nmatrix 0.0.5 → 0.0.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/History.txt +102 -10
- data/README.rdoc +24 -32
- data/Rakefile +1 -1
- data/ext/nmatrix/data/complex.h +9 -0
- data/ext/nmatrix/data/data.cpp +78 -4
- data/ext/nmatrix/data/data.h +86 -54
- data/ext/nmatrix/data/rational.h +2 -0
- data/ext/nmatrix/data/ruby_object.h +38 -8
- data/ext/nmatrix/extconf.rb +13 -7
- data/ext/nmatrix/nmatrix.cpp +262 -139
- data/ext/nmatrix/nmatrix.h +11 -4
- data/ext/nmatrix/storage/common.cpp +20 -13
- data/ext/nmatrix/storage/common.h +18 -12
- data/ext/nmatrix/storage/dense.cpp +122 -192
- data/ext/nmatrix/storage/dense.h +4 -2
- data/ext/nmatrix/storage/list.cpp +467 -636
- data/ext/nmatrix/storage/list.h +6 -3
- data/ext/nmatrix/storage/storage.cpp +83 -46
- data/ext/nmatrix/storage/storage.h +7 -7
- data/ext/nmatrix/storage/yale.cpp +621 -361
- data/ext/nmatrix/storage/yale.h +21 -9
- data/ext/nmatrix/ttable_helper.rb +27 -31
- data/ext/nmatrix/types.h +1 -1
- data/ext/nmatrix/util/math.cpp +9 -10
- data/ext/nmatrix/util/sl_list.cpp +1 -7
- data/ext/nmatrix/util/sl_list.h +0 -118
- data/lib/nmatrix/blas.rb +59 -18
- data/lib/nmatrix/monkeys.rb +0 -52
- data/lib/nmatrix/nmatrix.rb +136 -9
- data/lib/nmatrix/nvector.rb +33 -0
- data/lib/nmatrix/shortcuts.rb +95 -16
- data/lib/nmatrix/version.rb +1 -1
- data/lib/nmatrix/yale_functions.rb +25 -19
- data/spec/blas_spec.rb +1 -19
- data/spec/elementwise_spec.rb +132 -17
- data/spec/lapack_spec.rb +0 -3
- data/spec/nmatrix_list_spec.rb +18 -0
- data/spec/nmatrix_spec.rb +44 -18
- data/spec/nmatrix_yale_spec.rb +1 -3
- data/spec/shortcuts_spec.rb +26 -36
- data/spec/slice_spec.rb +2 -4
- metadata +2 -2
data/lib/nmatrix/monkeys.rb
CHANGED
@@ -52,18 +52,6 @@ class Array
|
|
52
52
|
|
53
53
|
if stype != :dense then matrix.cast(stype, dtype) else matrix end
|
54
54
|
end
|
55
|
-
|
56
|
-
unless method_defined?(:max)
|
57
|
-
def max #:nodoc:
|
58
|
-
self.inject(self.first) { |m, n| if n > m then n else m end }
|
59
|
-
end
|
60
|
-
end
|
61
|
-
|
62
|
-
unless method_defined?(:min)
|
63
|
-
def min #:nodoc:
|
64
|
-
self.inject(self.first) { |m, n| if n < m then n else m end }
|
65
|
-
end
|
66
|
-
end
|
67
55
|
end
|
68
56
|
|
69
57
|
class Object #:nodoc:
|
@@ -72,43 +60,3 @@ class Object #:nodoc:
|
|
72
60
|
value
|
73
61
|
end
|
74
62
|
end
|
75
|
-
|
76
|
-
class String #:nodoc:
|
77
|
-
unless method_defined?(:constantize)
|
78
|
-
# Based on constantize from ActiveSupport::Inflector
|
79
|
-
def constantize
|
80
|
-
names = self.split('::')
|
81
|
-
names.shift if names.empty? || names.first.empty?
|
82
|
-
|
83
|
-
constant = Object
|
84
|
-
names.each do |name|
|
85
|
-
constant = constant.const_defined?(name, false) ? constant.const_get(name) : constant.const_missing(name)
|
86
|
-
end
|
87
|
-
constant
|
88
|
-
end
|
89
|
-
end
|
90
|
-
|
91
|
-
unless method_defined?(:camelize)
|
92
|
-
# Adapted from camelize from ActiveSupport::Inflector
|
93
|
-
def camelize first_letter_in_uppercase = true
|
94
|
-
if first_letter_in_uppercase
|
95
|
-
self.to_s.gsub(/\/(.?)/) { "::#{$1.upcase}" }.gsub(/(?:^|_)(.)/) { $1.upcase }
|
96
|
-
else
|
97
|
-
self.to_s[0].chr.downcase + self[1..-1].camelize
|
98
|
-
end
|
99
|
-
end
|
100
|
-
end
|
101
|
-
|
102
|
-
unless method_defined?(:underscore)
|
103
|
-
# Adapted from underscore from ActiveSupport::Inflector
|
104
|
-
def underscore
|
105
|
-
word = self.dup
|
106
|
-
word.gsub!(/::/, '/')
|
107
|
-
word.gsub!(/([A-Z]+)([A-Z][a-z])/, '\1_\2')
|
108
|
-
word.gsub!(/([a-z\d])([A-Z])/,'\1_\2')
|
109
|
-
word.tr!("-", "_")
|
110
|
-
word.downcase!
|
111
|
-
word
|
112
|
-
end
|
113
|
-
end
|
114
|
-
end
|
data/lib/nmatrix/nmatrix.rb
CHANGED
@@ -82,6 +82,48 @@ class NMatrix
|
|
82
82
|
end
|
83
83
|
alias :pp :pretty_print
|
84
84
|
|
85
|
+
|
86
|
+
#
|
87
|
+
# call-seq:
|
88
|
+
# cast(stype, dtype, default) -> NMatrix
|
89
|
+
# cast(stype, dtype) -> NMatrix
|
90
|
+
# cast(stype) -> NMatrix
|
91
|
+
# cast(options) -> NMatrix
|
92
|
+
#
|
93
|
+
# This is a user-friendly helper for calling #cast_full. The easiest way to call this function is using an
|
94
|
+
# options hash, e.g.,
|
95
|
+
#
|
96
|
+
# n.cast(:stype => :yale, :dtype => :int64, :default => false)
|
97
|
+
#
|
98
|
+
# For list and yale, :default sets the "default value" or "init" of the matrix. List allows a bit more freedom
|
99
|
+
# since non-zeros are permitted. For yale, unpredictable behavior may result if the value is not false, nil, or
|
100
|
+
# some version of 0. Dense discards :default.
|
101
|
+
#
|
102
|
+
# dtype and stype are inferred from the matrix upon which #cast is called -- so you only really need to provide
|
103
|
+
# one. You can actually call this function with no arguments, in which case it functions like #clone.
|
104
|
+
#
|
105
|
+
# If your dtype is :object and you are converting from :dense to a sparse type, it is recommended that you
|
106
|
+
# provide a :default, as 0 may behave differently from its Float, Rational, or Complex equivalent. If no option
|
107
|
+
# is given, Fixnum 0 will be used.
|
108
|
+
def cast(*params)
|
109
|
+
if (params.size > 0 && params[0].is_a?(Hash))
|
110
|
+
opts = {
|
111
|
+
:stype => self.stype,
|
112
|
+
:dtype => self.dtype,
|
113
|
+
:default => self.stype == :dense ? 0 : self.default_value
|
114
|
+
}.merge(params[0])
|
115
|
+
|
116
|
+
self.cast_full(opts[:stype], opts[:dtype], opts[:default])
|
117
|
+
else
|
118
|
+
params << self.stype if params.size == 0
|
119
|
+
params << self.dtype if params.size == 1
|
120
|
+
params << (self.stype == :dense ? 0 : self.default_value) if params.size == 2
|
121
|
+
|
122
|
+
self.cast_full(*params)
|
123
|
+
end
|
124
|
+
|
125
|
+
end
|
126
|
+
|
85
127
|
#
|
86
128
|
# call-seq:
|
87
129
|
# rows -> Integer
|
@@ -122,8 +164,10 @@ class NMatrix
|
|
122
164
|
end
|
123
165
|
end
|
124
166
|
h
|
125
|
-
else # dense and list should use a C internal
|
126
|
-
|
167
|
+
else # dense and list should use a C internal function.
|
168
|
+
# FIXME: Write a C internal to_h function.
|
169
|
+
m = stype == :dense ? self.cast(:list, self.dtype) : self
|
170
|
+
m.__list_to_hash__
|
127
171
|
end
|
128
172
|
end
|
129
173
|
alias :to_h :to_hash
|
@@ -293,6 +337,7 @@ class NMatrix
|
|
293
337
|
'[' + ary.collect { |a| a ? a : 'nil'}.join(',') + ']'
|
294
338
|
end
|
295
339
|
|
340
|
+
|
296
341
|
##
|
297
342
|
# call-seq:
|
298
343
|
# each_along_dim() -> Enumerator
|
@@ -317,6 +362,7 @@ class NMatrix
|
|
317
362
|
end
|
318
363
|
end
|
319
364
|
|
365
|
+
|
320
366
|
##
|
321
367
|
# call-seq:
|
322
368
|
# reduce_along_dim() -> Enumerator
|
@@ -441,7 +487,7 @@ class NMatrix
|
|
441
487
|
def min(dimen=0)
|
442
488
|
reduce_along_dim(dimen) do |min, sub_mat|
|
443
489
|
if min.is_a? NMatrix then
|
444
|
-
min * (min <= sub_mat) + ((min)*0.0 + (min > sub_mat)) * sub_mat
|
490
|
+
min * (min <= sub_mat).cast(self.stype, self.dtype) + ((min)*0.0 + (min > sub_mat).cast(self.stype, self.dtype)) * sub_mat
|
445
491
|
else
|
446
492
|
min <= sub_mat ? min : sub_mat
|
447
493
|
end
|
@@ -460,7 +506,7 @@ class NMatrix
|
|
460
506
|
def max(dimen=0)
|
461
507
|
reduce_along_dim(dimen) do |max, sub_mat|
|
462
508
|
if max.is_a? NMatrix then
|
463
|
-
max * (max >= sub_mat) + ((max)*0.0 + (max < sub_mat)) * sub_mat
|
509
|
+
max * (max >= sub_mat).cast(self.stype, self.dtype) + ((max)*0.0 + (max < sub_mat).cast(self.stype, self.dtype)) * sub_mat
|
464
510
|
else
|
465
511
|
max >= sub_mat ? max : sub_mat
|
466
512
|
end
|
@@ -508,7 +554,7 @@ class NMatrix
|
|
508
554
|
|
509
555
|
##
|
510
556
|
# call-seq:
|
511
|
-
# to_f
|
557
|
+
# to_f -> Float
|
512
558
|
#
|
513
559
|
# Converts an nmatrix with a single element (but any number of dimensions)
|
514
560
|
# to a float.
|
@@ -523,8 +569,24 @@ class NMatrix
|
|
523
569
|
|
524
570
|
##
|
525
571
|
# call-seq:
|
526
|
-
#
|
527
|
-
#
|
572
|
+
# each -> Enumerator
|
573
|
+
#
|
574
|
+
# Enumerate through the matrix. @see Enumerable#each
|
575
|
+
#
|
576
|
+
# For dense, this actually calls a specialized each iterator (in C). For yale and list, it relies upon
|
577
|
+
# #each_with_indices (which is about as fast as reasonably possible for C code).
|
578
|
+
def each &block
|
579
|
+
if self.stype == :dense
|
580
|
+
self.__dense_each__(&block)
|
581
|
+
else
|
582
|
+
self.each_with_indices(&block)
|
583
|
+
end
|
584
|
+
end
|
585
|
+
|
586
|
+
##
|
587
|
+
# call-seq:
|
588
|
+
# map -> Enumerator
|
589
|
+
# map { |elem| block } -> NMatrix
|
528
590
|
#
|
529
591
|
# @see Enumerable#map
|
530
592
|
#
|
@@ -537,8 +599,8 @@ class NMatrix
|
|
537
599
|
|
538
600
|
##
|
539
601
|
# call-seq:
|
540
|
-
# map!
|
541
|
-
# map!
|
602
|
+
# map! -> Enumerator
|
603
|
+
# map! { |elem| block } -> NMatrix
|
542
604
|
#
|
543
605
|
# Maps in place.
|
544
606
|
# @see #map
|
@@ -620,7 +682,70 @@ class NMatrix
|
|
620
682
|
end
|
621
683
|
end
|
622
684
|
|
685
|
+
|
686
|
+
def method_missing name, *args, &block #:nodoc:
|
687
|
+
if name.to_s =~ /^__list_elementwise_.*__$/
|
688
|
+
raise NotImplementedError, "requested undefined list matrix element-wise operation"
|
689
|
+
elsif name.to_s =~ /^__yale_scalar_.*__$/
|
690
|
+
raise NotImplementedError, "requested undefined yale scalar element-wise operation"
|
691
|
+
else
|
692
|
+
super(name, *args, &block)
|
693
|
+
end
|
694
|
+
end
|
695
|
+
|
623
696
|
protected
|
697
|
+
# Define the element-wise operations for lists. Note that the __list_map_merged_stored__ iterator returns a Ruby Object
|
698
|
+
# matrix, which we then cast back to the appropriate type. If you don't want that, you can redefine these functions in
|
699
|
+
# your own code.
|
700
|
+
{add: :+, sub: :-, mul: :*, div: :/, pow: :**, mod: :%}.each_pair do |ewop, op|
|
701
|
+
define_method("__list_elementwise_#{ewop}__") do |rhs|
|
702
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
703
|
+
end
|
704
|
+
define_method("__dense_elementwise_#{ewop}__") do |rhs|
|
705
|
+
self.__dense_map_pair__(rhs) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
706
|
+
end
|
707
|
+
define_method("__yale_elementwise_#{ewop}__") do |rhs|
|
708
|
+
self.__yale_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, rhs.dtype))
|
709
|
+
end
|
710
|
+
define_method("__list_scalar_#{ewop}__") do |rhs|
|
711
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
712
|
+
end
|
713
|
+
define_method("__yale_scalar_#{ewop}__") do |rhs|
|
714
|
+
self.__yale_map_stored__ { |l| l.send(op,rhs) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
715
|
+
end
|
716
|
+
define_method("__dense_scalar_#{ewop}__") do |rhs|
|
717
|
+
self.__dense_map__ { |l| l.send(op,rhs) }.cast(stype, NMatrix.upcast(dtype, NMatrix.min_dtype(rhs)))
|
718
|
+
end
|
719
|
+
end
|
720
|
+
|
721
|
+
# Equality operators do not involve a cast. We want to get back matrices of TrueClass and FalseClass.
|
722
|
+
{eqeq: :==, neq: :!=, lt: :<, gt: :>, leq: :<=, geq: :>=}.each_pair do |ewop, op|
|
723
|
+
define_method("__list_elementwise_#{ewop}__") do |rhs|
|
724
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
725
|
+
end
|
726
|
+
define_method("__dense_elementwise_#{ewop}__") do |rhs|
|
727
|
+
self.__dense_map_pair__(rhs) { |l,r| l.send(op,r) }
|
728
|
+
end
|
729
|
+
define_method("__yale_elementwise_#{ewop}__") do |rhs|
|
730
|
+
self.__yale_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
731
|
+
end
|
732
|
+
|
733
|
+
define_method("__list_scalar_#{ewop}__") do |rhs|
|
734
|
+
self.__list_map_merged_stored__(rhs, nil) { |l,r| l.send(op,r) }
|
735
|
+
end
|
736
|
+
define_method("__yale_scalar_#{ewop}__") do |rhs|
|
737
|
+
self.__yale_map_stored__ { |l| l.send(op,rhs) }
|
738
|
+
end
|
739
|
+
define_method("__dense_scalar_#{ewop}__") do |rhs|
|
740
|
+
self.__dense_map__ { |l| l.send(op,rhs) }
|
741
|
+
end
|
742
|
+
end
|
743
|
+
|
744
|
+
# This is how you write an individual element-wise operation function:
|
745
|
+
#def __list_elementwise_add__ rhs
|
746
|
+
# self.__list_map_merged_stored__(rhs){ |l,r| l+r }.cast(self.stype, NMatrix.upcast(self.dtype, rhs.dtype))
|
747
|
+
#end
|
748
|
+
|
624
749
|
def inspect_helper #:nodoc:
|
625
750
|
ary = []
|
626
751
|
ary << "shape:[#{shape.join(',')}]" << "dtype:#{dtype}" << "stype:#{stype}"
|
@@ -639,4 +764,6 @@ protected
|
|
639
764
|
|
640
765
|
ary
|
641
766
|
end
|
767
|
+
|
768
|
+
|
642
769
|
end
|
data/lib/nmatrix/nvector.rb
CHANGED
@@ -248,6 +248,39 @@ class NVector < NMatrix
|
|
248
248
|
t.shuffle!(*args)
|
249
249
|
end
|
250
250
|
|
251
|
+
#
|
252
|
+
# call-seq:
|
253
|
+
# sorted_indices -> Array
|
254
|
+
#
|
255
|
+
# Returns an array of the indices ordered by value sorted.
|
256
|
+
#
|
257
|
+
def sorted_indices
|
258
|
+
ary = self.to_a
|
259
|
+
ary.each_index.sort_by { |i| ary[i] } # from: http://stackoverflow.com/a/17841159/170300
|
260
|
+
end
|
261
|
+
|
262
|
+
#
|
263
|
+
# call-seq:
|
264
|
+
# binned_sorted_indices -> Array
|
265
|
+
#
|
266
|
+
# Returns an array of arrays of indices ordered by value sorted. Functions basically like +sorted_indices+, but
|
267
|
+
# groups indices together for those values that are the same.
|
268
|
+
#
|
269
|
+
def binned_sorted_indices
|
270
|
+
ary = self.to_a
|
271
|
+
ary2 = []
|
272
|
+
last_bin = ary.each_index.sort_by { |i| [ary[i]] }.inject([]) do |result, element|
|
273
|
+
if result.empty? || ary[result[-1]] == ary[element]
|
274
|
+
result << element
|
275
|
+
else
|
276
|
+
ary2 << result
|
277
|
+
[element]
|
278
|
+
end
|
279
|
+
end
|
280
|
+
ary2 << last_bin unless last_bin.empty?
|
281
|
+
ary2
|
282
|
+
end
|
283
|
+
|
251
284
|
|
252
285
|
# TODO: Make this actually pretty.
|
253
286
|
def pretty_print(q = nil) #:nodoc:
|
data/lib/nmatrix/shortcuts.rb
CHANGED
@@ -133,7 +133,7 @@ class NMatrix
|
|
133
133
|
|
134
134
|
# Fill the diagonal with 1's.
|
135
135
|
m = NMatrix.zeros(stype, dim, dtype)
|
136
|
-
(0
|
136
|
+
(0...dim).each do |i|
|
137
137
|
m[i, i] = 1
|
138
138
|
end
|
139
139
|
|
@@ -141,6 +141,49 @@ class NMatrix
|
|
141
141
|
end
|
142
142
|
alias :identity :eye
|
143
143
|
|
144
|
+
#
|
145
|
+
# call-seq:
|
146
|
+
# diagonals(array) -> NMatrix
|
147
|
+
# diagonals(stype, array, dtype) -> NMatrix
|
148
|
+
# diagonals(array, dtype) -> NMatrix
|
149
|
+
# diagonals(stype, array) -> NMatrix
|
150
|
+
#
|
151
|
+
# Creates a matrix filled with specified diagonals.
|
152
|
+
#
|
153
|
+
# * *Arguments* :
|
154
|
+
# - +stype+ -> (optional) Storage type for the matrix (default is :dense)
|
155
|
+
# - +entries+ -> Array containing input values for diagonal matrix
|
156
|
+
# - +dtype+ -> (optional) Default is based on values in supplied Array
|
157
|
+
# * *Returns* :
|
158
|
+
# - NMatrix filled with specified diagonal values.
|
159
|
+
#
|
160
|
+
# Examples:
|
161
|
+
#
|
162
|
+
# NMatrix.diagonal([1.0,2,3,4]) # => 1.0 0.0 0.0 0.0
|
163
|
+
# 0.0 2.0 0.0 0.0
|
164
|
+
# 0.0 0.0 3.0 0.0
|
165
|
+
# 0.0 0.0 0.0 4.0
|
166
|
+
#
|
167
|
+
# NMatrix.diagonal(:dense, [1,2,3,4], :int32) # => 1 0 0 0
|
168
|
+
# 0 2 0 0
|
169
|
+
# 0 0 3 0
|
170
|
+
# 0 0 0 4
|
171
|
+
#
|
172
|
+
#
|
173
|
+
def diagonal(*params)
|
174
|
+
dtype = params.last.is_a?(Symbol) ? params.pop : nil
|
175
|
+
stype = params.first.is_a?(Symbol) ? params.shift : :dense
|
176
|
+
ary = params.shift
|
177
|
+
|
178
|
+
m = NMatrix.zeros(stype, ary.length, dtype || guess_dtype(ary[0]))
|
179
|
+
ary.each_with_index do |n, i|
|
180
|
+
m[i,i] = n
|
181
|
+
end
|
182
|
+
m
|
183
|
+
end
|
184
|
+
alias :diag :diagonal
|
185
|
+
alias :diagonals :diagonal
|
186
|
+
|
144
187
|
#
|
145
188
|
# call-seq:
|
146
189
|
# random(size) -> NMatrix
|
@@ -527,33 +570,29 @@ class NVector < NMatrix
|
|
527
570
|
# Returns a NVector with +n+ values of dtype +:float64+ equally spaced from
|
528
571
|
# +a+ to +b+, inclusive.
|
529
572
|
#
|
530
|
-
#
|
531
|
-
# be 100.
|
573
|
+
# See: http://www.mathworks.com/help/matlab/ref/linspace.html
|
532
574
|
#
|
533
575
|
# * *Arguments* :
|
534
576
|
# - +a+ -> The first value in the sequence.
|
535
577
|
# - +b+ -> The last value in the sequence.
|
536
|
-
# - +n+ -> The number of elements.
|
578
|
+
# - +n+ -> The number of elements. Default is 100.
|
537
579
|
# * *Returns* :
|
538
|
-
# -
|
580
|
+
# - NVector with +n+ +:float64+ values.
|
539
581
|
#
|
540
582
|
# Example:
|
541
583
|
# x = NVector.linspace(0, Math::PI, 1000)
|
542
|
-
#
|
543
|
-
#
|
544
|
-
#
|
545
|
-
#
|
546
|
-
# [0.0031447373909807737]
|
547
|
-
# [0.006289474781961547]
|
584
|
+
# x.pretty_print
|
585
|
+
# [0.0
|
586
|
+
# 0.0031447373909807737
|
587
|
+
# 0.006289474781961547
|
548
588
|
# ...
|
549
|
-
#
|
550
|
-
#
|
551
|
-
#
|
589
|
+
# 3.135303178807831
|
590
|
+
# 3.138447916198812
|
591
|
+
# 3.141592653589793]
|
552
592
|
# => nil
|
553
593
|
#
|
554
594
|
def linspace(a, b, n = 100)
|
555
|
-
#
|
556
|
-
# Formula: seq(n) * step + a
|
595
|
+
# Formula: seq(n) * step + a
|
557
596
|
|
558
597
|
# step = ((b - a) / (n - 1))
|
559
598
|
step = (b - a) * (1.0 / (n - 1))
|
@@ -563,6 +602,46 @@ class NVector < NMatrix
|
|
563
602
|
result += NVector.new(n, a, :float64)
|
564
603
|
result
|
565
604
|
end
|
605
|
+
|
606
|
+
#
|
607
|
+
# call-seq:
|
608
|
+
# logspace(a, b) -> NVector
|
609
|
+
# logspace(a, b, n) -> NVector
|
610
|
+
#
|
611
|
+
# Returns a NVector with +n+ values of dtype +:float64+ logarithmically
|
612
|
+
# spaced from +10^a+ to +10^b+, inclusive.
|
613
|
+
#
|
614
|
+
# See: http://www.mathworks.com/help/matlab/ref/logspace.html
|
615
|
+
#
|
616
|
+
# * *Arguments* :
|
617
|
+
# - +a+ -> The first value in the sequence.
|
618
|
+
# - +b+ -> The last value in the sequence.
|
619
|
+
# - +n+ -> The number of elements. Default is 100.
|
620
|
+
# * *Returns* :
|
621
|
+
# - NVector with +n+ +:float64+ values.
|
622
|
+
#
|
623
|
+
# Example:
|
624
|
+
# x = NVector.logspace(0, Math::PI, 10)
|
625
|
+
# x.pretty_print
|
626
|
+
# [1.0
|
627
|
+
# 2.2339109164570266
|
628
|
+
# 4.990357982665873
|
629
|
+
# 11.148015174505757
|
630
|
+
# 24.903672795156997
|
631
|
+
# 55.632586516975095
|
632
|
+
# 124.27824233101062
|
633
|
+
# 277.6265222213364
|
634
|
+
# 620.1929186882427
|
635
|
+
# 1385.4557313670107]
|
636
|
+
# => nil
|
637
|
+
#
|
638
|
+
def logspace(a, b, n = 100)
|
639
|
+
# Formula: 10^a, 10^(a + step), ..., 10^b, where step = ((b-a) / (n-1)).
|
640
|
+
|
641
|
+
result = NVector.linspace(a, b, n)
|
642
|
+
result.each_stored_with_index { |element, i| result[i] = 10 ** element }
|
643
|
+
result
|
644
|
+
end
|
566
645
|
end
|
567
646
|
end
|
568
647
|
|