
47
|
#
|
48
48
|
# @overload bonferrono_test(xi, a)
|
49
49
|
# @param [array] xi データ(double[][])
|
@@ -74,5 +74,37 @@ module MultiCompLib
|
|
74
74
|
end
|
75
75
|
# ノンパラメトリック検定
|
76
76
|
class NonParametrixTestLib
|
77
|
+
def initialize
|
78
|
+
@nonParamTest = MultiComp::NonParametrixTest.getInstance()
|
79
|
+
end
|
80
|
+
# ボンフェロー二の不等式による多重比較(マン・ホイットニーU検定)
|
81
|
+
#
|
82
|
+
# @overload bonferrono_test(xi, a)
|
83
|
+
# @param [array] xi データ(double[][])
|
84
|
+
# @param [double] a 有意水準
|
85
|
+
# @return [Array] 検定結果(boolean[][] true:棄却域内 false:棄却域外)
|
86
|
+
# @example
|
87
|
+
# xi = [
|
88
|
+
# [12.2, 18.8, 18.2],
|
89
|
+
# [22.2, 20.5, 14.6],
|
90
|
+
# [20.8, 19.5, 26.3],
|
91
|
+
# [26.4, 32.5, 31.3],
|
92
|
+
# [24.5, 21.2, 22.4],
|
93
|
+
# ]
|
94
|
+
# nonParaTest = MultiCompLib::NonParametrixTestLib.new
|
95
|
+
# nonParaTest.bonferrono_test(xi, 0.05)
|
96
|
+
# =>
|
97
|
+
# [
|
98
|
+
# [false, false, true, true, true],
|
99
|
+
# [false, false, false, true, true],
|
100
|
+
# [false, false, false, true, false],
|
101
|
+
# [false, false, false, false, true],
|
102
|
+
# [false, false, false, false, false],
|
103
|
+
# ]
|
104
|
+
def bonferrono_test(xi, a)
|
105
|
+
ret = @nonParamTest.bonferronoTest(xi.to_java(Java::double[]), a)
|
106
|
+
return ret.to_a
|
107
|
+
end
|
108
|
+
|
77
109
|
end
|
78
110
|
end
|
data/lib/num4anova.rb
CHANGED
@@ -341,14 +341,24 @@ module Num4AnovaLib
|
|
341
341
|
# ancova = Num4AnovaLib::Num4AncovaLib.new
|
342
342
|
# ancova.interval_estim(xi, 0.05)
|
343
343
|
# =>
|
344
|
-
#
|
344
|
+
# {:min=>4.466605469341916, :max=>7.1909253948556096}
|
345
|
+
# {:min=>5.05699825110459, :max=>6.386335082228742}
|
346
|
+
# {:min=>2.510804295684195, :max=>4.250430272217034}
|
347
|
+
# {:min=>2.8089257316042135, :max=>2.9566298239513418}
|
348
|
+
# {:min=>-6.303283147572267, :max=>-0.6577045067487104}
|
345
349
|
def interval_estim(xi, a)
|
350
|
+
retRb = []
|
346
351
|
retJava = @ancova.intervalEstim(xi.to_java(Java::double[][]), a)
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
+
sz = retJava.size
|
353
|
+
sz.times do |i|
|
354
|
+
retRb.push(
|
355
|
+
{
|
356
|
+
"min": retJava[i].getMin(),
|
357
|
+
"max": retJava[i].getMax()
|
358
|
+
}
|
359
|
+
)
|
360
|
+
end
|
361
|
+
return retRb
|
352
362
|
end
|
353
363
|
end
|
354
364
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.14
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-
|
11
|
+
date: 2024-04-08 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|