num4anova 0.0.10-java → 0.0.12-java
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/num4anova/Ancova.java +185 -16
- data/lib/num4anova.rb +67 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 87febfd8031fd924430223c93fad6b0606aa212ab109e1b758db2c1d23b6dace
|
4
|
+
data.tar.gz: 48b610b93d2c5341f05c25ef230acea09b02fa75c924129f5dafba56fcb6051f
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 979fe122d0cf17086e80a45ff6c44b67153822a8d89d83bceb84a25d3d68190f087c3ed8bf4b192e9afd48a38b3ec0d1456fa0821c84256113154e04d5a6e461
|
7
|
+
data.tar.gz: 0bcad9f7a234a96759697440f540f0caddf70c1a25cf46409dead11478faa0017cfe9e98d2a23feaad2648bea641d5bca80cb73adab5001ec46d93ef8899ce70
|
data/CHANGELOG.md
CHANGED
data/ext/num4anova/Ancova.java
CHANGED
@@ -1,4 +1,5 @@
|
|
1
1
|
import org.apache.commons.math3.distribution.FDistribution;
|
2
|
+
import org.apache.commons.math3.distribution.TDistribution;
|
2
3
|
|
3
4
|
public class Ancova {
|
4
5
|
private static Ancova ancova = new Ancova();
|
@@ -17,6 +18,17 @@ public class Ancova {
|
|
17
18
|
double statistic = hypoth.calcTestStatistic(xi);
|
18
19
|
return hypoth.executeTest(statistic, a);
|
19
20
|
}
|
21
|
+
public boolean differenceTest(double[][][] xi, double a) {
|
22
|
+
HypothesisTest hypoth = new DifferenceTest();
|
23
|
+
|
24
|
+
double statistic = hypoth.calcTestStatistic(xi);
|
25
|
+
return hypoth.executeTest(statistic, a);
|
26
|
+
}
|
27
|
+
public Interval intervalEstim(double[][][] xi, double a) {
|
28
|
+
Estim estim = new IntervalEstim();
|
29
|
+
|
30
|
+
return estim.calcInterval(xi, a);
|
31
|
+
}
|
20
32
|
/*********************************/
|
21
33
|
/* interface define */
|
22
34
|
/*********************************/
|
@@ -24,9 +36,22 @@ public class Ancova {
|
|
24
36
|
double calcTestStatistic(double[][][] xi);
|
25
37
|
boolean executeTest(double statistic, double a);
|
26
38
|
}
|
39
|
+
private interface Estim {
|
40
|
+
Interval calcInterval(double[][][] xi, double a);
|
41
|
+
}
|
27
42
|
/*********************************/
|
28
43
|
/* class define */
|
29
44
|
/*********************************/
|
45
|
+
public class Interval {
|
46
|
+
private double min;
|
47
|
+
private double max;
|
48
|
+
public Interval(double min, double max) {
|
49
|
+
this.min = min;
|
50
|
+
this.max = max;
|
51
|
+
}
|
52
|
+
public double getMin() { return this.min; }
|
53
|
+
public double getMax() { return this.max; }
|
54
|
+
}
|
30
55
|
private class RegressionLine {
|
31
56
|
protected int calcSumn(double[][][] xi) {
|
32
57
|
int sum = 0;
|
@@ -36,34 +61,54 @@ public class Ancova {
|
|
36
61
|
}
|
37
62
|
return sum;
|
38
63
|
}
|
39
|
-
|
64
|
+
// 全変動
|
65
|
+
private double calcSty(double[][][] xi, int sumn) {
|
66
|
+
double sumy2 = calcSumy2(xi);
|
67
|
+
double sumy = calcSumy(xi);
|
68
|
+
|
69
|
+
return sumy2 - sumy*sumy / sumn;
|
70
|
+
}
|
71
|
+
private double calcStx(double[][][] xi, int sumn) {
|
40
72
|
double sumx2 = calcSumx2(xi);
|
41
73
|
double sumx = calcSumx(xi);
|
42
74
|
|
43
|
-
|
44
|
-
|
75
|
+
return sumx2 - sumx*sumx / sumn;
|
76
|
+
}
|
77
|
+
private double calcStyx(double[][][] xi, int sumn) {
|
78
|
+
double sumx = calcSumx(xi);
|
79
|
+
double sumy = calcSumy(xi);
|
80
|
+
double sumyx = calcSumyx(xi);
|
45
81
|
|
46
|
-
return
|
82
|
+
return sumyx - sumy*sumx / sumn;
|
47
83
|
}
|
48
|
-
|
49
|
-
|
84
|
+
// 水準間変動
|
85
|
+
private double calcSay(double[][][] xi, int sumn) {
|
50
86
|
double sumy = calcSumy(xi);
|
51
87
|
|
52
|
-
|
53
|
-
|
88
|
+
return calcSumay(xi) - sumy*sumy / sumn;
|
89
|
+
}
|
90
|
+
private double calcSax(double[][][] xi, int sumn) {
|
91
|
+
double sumx = calcSumx(xi);
|
54
92
|
|
55
|
-
return
|
93
|
+
return calcSumax(xi) - sumx*sumx / sumn;
|
56
94
|
}
|
57
|
-
|
95
|
+
private double calcSayx(double[][][] xi, int sumn) {
|
58
96
|
double sumx = calcSumx(xi);
|
59
97
|
double sumy = calcSumy(xi);
|
60
|
-
double sumyx = calcSumyx(xi);
|
61
98
|
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
99
|
+
return calcSumayx(xi) - sumy*sumx / sumn;
|
100
|
+
}
|
101
|
+
// 水準内変動
|
102
|
+
protected double calcSex(double[][][] xi, int sumn) {
|
103
|
+
return calcStx(xi, sumn) - calcSax(xi, sumn);
|
104
|
+
}
|
105
|
+
protected double calcSey(double[][][] xi, int sumn) {
|
106
|
+
return calcSty(xi, sumn) - calcSay(xi, sumn);
|
107
|
+
}
|
108
|
+
protected double calcSeyx(double[][][] xi, int sumn) {
|
109
|
+
return calcStyx(xi, sumn) - calcSayx(xi, sumn);
|
66
110
|
}
|
111
|
+
|
67
112
|
// 平行性の検定
|
68
113
|
protected double calcbx(double[][][] xi) {
|
69
114
|
double sum = 0.0;
|
@@ -89,8 +134,20 @@ public class Ancova {
|
|
89
134
|
}
|
90
135
|
return sum;
|
91
136
|
}
|
137
|
+
// 差の検定
|
138
|
+
protected double calcSa(double[][][] xi, int sumn) {
|
139
|
+
double sumty = calcSty(xi, sumn);
|
140
|
+
double sumtyx = calcStyx(xi, sumn);
|
141
|
+
double sumtx = calcStx(xi, sumn);
|
142
|
+
double sumey = calcSey(xi, sumn);
|
143
|
+
double sumeyx = calcSeyx(xi, sumn);
|
144
|
+
double sumex = calcSex(xi, sumn);
|
92
145
|
|
146
|
+
return (sumty - sumtyx * sumtyx / sumtx)
|
147
|
+
- (sumey - sumeyx * sumeyx / sumex);
|
148
|
+
}
|
93
149
|
|
150
|
+
// ETC
|
94
151
|
private double calcSumay(double[][][] xi) {
|
95
152
|
double sum = 0.0;
|
96
153
|
|
@@ -157,7 +214,6 @@ public class Ancova {
|
|
157
214
|
}
|
158
215
|
return sum;
|
159
216
|
}
|
160
|
-
// 水準間変動
|
161
217
|
private double calcSumax(double[][][] xi) {
|
162
218
|
double sum = 0.0;
|
163
219
|
|
@@ -180,6 +236,7 @@ public class Ancova {
|
|
180
236
|
}
|
181
237
|
return sum;
|
182
238
|
}
|
239
|
+
|
183
240
|
}
|
184
241
|
// 回帰直線モデルの平行性の検定
|
185
242
|
private class Parallettest extends RegressionLine implements HypothesisTest {
|
@@ -232,6 +289,7 @@ public class Ancova {
|
|
232
289
|
|
233
290
|
double vr = calcVr(xi, sumn);
|
234
291
|
double ve = calcVe(xi, sumn);
|
292
|
+
|
235
293
|
return vr / ve;
|
236
294
|
}
|
237
295
|
public boolean executeTest(double statistic, double a) {
|
@@ -254,5 +312,116 @@ public class Ancova {
|
|
254
312
|
return (sumey * sumex - sumeyx * sumeyx) / (m * sumex);
|
255
313
|
}
|
256
314
|
}
|
315
|
+
// 水準間の差の検定
|
316
|
+
private class DifferenceTest extends RegressionLine implements HypothesisTest {
|
317
|
+
private int n = 0;
|
318
|
+
private int m = 0;
|
319
|
+
public double calcTestStatistic(double[][][] xi) {
|
320
|
+
int sumn = calcSumn(xi);
|
321
|
+
n = xi.length - 1;
|
322
|
+
m = sumn - xi.length - 1;
|
323
|
+
|
324
|
+
double va = calcSa(xi, sumn) / n;
|
325
|
+
double ve = calcVe(xi, sumn);
|
326
|
+
|
327
|
+
return va / ve;
|
328
|
+
}
|
329
|
+
public boolean executeTest(double statistic, double a) {
|
330
|
+
FDistribution fDist = new FDistribution(n, m);
|
331
|
+
double f = fDist.inverseCumulativeProbability(1.0 - a);
|
332
|
+
|
333
|
+
return (statistic >= f) ? true : false;
|
334
|
+
}
|
335
|
+
private double calcVe(double[][][] xi, int sumn) {
|
336
|
+
double sumey = calcSey(xi, sumn);
|
337
|
+
double sumex = calcSex(xi, sumn);
|
338
|
+
double sumeyx = calcSeyx(xi, sumn);
|
339
|
+
|
340
|
+
return (sumey * sumex - sumeyx * sumeyx) / (m * sumex);
|
341
|
+
}
|
342
|
+
}
|
343
|
+
//
|
344
|
+
private class IntervalEstim extends RegressionLine
|
345
|
+
implements Estim {
|
346
|
+
private int n = 0;
|
347
|
+
private int[] ni = null;
|
348
|
+
private double sumex = 0.0;
|
349
|
+
public Interval calcInterval(double[][][] xi, double a) {
|
350
|
+
ni = calcNi(xi);
|
351
|
+
int sumn = calcSumn(xi);
|
352
|
+
n = sumn - xi.length - 1;
|
353
|
+
sumex = calcSex(xi, sumn);
|
354
|
+
double ve = calcVe(xi, sumn);
|
355
|
+
double b = calcB(xi, sumn);
|
356
|
+
|
357
|
+
double[] meanyi = calcMeanyi(xi);
|
358
|
+
double[] meanxi = calcMeanxi(xi);
|
359
|
+
double meanx = calcMeanx(xi);
|
360
|
+
|
361
|
+
TDistribution tDist = new TDistribution(n);
|
362
|
+
double t = tDist.inverseCumulativeProbability(1.0 - a / 2.0);
|
363
|
+
double wk = (meanxi[0] - meanx);
|
364
|
+
double wk2 = t * Math.sqrt((1/ni[0] + wk * wk / sumex) * ve);
|
365
|
+
double min = meanyi[0] - b * wk - wk2;
|
366
|
+
double max = meanyi[0] - b * wk + wk2;
|
367
|
+
|
368
|
+
return new Interval(min, max);
|
369
|
+
}
|
370
|
+
private int[] calcNi(double[][][] xi) {
|
371
|
+
int[] ni = new int[xi.length];
|
372
|
+
|
373
|
+
for(int i = 0; i < xi.length; i++) {
|
374
|
+
ni[i] = xi[i].length;
|
375
|
+
}
|
376
|
+
return ni;
|
377
|
+
}
|
378
|
+
private double calcVe(double[][][] xi, int sumn) {
|
379
|
+
double sumey = calcSey(xi, sumn);
|
380
|
+
double sumeyx = calcSeyx(xi, sumn);
|
381
|
+
|
382
|
+
return (sumey * sumex - sumeyx * sumeyx) / (n * sumex);
|
383
|
+
}
|
384
|
+
private double calcB(double[][][] xi, int sumn) {
|
385
|
+
double sumeyx = calcSeyx(xi, sumn);
|
386
|
+
double sex = calcSex(xi, sumn);
|
387
|
+
|
388
|
+
return sumeyx / sex;
|
389
|
+
}
|
390
|
+
private double[] calcMeanyi(double[][][] xi) {
|
391
|
+
double[] meanyi = new double[xi.length];
|
392
|
+
|
393
|
+
for(int i = 0; i < xi.length; i++) {
|
394
|
+
double sum = 0.0;
|
395
|
+
for(int j = 0; j < xi[i].length; j++) {
|
396
|
+
sum += xi[i][j][0];
|
397
|
+
}
|
398
|
+
meanyi[i] = sum / xi[i].length;
|
399
|
+
}
|
400
|
+
return meanyi;
|
401
|
+
}
|
402
|
+
private double[] calcMeanxi(double[][][] xi) {
|
403
|
+
double[] meanxi = new double[xi.length];
|
404
|
+
|
405
|
+
for(int i = 0; i < xi.length; i++) {
|
406
|
+
double sum = 0.0;
|
407
|
+
for(int j = 0; j < xi[i].length; j++) {
|
408
|
+
sum += xi[i][j][1];
|
409
|
+
}
|
410
|
+
meanxi[i] = sum / xi[i].length;
|
411
|
+
}
|
412
|
+
return meanxi;
|
413
|
+
}
|
414
|
+
private double calcMeanx(double[][][] xi) {
|
415
|
+
double sum = 0.0;
|
416
|
+
double n = 0;
|
417
|
+
for(int i = 0; i < xi.length; i++) {
|
418
|
+
for(int j = 0; j < xi[i].length; j++) {
|
419
|
+
sum += xi[i][j][1];
|
420
|
+
n++;
|
421
|
+
}
|
422
|
+
}
|
423
|
+
return sum / n;
|
424
|
+
}
|
425
|
+
}
|
257
426
|
}
|
258
427
|
|
data/lib/num4anova.rb
CHANGED
@@ -256,7 +256,7 @@ module Num4AnovaLib
|
|
256
256
|
end
|
257
257
|
# 回帰直線の有意性検定
|
258
258
|
#
|
259
|
-
# @overload
|
259
|
+
# @overload significance_test(xi, a)
|
260
260
|
# @param [array] xi データ(double[][][])
|
261
261
|
# @param [double] a 有意水準
|
262
262
|
# @return [boolean] 検定結果(boolean true:棄却域内 false:棄却域外)
|
@@ -284,6 +284,72 @@ module Num4AnovaLib
|
|
284
284
|
def significance_test(xi, a)
|
285
285
|
@ancova.significanceTest(xi.to_java(Java::double[][]), a)
|
286
286
|
end
|
287
|
+
# 水準間の差の検定
|
288
|
+
#
|
289
|
+
# @overload difference_test(xi, a)
|
290
|
+
# @param [array] xi データ(double[][][])
|
291
|
+
# @param [double] a 有意水準
|
292
|
+
# @return [boolean] 検定結果(boolean true:棄却域内 false:棄却域外)
|
293
|
+
# @example
|
294
|
+
# xi = [
|
295
|
+
# [
|
296
|
+
# [3,35], [5,38], [3,39],
|
297
|
+
# ],
|
298
|
+
# [
|
299
|
+
# [3,36], [3,39], [8,54],
|
300
|
+
# ],
|
301
|
+
# [
|
302
|
+
# [2,40], [2,45], [2,39],
|
303
|
+
# ],
|
304
|
+
# [
|
305
|
+
# [3,47], [4,52], [2,48],
|
306
|
+
# ],
|
307
|
+
# [
|
308
|
+
# [1,64], [2,80], [0,70],
|
309
|
+
# ],
|
310
|
+
# ]
|
311
|
+
# ancova = Num4AnovaLib::Num4AncovaLib.new
|
312
|
+
# ancova.difference_test(xi, 0.05)
|
313
|
+
# => true
|
314
|
+
def difference_test(xi, a)
|
315
|
+
@ancova.differenceTest(xi.to_java(Java::double[][]), a)
|
316
|
+
end
|
317
|
+
# 区間推定
|
318
|
+
#
|
319
|
+
# @overload interval_estim(xi, a)
|
320
|
+
# @param [array] xi データ(double[][][])
|
321
|
+
# @param [double] a 有意水準
|
322
|
+
# @return [Hash] (min:下限信頼区間 max:上限信頼区間)
|
323
|
+
# @example
|
324
|
+
# xi = [
|
325
|
+
# [
|
326
|
+
# [3,35], [5,38], [3,39],
|
327
|
+
# ],
|
328
|
+
# [
|
329
|
+
# [3,36], [3,39], [8,54],
|
330
|
+
# ],
|
331
|
+
# [
|
332
|
+
# [2,40], [2,45], [2,39],
|
333
|
+
# ],
|
334
|
+
# [
|
335
|
+
# [3,47], [4,52], [2,48],
|
336
|
+
# ],
|
337
|
+
# [
|
338
|
+
# [1,64], [2,80], [0,70],
|
339
|
+
# ],
|
340
|
+
# ]
|
341
|
+
# ancova = Num4AnovaLib::Num4AncovaLib.new
|
342
|
+
# ancova.interval_estim(xi, 0.05)
|
343
|
+
# =>
|
344
|
+
# {:min=>4.466605469341916, :max=>7.1909253948556096}
|
345
|
+
def interval_estim(xi, a)
|
346
|
+
retJava = @ancova.intervalEstim(xi.to_java(Java::double[][]), a)
|
347
|
+
retHash = {
|
348
|
+
"min": retJava.getMin(),
|
349
|
+
"max": retJava.getMax()
|
350
|
+
}
|
351
|
+
return retHash
|
352
|
+
end
|
287
353
|
end
|
288
354
|
end
|
289
355
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: num4anova
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.12
|
5
5
|
platform: java
|
6
6
|
authors:
|
7
7
|
- siranovel
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2024-03-
|
11
|
+
date: 2024-03-27 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rake
|