nlpcloud 1.0.17 → 1.0.18
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/nlpcloud.rb +4 -4
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 0ce2d6801c7755ddca5273e89a899ab4fc5980f59046b29e48f2b5fbcdd2c735
|
4
|
+
data.tar.gz: c4f466132c5378e2009d3fe5f16abd4d5fb50b7d60ae3993f1bc8986417e88f0
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: e174bf062d7e069ae5a51dc264b7fff737e10ef49a25047221659e18baa75301fb60e8b28ca5fc63d4dcf6db9fd64368a2e7c8b20bee5e0e1912e2fbbd36ac9d
|
7
|
+
data.tar.gz: 6d84bd69c13b9fa22a4f2f7fb5dbf0f76efb067a477f5546b126b5f825d655dae64b351ff8424b68bcd2f38c567335e15e4268b87b7ea2fbb95b37735d4d8070
|
data/lib/nlpcloud.rb
CHANGED
@@ -35,7 +35,7 @@ module NLPCloud
|
|
35
35
|
JSON.parse(response.body)
|
36
36
|
end
|
37
37
|
|
38
|
-
def classification(text, labels, multi_class: nil)
|
38
|
+
def classification(text, labels: nil, multi_class: nil)
|
39
39
|
payload = {
|
40
40
|
'text' => text,
|
41
41
|
'labels' => labels,
|
@@ -81,10 +81,10 @@ module NLPCloud
|
|
81
81
|
JSON.parse(response.body)
|
82
82
|
end
|
83
83
|
|
84
|
-
def question(
|
84
|
+
def question(question, context: nil)
|
85
85
|
payload = {
|
86
|
-
'
|
87
|
-
'
|
86
|
+
'question' => question,
|
87
|
+
'context' => context
|
88
88
|
}
|
89
89
|
response = RestClient.post("#{@root_url}/question", payload.to_json, @headers)
|
90
90
|
JSON.parse(response.body)
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: nlpcloud
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.0.
|
4
|
+
version: 1.0.18
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Julien Salinas
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2022-03-
|
11
|
+
date: 2022-03-03 00:00:00.000000000 Z
|
12
12
|
dependencies: []
|
13
13
|
description: 'NLP Cloud serves high performance pre-trained or custom models for NER,
|
14
14
|
sentiment-analysis, classification, summarization, text generation, question answering,
|