nn 1.8 → 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +1 -1
- data/document.txt +23 -84
- data/lib/nn.rb +31 -36
- data/nn.gemspec +1 -1
- data/nn.rb +441 -0
- data/sample/cifar10_program.rb +38 -0
- data/sample/mnist_program.rb +38 -0
- data/sample/xor.rb +24 -0
- metadata +6 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 8f77c817ea492d035851bf8552ad2a97928f6762acb455ae23de0e3ee8f40871
|
4
|
+
data.tar.gz: 1f162719087671733c8afd5279bca59859474dd366677acbcf79032a9fff5eba
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 492e639590f4b81083a669f51ee192cb9a758ee0bbe950539c74367322ab78a9ad77e6075f90e56f28eecbc57ba42df91455c88e109fe2ec5565ceb77730bafc
|
7
|
+
data.tar.gz: d8745f38ed5ca0d75da462c6a8cf1233ea8e9c69e10918b87f37c23c8344690075bba1f6c13cf16267f51a92993e1fe58c0297251c309adcbbd3c4c85f339221
|
data/README.md
CHANGED
data/document.txt
CHANGED
@@ -13,6 +13,11 @@ class NN
|
|
13
13
|
|
14
14
|
<クラスメソッド>
|
15
15
|
load(file_name) : NN
|
16
|
+
Marshal形式で保存された学習結果を読み込みます。
|
17
|
+
String file_name 読み込むMarshalファイル名
|
18
|
+
戻り値 NNのインスタンス
|
19
|
+
|
20
|
+
load_json(file_name) : NN
|
16
21
|
JSON形式で保存された学習結果を読み込みます。
|
17
22
|
String file_name 読み込むJSONファイル名
|
18
23
|
戻り値 NNのインスタンス
|
@@ -52,14 +57,7 @@ initialize(num_nodes,
|
|
52
57
|
Float dropout_ratio ドロップアウトさせるノードの比率
|
53
58
|
bool use_batch_norm バッチノーマライゼーションを使用するか否か
|
54
59
|
|
55
|
-
train(x_train, y_train, x_test, y_test, epochs,
|
56
|
-
learning_rate_decay: 0,
|
57
|
-
save_dir: nil,
|
58
|
-
save_interval: 1,
|
59
|
-
test: nil,
|
60
|
-
border: nil,
|
61
|
-
tolerance: 0.5,
|
62
|
-
&block) : void
|
60
|
+
train(x_train, y_train, x_test, y_test, epochs, func = nil, &block) : void
|
63
61
|
学習を行います。
|
64
62
|
Array<Array<Numeric>> | SFloat x_train トレーニング用入力データ。
|
65
63
|
Array<Array<Numeric>> | SFloat y_train トレーニング用正解データ。
|
@@ -71,8 +69,9 @@ train(x_train, y_train, x_test, y_test, epochs,
|
|
71
69
|
nilを指定すると、エポックごとにテストを行いません。
|
72
70
|
Float border 学習の早期終了判定に使用するテストデータの正答率。
|
73
71
|
nilの場合、学習の早期終了を行いません。
|
74
|
-
Proc
|
75
|
-
|
72
|
+
Proc func(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
|
73
|
+
形で指定してください。入力層をミニバッチ単位で正規化したい場合に使用します。
|
74
|
+
Proc block(Integer epoch) : void 1エポックの学習が終わった後で行いたい処理を、ブロックで渡します。
|
76
75
|
|
77
76
|
test(x_test, y_test, tolerance = 0.5, &block) : Float
|
78
77
|
テストデータを用いて、テストを行います。
|
@@ -95,7 +94,7 @@ accurate(x_test, y_test, tolera)
|
|
95
94
|
戻り値 テストデータの正答率。
|
96
95
|
|
97
96
|
learn(x_train, y_train, &block) : Float
|
98
|
-
入力データを元に、1
|
97
|
+
入力データを元に、1回だけ学習を行います。柔軟な学習を行いたい場合に使用します。
|
99
98
|
Array<Array<Numeric>> | SFloat x_train 入力データ
|
100
99
|
Array<Array<Numeric>> | SFloat y_train 正解データ
|
101
100
|
Proc &block(SFloat x, SFloat y) : Array<SFloat> 入力層のミニバッチを取得します。ブロックの戻り値は、ミニバッチを[x, y]の
|
@@ -106,42 +105,23 @@ learn(x_train, y_train, &block) : Float
|
|
106
105
|
|
107
106
|
run(x) : Array<Array<Numeric>>
|
108
107
|
入力データから出力値を二次元配列で得ます。
|
109
|
-
Array<Array<Float>>
|
108
|
+
Array<Array<Float>> x 入力データ
|
109
|
+
戻り値 出力ノードの値
|
110
|
+
|
111
|
+
run(x) : SFloat
|
112
|
+
入力データから出力値をSFloat形式で得ます。
|
113
|
+
SFloat x 入力データ
|
110
114
|
戻り値 出力ノードの値
|
111
115
|
|
112
116
|
save(file_name) : void
|
117
|
+
学習結果をMarshal形式で保存します。
|
118
|
+
String file_name 書き込むMarshalファイル名
|
119
|
+
|
120
|
+
save_json(file_name) : void
|
113
121
|
学習結果をJSON形式で保存します。
|
114
122
|
String file_name 書き込むJSONファイル名
|
115
123
|
|
116
124
|
|
117
|
-
[サンプル1 XOR]
|
118
|
-
|
119
|
-
#ライブラリの読み込み
|
120
|
-
require "nn"
|
121
|
-
|
122
|
-
x = [
|
123
|
-
[0, 0],
|
124
|
-
[1, 0],
|
125
|
-
[0, 1],
|
126
|
-
[1, 1],
|
127
|
-
]
|
128
|
-
|
129
|
-
y = [[0], [1], [1], [0]]
|
130
|
-
|
131
|
-
#ニューラルネットワークの初期化
|
132
|
-
nn = NN.new([2, 4, 1], #ノード数
|
133
|
-
learning_rate: 0.1, #学習率
|
134
|
-
batch_size: 4, #ミニバッチの数
|
135
|
-
activation: [:sigmoid, :identity] #活性化関数
|
136
|
-
)
|
137
|
-
|
138
|
-
#学習を行う
|
139
|
-
nn.train(x, y, 20000)
|
140
|
-
|
141
|
-
#学習結果の確認
|
142
|
-
p nn.run(x)
|
143
|
-
|
144
|
-
|
145
125
|
[MNISTデータを読み込む]
|
146
126
|
MNISTをRubyでも簡単に試せるよう、MNISTを扱うためのモジュールを用意しました。
|
147
127
|
次のリンク(http://yann.lecun.com/exdb/mnist/)から、
|
@@ -156,54 +136,10 @@ MNIST.load_trainで学習用データを読み込み、MNIST.load_testでテス
|
|
156
136
|
(RubyでのMNISTの読み込みは、以下のリンクを参考にさせていただきました。)
|
157
137
|
http://d.hatena.ne.jp/n_shuyo/20090913/mnist
|
158
138
|
|
159
|
-
|
160
|
-
[サンプル2 MNIST]
|
161
|
-
|
162
|
-
#ライブラリの読み込み
|
163
|
-
require "nn"
|
164
|
-
require "nn/mnist"
|
165
|
-
|
166
|
-
#MNISTのトレーニング用データを読み込む
|
167
|
-
x_train, y_train = MNIST.load_train
|
168
|
-
|
169
|
-
#y_trainを10クラスに配列でカテゴライズする
|
170
|
-
y_train = MNIST.categorical(y_train)
|
171
|
-
|
172
|
-
#MNISTのテスト用データを読み込む
|
173
|
-
x_test, y_test = MNIST.load_test
|
174
|
-
|
175
|
-
#y_testを10クラスにカテゴライズする
|
176
|
-
y_test = MNIST.categorical(y_test)
|
177
|
-
|
178
|
-
puts "load mnist"
|
179
|
-
|
180
|
-
#ニューラルネットワークの初期化
|
181
|
-
nn = NN.new([784, 100, 100, 10], #ノード数
|
182
|
-
learning_rate: 0.1, #学習率
|
183
|
-
batch_size: 100, #ミニバッチの数
|
184
|
-
activation: [:relu, :softmax], #活性化関数
|
185
|
-
momentum: 0.9, #モーメンタム係数
|
186
|
-
use_batch_norm: true, #バッチノーマライゼーションを使用する
|
187
|
-
)
|
188
|
-
|
189
|
-
#学習を行う
|
190
|
-
nn.train(x_train, y_train, 10, test: [x_test, y_test]) do |x_batch, y_batch|
|
191
|
-
x_batch /= 255 #ミニバッチを0~1の範囲で正規化
|
192
|
-
[x_batch, y_batch]
|
193
|
-
end
|
194
|
-
|
195
|
-
#学習結果のテストを行う
|
196
|
-
nn.test(x_test, y_test) do |x_batch, y_batch|
|
197
|
-
x_batch /= 255 #ミニバッチを0~1の範囲で正規化
|
198
|
-
[x_batch, y_batch]
|
199
|
-
end
|
200
|
-
|
201
|
-
|
202
139
|
[お断り]
|
203
140
|
作者は、ニューラルネットワークを勉強し始めたばかりの初心者です。
|
204
141
|
そのため、バグや実装のミスもあるかと思いますが、温かい目で見守っていただけると、幸いでございます。
|
205
142
|
|
206
|
-
|
207
143
|
[更新履歴]
|
208
144
|
2018/3/8 バージョン1.0公開
|
209
145
|
2018/3/11 バージョン1.1公開
|
@@ -213,3 +149,6 @@ end
|
|
213
149
|
2018/3/22 バージョン1.5公開
|
214
150
|
2018/4/15 バージョン1.6公開
|
215
151
|
2018/5/4 バージョン1.8公開
|
152
|
+
2018/5/16 バージョン2.0公開
|
153
|
+
2018/6/10 バージョン2.0.1公開
|
154
|
+
2018/6/10 バージョン2.1.0公開
|
data/lib/nn.rb
CHANGED
@@ -2,7 +2,7 @@ require "numo/narray"
|
|
2
2
|
require "json"
|
3
3
|
|
4
4
|
class NN
|
5
|
-
VERSION = "
|
5
|
+
VERSION = "2.0"
|
6
6
|
|
7
7
|
include Numo
|
8
8
|
|
@@ -64,37 +64,19 @@ class NN
|
|
64
64
|
nn
|
65
65
|
end
|
66
66
|
|
67
|
-
def train(x_train, y_train, epochs,
|
68
|
-
learning_rate_decay: 0,
|
69
|
-
save_dir: nil,
|
70
|
-
save_interval: 1,
|
71
|
-
test: nil,
|
72
|
-
border: nil,
|
73
|
-
tolerance: 0.5,
|
74
|
-
&block)
|
67
|
+
def train(x_train, y_train, epochs, func = nil, &block)
|
75
68
|
num_train_data = x_train.is_a?(SFloat) ? x_train.shape[0] : x_train.length
|
76
69
|
(1..epochs).each do |epoch|
|
77
70
|
loss = nil
|
78
71
|
(num_train_data.to_f / @batch_size).ceil.times do
|
79
|
-
loss = learn(x_train, y_train, &
|
72
|
+
loss = learn(x_train, y_train, &func)
|
80
73
|
if loss.nan?
|
81
74
|
puts "loss is nan"
|
82
75
|
return
|
83
76
|
end
|
84
77
|
end
|
85
|
-
|
86
|
-
|
87
|
-
end
|
88
|
-
msg = "epoch #{epoch}/#{epochs} loss: #{loss}"
|
89
|
-
if test
|
90
|
-
acc = accurate(*test, tolerance, &block)
|
91
|
-
puts "#{msg} accurate: #{acc}"
|
92
|
-
break if border && acc >= border
|
93
|
-
else
|
94
|
-
puts msg
|
95
|
-
end
|
96
|
-
@learning_rate -= learning_rate_decay
|
97
|
-
@learning_rate = 1e-7 if @learning_rate < 1e-7
|
78
|
+
puts "epoch #{epoch}/#{epochs} loss: #{loss}"
|
79
|
+
block.call(epoch) if block
|
98
80
|
end
|
99
81
|
end
|
100
82
|
|
@@ -160,9 +142,11 @@ class NN
|
|
160
142
|
end
|
161
143
|
|
162
144
|
def run(x)
|
163
|
-
|
164
|
-
|
165
|
-
|
145
|
+
if x.is_a?(Array)
|
146
|
+
forward(SFloat.cast(x), false).to_a
|
147
|
+
else
|
148
|
+
forward(x, false)
|
149
|
+
end
|
166
150
|
end
|
167
151
|
|
168
152
|
def save(file_name)
|
@@ -257,22 +241,30 @@ class NN
|
|
257
241
|
def update_weight_and_bias
|
258
242
|
@layers.select{|layer| layer.is_a?(Affine)}.each.with_index do |layer, i|
|
259
243
|
weight_amount = layer.d_weight.mean(0) * @learning_rate
|
260
|
-
@weight_amounts[i] = weight_amount + @momentum * @weight_amounts[i]
|
261
|
-
@weights[i] -= @weight_amounts[i]
|
262
244
|
bias_amount = layer.d_bias.mean * @learning_rate
|
263
|
-
|
264
|
-
|
245
|
+
if @momentum > 0
|
246
|
+
weight_amount += @momentum * @weight_amounts[i]
|
247
|
+
@weight_amounts[i] = weight_amount
|
248
|
+
bias_amount += @momentum * @bias_amounts[i]
|
249
|
+
@bias_amounts[i] = bias_amount
|
250
|
+
end
|
251
|
+
@weights[i] -= weight_amount
|
252
|
+
@biases[i] -= bias_amount
|
265
253
|
end
|
266
254
|
end
|
267
255
|
|
268
256
|
def update_gamma_and_beta
|
269
257
|
@layers.select{|layer| layer.is_a?(BatchNorm)}.each.with_index do |layer, i|
|
270
258
|
gamma_amount = layer.d_gamma.mean * @learning_rate
|
271
|
-
@gamma_amounts[i] = gamma_amount + @momentum * @gamma_amounts[i]
|
272
|
-
@gammas[i] -= @gamma_amounts[i]
|
273
259
|
beta_amount = layer.d_beta.mean * @learning_rate
|
274
|
-
|
275
|
-
|
260
|
+
if @momentum > 0
|
261
|
+
gamma_amount += @momentum * @gamma_amounts[i]
|
262
|
+
@gamma_amounts[i] = gamma_amount
|
263
|
+
beta_amount += @momentum * @beta_amounts[i]
|
264
|
+
@beta_amounts[i] = beta_amount
|
265
|
+
end
|
266
|
+
@gammas[i] -= gamma_amount
|
267
|
+
@betas[i] -= gamma_amount
|
276
268
|
end
|
277
269
|
end
|
278
270
|
end
|
@@ -298,8 +290,11 @@ class NN::Affine
|
|
298
290
|
|
299
291
|
def backward(dout)
|
300
292
|
x = @x.reshape(*@x.shape, 1)
|
301
|
-
|
302
|
-
@
|
293
|
+
@d_weight = x.dot(dout.reshape(dout.shape[0], 1, dout.shape[1]))
|
294
|
+
if @nn.weight_decay > 0
|
295
|
+
dridge = @nn.weight_decay * @nn.weights[@index]
|
296
|
+
@d_weight += dridge
|
297
|
+
end
|
303
298
|
@d_bias = dout
|
304
299
|
dout.dot(@nn.weights[@index].transpose)
|
305
300
|
end
|
data/nn.gemspec
CHANGED
data/nn.rb
ADDED
@@ -0,0 +1,441 @@
|
|
1
|
+
require "numo/narray"
|
2
|
+
require "json"
|
3
|
+
|
4
|
+
class NN
|
5
|
+
VERSION = "2.1"
|
6
|
+
|
7
|
+
include Numo
|
8
|
+
|
9
|
+
attr_accessor :weights
|
10
|
+
attr_accessor :biases
|
11
|
+
attr_accessor :gammas
|
12
|
+
attr_accessor :betas
|
13
|
+
attr_accessor :learning_rate
|
14
|
+
attr_accessor :batch_size
|
15
|
+
attr_accessor :activation
|
16
|
+
attr_accessor :momentum
|
17
|
+
attr_accessor :weight_decay
|
18
|
+
attr_accessor :dropout_ratio
|
19
|
+
attr_reader :training
|
20
|
+
|
21
|
+
def initialize(num_nodes,
|
22
|
+
learning_rate: 0.01,
|
23
|
+
batch_size: 1,
|
24
|
+
activation: %i(relu identity),
|
25
|
+
momentum: 0,
|
26
|
+
weight_decay: 0,
|
27
|
+
use_dropout: false,
|
28
|
+
dropout_ratio: 0.5,
|
29
|
+
use_batch_norm: false)
|
30
|
+
SFloat.srand(rand(2 ** 64))
|
31
|
+
@num_nodes = num_nodes
|
32
|
+
@learning_rate = learning_rate
|
33
|
+
@batch_size = batch_size
|
34
|
+
@activation = activation
|
35
|
+
@momentum = momentum
|
36
|
+
@weight_decay = weight_decay
|
37
|
+
@use_dropout = use_dropout
|
38
|
+
@dropout_ratio = dropout_ratio
|
39
|
+
@use_batch_norm = use_batch_norm
|
40
|
+
init_weight_and_bias
|
41
|
+
init_gamma_and_beta if @use_batch_norm
|
42
|
+
@training = true
|
43
|
+
init_layers
|
44
|
+
end
|
45
|
+
|
46
|
+
def self.load(file_name)
|
47
|
+
Marshal.load(File.binread(file_name))
|
48
|
+
end
|
49
|
+
|
50
|
+
def self.load_json(file_name)
|
51
|
+
json = JSON.parse(File.read(file_name))
|
52
|
+
nn = self.new(json["num_nodes"],
|
53
|
+
learning_rate: json["learning_rate"],
|
54
|
+
batch_size: json["batch_size"],
|
55
|
+
activation: json["activation"].map(&:to_sym),
|
56
|
+
momentum: json["momentum"],
|
57
|
+
weight_decay: json["weight_decay"],
|
58
|
+
use_dropout: json["use_dropout"],
|
59
|
+
dropout_ratio: json["dropout_ratio"],
|
60
|
+
use_batch_norm: json["use_batch_norm"],
|
61
|
+
)
|
62
|
+
nn.weights = json["weights"].map{|weight| SFloat.cast(weight)}
|
63
|
+
nn.biases = json["biases"].map{|bias| SFloat.cast(bias)}
|
64
|
+
if json["use_batch_norm"]
|
65
|
+
nn.gammas = json["gammas"].map{|gamma| SFloat.cast(gamma)}
|
66
|
+
nn.betas = json["betas"].map{|beta| SFloat.cast(beta)}
|
67
|
+
end
|
68
|
+
nn
|
69
|
+
end
|
70
|
+
|
71
|
+
def train(x_train, y_train, epochs, func = nil, &block)
|
72
|
+
num_train_data = x_train.is_a?(SFloat) ? x_train.shape[0] : x_train.length
|
73
|
+
(1..epochs).each do |epoch|
|
74
|
+
loss = nil
|
75
|
+
(num_train_data.to_f / @batch_size).ceil.times do
|
76
|
+
loss = learn(x_train, y_train, &func)
|
77
|
+
if loss.nan?
|
78
|
+
puts "loss is nan"
|
79
|
+
return
|
80
|
+
end
|
81
|
+
end
|
82
|
+
puts "epoch #{epoch}/#{epochs} loss: #{loss}"
|
83
|
+
block.call(epoch) if block
|
84
|
+
end
|
85
|
+
end
|
86
|
+
|
87
|
+
def test(x_test, y_test, tolerance = 0.5, &block)
|
88
|
+
acc = accurate(x_test, y_test, tolerance, &block)
|
89
|
+
puts "accurate: #{acc}"
|
90
|
+
acc
|
91
|
+
end
|
92
|
+
|
93
|
+
def accurate(x_test, y_test, tolerance = 0.5, &block)
|
94
|
+
correct = 0
|
95
|
+
num_test_data = x_test.is_a?(SFloat) ? x_test.shape[0] : x_test.length
|
96
|
+
(num_test_data.to_f / @batch_size).ceil.times do |i|
|
97
|
+
x = SFloat.zeros(@batch_size, @num_nodes.first)
|
98
|
+
y = SFloat.zeros(@batch_size, @num_nodes.last)
|
99
|
+
@batch_size.times do |j|
|
100
|
+
k = i * @batch_size + j
|
101
|
+
break if k >= num_test_data
|
102
|
+
if x_test.is_a?(SFloat)
|
103
|
+
x[j, true] = x_test[k, true]
|
104
|
+
y[j, true] = y_test[k, true]
|
105
|
+
else
|
106
|
+
x[j, true] = SFloat.cast(x_test[k])
|
107
|
+
y[j, true] = SFloat.cast(y_test[k])
|
108
|
+
end
|
109
|
+
end
|
110
|
+
x, y = block.call(x, y) if block
|
111
|
+
out = forward(x, false)
|
112
|
+
@batch_size.times do |j|
|
113
|
+
vout = out[j, true]
|
114
|
+
vy = y[j, true]
|
115
|
+
case @activation[1]
|
116
|
+
when :identity
|
117
|
+
correct += 1 unless (NMath.sqrt((vout - vy) ** 2) < tolerance).to_a.include?(0)
|
118
|
+
when :softmax
|
119
|
+
correct += 1 if vout.max_index == vy.max_index
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|
123
|
+
correct.to_f / num_test_data
|
124
|
+
end
|
125
|
+
|
126
|
+
def learn(x_train, y_train, &block)
|
127
|
+
x = SFloat.zeros(@batch_size, @num_nodes.first)
|
128
|
+
y = SFloat.zeros(@batch_size, @num_nodes.last)
|
129
|
+
@batch_size.times do |i|
|
130
|
+
if x_train.is_a?(SFloat)
|
131
|
+
r = rand(x_train.shape[0])
|
132
|
+
x[i, true] = x_train[r, true]
|
133
|
+
y[i, true] = y_train[r, true]
|
134
|
+
else
|
135
|
+
r = rand(x_train.length)
|
136
|
+
x[i, true] = SFloat.cast(x_train[r])
|
137
|
+
y[i, true] = SFloat.cast(y_train[r])
|
138
|
+
end
|
139
|
+
end
|
140
|
+
x, y = block.call(x, y) if block
|
141
|
+
forward(x)
|
142
|
+
backward(y)
|
143
|
+
update_weight_and_bias
|
144
|
+
update_gamma_and_beta if @use_batch_norm
|
145
|
+
@layers[-1].loss(y)
|
146
|
+
end
|
147
|
+
|
148
|
+
def run(x)
|
149
|
+
if x.is_a?(Array)
|
150
|
+
forward(SFloat.cast(x), false).to_a
|
151
|
+
else
|
152
|
+
forward(x, false)
|
153
|
+
end
|
154
|
+
end
|
155
|
+
|
156
|
+
def save(file_name)
|
157
|
+
File.binwrite(file_name, Marshal.dump(self))
|
158
|
+
end
|
159
|
+
|
160
|
+
def save_json(file_name)
|
161
|
+
json = {
|
162
|
+
"version" => VERSION,
|
163
|
+
"num_nodes" => @num_nodes,
|
164
|
+
"learning_rate" => @learning_rate,
|
165
|
+
"batch_size" => @batch_size,
|
166
|
+
"activation" => @activation,
|
167
|
+
"momentum" => @momentum,
|
168
|
+
"weight_decay" => @weight_decay,
|
169
|
+
"use_dropout" => @use_dropout,
|
170
|
+
"dropout_ratio" => @dropout_ratio,
|
171
|
+
"use_batch_norm" => @use_batch_norm,
|
172
|
+
"weights" => @weights.map(&:to_a),
|
173
|
+
"biases" => @biases.map(&:to_a),
|
174
|
+
}
|
175
|
+
if @use_batch_norm
|
176
|
+
json_batch_norm = {
|
177
|
+
"gammas" => @gammas,
|
178
|
+
"betas" => @betas
|
179
|
+
}
|
180
|
+
json.merge!(json_batch_norm)
|
181
|
+
end
|
182
|
+
File.write(file_name, JSON.dump(json))
|
183
|
+
end
|
184
|
+
|
185
|
+
private
|
186
|
+
|
187
|
+
def init_weight_and_bias
|
188
|
+
@weights = Array.new(@num_nodes.length - 1)
|
189
|
+
@biases = Array.new(@num_nodes.length - 1)
|
190
|
+
@weight_amounts = Array.new(@num_nodes.length - 1, 0)
|
191
|
+
@bias_amounts = Array.new(@num_nodes.length - 1, 0)
|
192
|
+
@num_nodes[0...-1].each_index do |i|
|
193
|
+
weight = SFloat.new(@num_nodes[i], @num_nodes[i + 1]).rand_norm
|
194
|
+
bias = SFloat.new(@num_nodes[i + 1]).rand_norm
|
195
|
+
if @activation[0] == :relu
|
196
|
+
@weights[i] = weight / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
|
197
|
+
@biases[i] = bias / Math.sqrt(@num_nodes[i]) * Math.sqrt(2)
|
198
|
+
else
|
199
|
+
@weights[i] = weight / Math.sqrt(@num_nodes[i])
|
200
|
+
@biases[i] = bias / Math.sqrt(@num_nodes[i])
|
201
|
+
end
|
202
|
+
end
|
203
|
+
end
|
204
|
+
|
205
|
+
def init_gamma_and_beta
|
206
|
+
@gammas = Array.new(@num_nodes.length - 2, 1)
|
207
|
+
@betas = Array.new(@num_nodes.length - 2, 0)
|
208
|
+
@gamma_amounts = Array.new(@num_nodes.length - 2, 0)
|
209
|
+
@beta_amounts = Array.new(@num_nodes.length - 2, 0)
|
210
|
+
end
|
211
|
+
|
212
|
+
def init_layers
|
213
|
+
@layers = []
|
214
|
+
@num_nodes[0...-2].each_index do |i|
|
215
|
+
@layers << Affine.new(self, i)
|
216
|
+
@layers << BatchNorm.new(self, i) if @use_batch_norm
|
217
|
+
@layers << case @activation[0]
|
218
|
+
when :sigmoid
|
219
|
+
Sigmoid.new
|
220
|
+
when :relu
|
221
|
+
ReLU.new
|
222
|
+
end
|
223
|
+
@layers << Dropout.new(self) if @use_dropout
|
224
|
+
end
|
225
|
+
@layers << Affine.new(self, -1)
|
226
|
+
@layers << case @activation[1]
|
227
|
+
when :identity
|
228
|
+
Identity.new(self)
|
229
|
+
when :softmax
|
230
|
+
Softmax.new(self)
|
231
|
+
end
|
232
|
+
end
|
233
|
+
|
234
|
+
def forward(x, training = true)
|
235
|
+
@training = training
|
236
|
+
@layers.each do |layer|
|
237
|
+
x = layer.forward(x)
|
238
|
+
end
|
239
|
+
x
|
240
|
+
end
|
241
|
+
|
242
|
+
def backward(y)
|
243
|
+
dout = @layers[-1].backward(y)
|
244
|
+
@layers[0...-1].reverse.each do |layer|
|
245
|
+
dout = layer.backward(dout)
|
246
|
+
end
|
247
|
+
end
|
248
|
+
|
249
|
+
def update_weight_and_bias
|
250
|
+
@layers.select{|layer| layer.is_a?(Affine)}.each.with_index do |layer, i|
|
251
|
+
weight_amount = layer.d_weight * @learning_rate
|
252
|
+
bias_amount = layer.d_bias * @learning_rate
|
253
|
+
if @momentum > 0
|
254
|
+
weight_amount += @momentum * @weight_amounts[i]
|
255
|
+
@weight_amounts[i] = weight_amount
|
256
|
+
bias_amount += @momentum * @bias_amounts[i]
|
257
|
+
@bias_amounts[i] = bias_amount
|
258
|
+
end
|
259
|
+
@weights[i] -= weight_amount
|
260
|
+
@biases[i] -= bias_amount
|
261
|
+
end
|
262
|
+
end
|
263
|
+
|
264
|
+
def update_gamma_and_beta
|
265
|
+
@layers.select{|layer| layer.is_a?(BatchNorm)}.each.with_index do |layer, i|
|
266
|
+
gamma_amount = layer.d_gamma * @learning_rate
|
267
|
+
beta_amount = layer.d_beta * @learning_rate
|
268
|
+
if @momentum > 0
|
269
|
+
gamma_amount += @momentum * @gamma_amounts[i]
|
270
|
+
@gamma_amounts[i] = gamma_amount
|
271
|
+
beta_amount += @momentum * @beta_amounts[i]
|
272
|
+
@beta_amounts[i] = beta_amount
|
273
|
+
end
|
274
|
+
@gammas[i] -= gamma_amount
|
275
|
+
@betas[i] -= gamma_amount
|
276
|
+
end
|
277
|
+
end
|
278
|
+
end
|
279
|
+
|
280
|
+
|
281
|
+
class NN::Affine
|
282
|
+
include Numo
|
283
|
+
|
284
|
+
attr_reader :d_weight
|
285
|
+
attr_reader :d_bias
|
286
|
+
|
287
|
+
def initialize(nn, index)
|
288
|
+
@nn = nn
|
289
|
+
@index = index
|
290
|
+
@d_weight = nil
|
291
|
+
@d_bias = nil
|
292
|
+
end
|
293
|
+
|
294
|
+
def forward(x)
|
295
|
+
@x = x
|
296
|
+
@x.dot(@nn.weights[@index]) + @nn.biases[@index]
|
297
|
+
end
|
298
|
+
|
299
|
+
def backward(dout)
|
300
|
+
x = @x.reshape(*@x.shape, 1)
|
301
|
+
@d_weight = x.dot(dout.reshape(dout.shape[0], 1, dout.shape[1])).mean(0)
|
302
|
+
if @nn.weight_decay > 0
|
303
|
+
dridge = @nn.weight_decay * @nn.weights[@index]
|
304
|
+
@d_weight += dridge
|
305
|
+
end
|
306
|
+
@d_bias = dout.mean
|
307
|
+
dout.dot(@nn.weights[@index].transpose)
|
308
|
+
end
|
309
|
+
end
|
310
|
+
|
311
|
+
|
312
|
+
class NN::Sigmoid
|
313
|
+
include Numo
|
314
|
+
|
315
|
+
def forward(x)
|
316
|
+
@out = 1.0 / (1 + NMath.exp(-x))
|
317
|
+
end
|
318
|
+
|
319
|
+
def backward(dout)
|
320
|
+
dout * (1.0 - @out) * @out
|
321
|
+
end
|
322
|
+
end
|
323
|
+
|
324
|
+
|
325
|
+
class NN::ReLU
|
326
|
+
def forward(x)
|
327
|
+
@x = x.clone
|
328
|
+
x[x < 0] = 0
|
329
|
+
x
|
330
|
+
end
|
331
|
+
|
332
|
+
def backward(dout)
|
333
|
+
@x[@x > 0] = 1.0
|
334
|
+
@x[@x <= 0] = 0.0
|
335
|
+
dout * @x
|
336
|
+
end
|
337
|
+
end
|
338
|
+
|
339
|
+
|
340
|
+
class NN::Identity
|
341
|
+
def initialize(nn)
|
342
|
+
@nn = nn
|
343
|
+
end
|
344
|
+
|
345
|
+
def forward(x)
|
346
|
+
@out = x
|
347
|
+
end
|
348
|
+
|
349
|
+
def backward(y)
|
350
|
+
@out - y
|
351
|
+
end
|
352
|
+
|
353
|
+
def loss(y)
|
354
|
+
ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
|
355
|
+
0.5 * ((@out - y) ** 2).sum / @nn.batch_size + ridge
|
356
|
+
end
|
357
|
+
end
|
358
|
+
|
359
|
+
|
360
|
+
class NN::Softmax
|
361
|
+
include Numo
|
362
|
+
|
363
|
+
def initialize(nn)
|
364
|
+
@nn = nn
|
365
|
+
end
|
366
|
+
|
367
|
+
def forward(x)
|
368
|
+
@out = NMath.exp(x) / NMath.exp(x).sum(1).reshape(x.shape[0], 1)
|
369
|
+
end
|
370
|
+
|
371
|
+
def backward(y)
|
372
|
+
@out - y
|
373
|
+
end
|
374
|
+
|
375
|
+
def loss(y)
|
376
|
+
ridge = 0.5 * @nn.weight_decay * @nn.weights.reduce(0){|sum, weight| sum + (weight ** 2).sum}
|
377
|
+
-(y * NMath.log(@out + 1e-7)).sum / @nn.batch_size + ridge
|
378
|
+
end
|
379
|
+
end
|
380
|
+
|
381
|
+
|
382
|
+
class NN::Dropout
|
383
|
+
include Numo
|
384
|
+
|
385
|
+
def initialize(nn)
|
386
|
+
@nn = nn
|
387
|
+
@mask = nil
|
388
|
+
end
|
389
|
+
|
390
|
+
def forward(x)
|
391
|
+
if @nn.training
|
392
|
+
@mask = SFloat.ones(*x.shape).rand < @nn.dropout_ratio
|
393
|
+
x[@mask] = 0
|
394
|
+
else
|
395
|
+
x *= (1 - @nn.dropout_ratio)
|
396
|
+
end
|
397
|
+
x
|
398
|
+
end
|
399
|
+
|
400
|
+
def backward(dout)
|
401
|
+
dout[@mask] = 0 if @nn.training
|
402
|
+
dout
|
403
|
+
end
|
404
|
+
end
|
405
|
+
|
406
|
+
|
407
|
+
class NN::BatchNorm
|
408
|
+
include Numo
|
409
|
+
|
410
|
+
attr_reader :d_gamma
|
411
|
+
attr_reader :d_beta
|
412
|
+
|
413
|
+
def initialize(nn, index)
|
414
|
+
@nn = nn
|
415
|
+
@index = index
|
416
|
+
end
|
417
|
+
|
418
|
+
def forward(x)
|
419
|
+
@x = x
|
420
|
+
@mean = x.mean(0)
|
421
|
+
@xc = x - @mean
|
422
|
+
@var = (@xc ** 2).mean(0)
|
423
|
+
@std = NMath.sqrt(@var + 1e-7)
|
424
|
+
@xn = @xc / @std
|
425
|
+
out = @nn.gammas[@index] * @xn + @nn.betas[@index]
|
426
|
+
out.reshape(*@x.shape)
|
427
|
+
end
|
428
|
+
|
429
|
+
def backward(dout)
|
430
|
+
@d_beta = dout.sum(0).mean
|
431
|
+
@d_gamma = (@xn * dout).sum(0).mean
|
432
|
+
dxn = @nn.gammas[@index] * dout
|
433
|
+
dxc = dxn / @std
|
434
|
+
dstd = -((dxn * @xc) / (@std ** 2)).sum(0)
|
435
|
+
dvar = 0.5 * dstd / @std
|
436
|
+
dxc += (2.0 / @nn.batch_size) * @xc * dvar
|
437
|
+
dmean = dxc.sum(0)
|
438
|
+
dx = dxc - dmean / @nn.batch_size
|
439
|
+
dx.reshape(*@x.shape)
|
440
|
+
end
|
441
|
+
end
|
@@ -0,0 +1,38 @@
|
|
1
|
+
require "nn"
|
2
|
+
require "nn/cifar10"
|
3
|
+
|
4
|
+
x_train = []
|
5
|
+
y_train = []
|
6
|
+
|
7
|
+
(1..5).each do |i|
|
8
|
+
x_train2, y_train2 = CIFAR10.load_train(i)
|
9
|
+
x_train.concat(x_train2)
|
10
|
+
y_train.concat(CIFAR10.categorical(y_train2))
|
11
|
+
end
|
12
|
+
GC.start
|
13
|
+
|
14
|
+
x_test, y_test = CIFAR10.load_test
|
15
|
+
y_test = CIFAR10.categorical(y_test)
|
16
|
+
GC.start
|
17
|
+
|
18
|
+
puts "load cifar10"
|
19
|
+
|
20
|
+
nn = NN.new([3072, 100, 100, 10],
|
21
|
+
learning_rate: 0.1,
|
22
|
+
batch_size: 32,
|
23
|
+
activation: [:relu, :softmax],
|
24
|
+
momentum: 0.9,
|
25
|
+
use_dropout: true,
|
26
|
+
dropout_ratio: 0.2,
|
27
|
+
use_batch_norm: true,
|
28
|
+
)
|
29
|
+
|
30
|
+
func = -> x, y do
|
31
|
+
x /= 255
|
32
|
+
[x, y]
|
33
|
+
end
|
34
|
+
|
35
|
+
nn.train(x_train, y_train, 20, func) do |epoch|
|
36
|
+
nn.test(x_test, y_test, &func)
|
37
|
+
nn.learning_rate *= 0.99
|
38
|
+
end
|
@@ -0,0 +1,38 @@
|
|
1
|
+
#ライブラリの読み込み
|
2
|
+
require "nn"
|
3
|
+
require "nn/mnist"
|
4
|
+
|
5
|
+
#MNISTのトレーニング用データを読み込む
|
6
|
+
x_train, y_train = MNIST.load_train
|
7
|
+
|
8
|
+
#y_trainを10クラスに配列でカテゴライズする
|
9
|
+
y_train = MNIST.categorical(y_train)
|
10
|
+
|
11
|
+
#MNISTのテスト用データを読み込む
|
12
|
+
x_test, y_test = MNIST.load_test
|
13
|
+
|
14
|
+
#y_testを10クラスにカテゴライズする
|
15
|
+
y_test = MNIST.categorical(y_test)
|
16
|
+
|
17
|
+
puts "load mnist"
|
18
|
+
|
19
|
+
#ニューラルネットワークの初期化
|
20
|
+
nn = NN.new([784, 100, 100, 10], #ノード数
|
21
|
+
learning_rate: 0.1, #学習率
|
22
|
+
batch_size: 100, #ミニバッチの数
|
23
|
+
activation: [:relu, :softmax], #活性化関数
|
24
|
+
momentum: 0.9, #モーメンタム係数
|
25
|
+
use_batch_norm: true, #バッチノーマライゼーションを使用する
|
26
|
+
)
|
27
|
+
|
28
|
+
#ミニバッチを0~1の範囲で正規化
|
29
|
+
func = -> x_batch, y_batch do
|
30
|
+
x_batch /= 255
|
31
|
+
[x_batch, y_batch]
|
32
|
+
end
|
33
|
+
|
34
|
+
#学習を行う
|
35
|
+
nn.train(x_train, y_train, 10, func) do
|
36
|
+
#学習結果のテストを行う
|
37
|
+
nn.test(x_test, y_test, &func)
|
38
|
+
end
|
data/sample/xor.rb
ADDED
@@ -0,0 +1,24 @@
|
|
1
|
+
#ライブラリの読み込み
|
2
|
+
require "nn"
|
3
|
+
|
4
|
+
x = [
|
5
|
+
[0, 0],
|
6
|
+
[1, 0],
|
7
|
+
[0, 1],
|
8
|
+
[1, 1],
|
9
|
+
]
|
10
|
+
|
11
|
+
y = [[0], [1], [1], [0]]
|
12
|
+
|
13
|
+
#ニューラルネットワークの初期化
|
14
|
+
nn = NN.new([2, 4, 1], #ノード数
|
15
|
+
learning_rate: 0.1, #学習率
|
16
|
+
batch_size: 4, #ミニバッチの数
|
17
|
+
activation: [:sigmoid, :identity] #活性化関数
|
18
|
+
)
|
19
|
+
|
20
|
+
#学習を行う
|
21
|
+
nn.train(x, y, 20000)
|
22
|
+
|
23
|
+
#学習結果の確認
|
24
|
+
p nn.run(x)
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: nn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version:
|
4
|
+
version: 2.0.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- unagiootoro
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-
|
11
|
+
date: 2018-06-10 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -70,6 +70,10 @@ files:
|
|
70
70
|
- lib/nn/cifar10.rb
|
71
71
|
- lib/nn/mnist.rb
|
72
72
|
- nn.gemspec
|
73
|
+
- nn.rb
|
74
|
+
- sample/cifar10_program.rb
|
75
|
+
- sample/mnist_program.rb
|
76
|
+
- sample/xor.rb
|
73
77
|
homepage: https://github.com/unagiootoro/nn.git
|
74
78
|
licenses:
|
75
79
|
- MIT
|