neuronet 6.1.0 → 8.0.251113
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/CREDITS.md +10 -0
- data/README.md +94 -782
- data/lib/neuronet/arrayable.rb +13 -0
- data/lib/neuronet/backpropagate.rb +25 -0
- data/lib/neuronet/config.rb +10 -0
- data/lib/neuronet/connection.rb +9 -0
- data/lib/neuronet/deep.rb +52 -0
- data/lib/neuronet/exportable.rb +67 -0
- data/lib/neuronet/feed_forward.rb +54 -0
- data/lib/neuronet/input_layer.rb +19 -0
- data/lib/neuronet/input_neuron.rb +27 -0
- data/lib/neuronet/layer.rb +41 -0
- data/lib/neuronet/layer_presets.rb +53 -0
- data/lib/neuronet/middle_layer.rb +23 -0
- data/lib/neuronet/middle_neuron.rb +31 -0
- data/lib/neuronet/mlp.rb +46 -0
- data/lib/neuronet/network_stats.rb +28 -0
- data/lib/neuronet/neuron.rb +45 -0
- data/lib/neuronet/neuron_stats.rb +45 -0
- data/lib/neuronet/noisy_backpropagate.rb +22 -0
- data/lib/neuronet/noisy_middle_neuron.rb +8 -0
- data/lib/neuronet/noisy_neuron.rb +8 -0
- data/lib/neuronet/noisy_output_neuron.rb +8 -0
- data/lib/neuronet/output_layer.rb +25 -0
- data/lib/neuronet/output_neuron.rb +27 -0
- data/lib/neuronet/perceptron.rb +35 -0
- data/lib/neuronet/squash.rb +12 -0
- data/lib/neuronet/trainable.rb +29 -0
- data/lib/neuronet.rb +31 -619
- metadata +45 -20
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module Neuronet
|
|
4
|
+
# Output Neuron
|
|
5
|
+
class OutputNeuron
|
|
6
|
+
include NeuronStats
|
|
7
|
+
include Backpropagate
|
|
8
|
+
|
|
9
|
+
def initialize
|
|
10
|
+
@bias = 0.0
|
|
11
|
+
@connections = []
|
|
12
|
+
end
|
|
13
|
+
|
|
14
|
+
attr_accessor :bias
|
|
15
|
+
attr_reader :connections
|
|
16
|
+
|
|
17
|
+
def activation = nil
|
|
18
|
+
|
|
19
|
+
def connect(neuron, weight = 0.0)
|
|
20
|
+
@connections << Connection.new(neuron, weight)
|
|
21
|
+
end
|
|
22
|
+
|
|
23
|
+
def value
|
|
24
|
+
@bias + @connections.sum(&:value)
|
|
25
|
+
end
|
|
26
|
+
end
|
|
27
|
+
end
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module Neuronet
|
|
4
|
+
# Perceptron
|
|
5
|
+
class Perceptron
|
|
6
|
+
include NetworkStats
|
|
7
|
+
include Exportable
|
|
8
|
+
include Trainable
|
|
9
|
+
include Arrayable
|
|
10
|
+
|
|
11
|
+
def initialize(input_size, output_size,
|
|
12
|
+
input_neuron: InputNeuron, output_neuron: OutputNeuron)
|
|
13
|
+
@input_layer = InputLayer.new(input_size, input_neuron:)
|
|
14
|
+
@output_layer = OutputLayer.new(output_size, output_neuron:)
|
|
15
|
+
@output_layer.connect(@input_layer)
|
|
16
|
+
end
|
|
17
|
+
|
|
18
|
+
attr_reader :input_layer, :output_layer
|
|
19
|
+
|
|
20
|
+
def set(values)
|
|
21
|
+
@input_layer.set(values)
|
|
22
|
+
end
|
|
23
|
+
|
|
24
|
+
def values
|
|
25
|
+
@output_layer.values
|
|
26
|
+
end
|
|
27
|
+
|
|
28
|
+
def *(other)
|
|
29
|
+
set(other)
|
|
30
|
+
values
|
|
31
|
+
end
|
|
32
|
+
|
|
33
|
+
def to_a = [@input_layer, @output_layer]
|
|
34
|
+
end
|
|
35
|
+
end
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module Neuronet
|
|
4
|
+
# Squash provides logistic sigmoid function.
|
|
5
|
+
module Squash
|
|
6
|
+
# Logistic sigmoid: maps Real to (0, 1).
|
|
7
|
+
def squash(value) = 1.0 / (1.0 + Math.exp(-value))
|
|
8
|
+
# Inverse sigmoid: maps (0, 1) to Real.
|
|
9
|
+
def unsquash(activation) = Math.log(activation / (1.0 - activation))
|
|
10
|
+
module_function :squash, :unsquash
|
|
11
|
+
end
|
|
12
|
+
end
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module Neuronet
|
|
4
|
+
# Trainable adds error backpropagation and training.
|
|
5
|
+
module Trainable
|
|
6
|
+
def pairs(pairs, nju: expected_nju)
|
|
7
|
+
pairs.shuffle.each { |inputs, targets| train(inputs, targets, nju:) }
|
|
8
|
+
end
|
|
9
|
+
|
|
10
|
+
def train(inputs, targets, nju:)
|
|
11
|
+
actuals = self * inputs
|
|
12
|
+
errors = targets.zip(actuals).map { |target, actual| target - actual }
|
|
13
|
+
error, index = pivot(errors)
|
|
14
|
+
neuron = output_layer[index]
|
|
15
|
+
neuron.backpropagate(error / nju)
|
|
16
|
+
end
|
|
17
|
+
|
|
18
|
+
def pivot(errors)
|
|
19
|
+
error = index = 0.0
|
|
20
|
+
errors.each_with_index do |e, i|
|
|
21
|
+
next unless e.abs > error.abs
|
|
22
|
+
|
|
23
|
+
error = e
|
|
24
|
+
index = i
|
|
25
|
+
end
|
|
26
|
+
[error, index]
|
|
27
|
+
end
|
|
28
|
+
end
|
|
29
|
+
end
|