neuronet 6.0.0 → 6.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (3) hide show
  1. data/README.md +407 -564
  2. data/lib/neuronet.rb +157 -30
  3. metadata +2 -2
data/README.md CHANGED
@@ -1,11 +1,12 @@
1
- # Neuronet 6.0.0
1
+ # Neuronet 6.0.1
2
2
 
3
3
  Library to create neural networks.
4
4
 
5
+ * Gem: <https://rubygems.org/gems/neuronet>
6
+ * Git: <https://github.com/carlosjhr64/neuronet>
5
7
  * Author: <carlosjhr64@gmail.com>
6
8
  * Copyright: 2013
7
9
  * License: [GPL](http://www.gnu.org/licenses/gpl.html)
8
- * Git Page: <https://github.com/carlosjhr64/neuronet>
9
10
 
10
11
  ## Installation
11
12
 
@@ -13,16 +14,16 @@ Library to create neural networks.
13
14
 
14
15
  ## Synopsis
15
16
 
16
- Given some set of inputs and targets that are Array's of Float's.
17
- Then:
17
+ Given some set of inputs (of at least length 3) and
18
+ targets that are Array's of Float's. Then:
18
19
 
19
20
  # data = [ [input, target], ... }
20
- # n = input.length
21
+ # n = input.length # > 3
21
22
  # t = target.length
22
23
  # m = n + t
23
24
  # l = data.length
24
25
  # Then:
25
- # Create a general purpose neurnet
26
+ # Create a general purpose neuronet
26
27
 
27
28
  neuronet = Neuronet::ScaledNetwork.new([n, m, t])
28
29
 
@@ -42,7 +43,8 @@ Then:
42
43
 
43
44
  MANY.times do
44
45
  data.shuffle.each do |input, target|
45
- neuronet.exemplar(input, target)
46
+ neuronet.reset(input)
47
+ neuronet.train!(target)
46
48
  end
47
49
  end # or until some small enough error
48
50
 
@@ -66,7 +68,7 @@ It allows one to build a network by connecting one neuron at a time, or a layer
66
68
  or up to a full feed forward network that automatically scales the inputs and outputs.
67
69
 
68
70
  I chose a TaoYinYang'ed ScaledNetwork neuronet for the synopsis because
69
- it'll probably handle most anything you'd throw at it.
71
+ it will probably handle most anything with 3 or more input variables you'd throw at it.
70
72
  But there's a lot you can do to the data before throwing it at a neuronet.
71
73
  And you can build a neuronet specifically to solve a particular kind of problem.
72
74
  Properly transforming the data and choosing the right neuronet architecture
@@ -74,25 +76,25 @@ can greatly reduce the amount of training time the neuronet will require.
74
76
  A neuronet with the wrong architecture for a problem will be unable to solve it.
75
77
  Raw data without hints as to what's important in the data will take longer to solve.
76
78
 
77
- As an analogy, think of what you can do with linear regression.
79
+ As an analogy, think of what you can do with
80
+ [linear regression](http://en.wikipedia.org/wiki/Linear_regression).
78
81
  Your raw data might not be linear, but if a transform converts it to a linear form,
79
82
  you can use linear regression to find the best fit line, and
80
83
  from that deduce the properties of the untransformed data.
81
84
  Likewise, if you can transform the data into something the neuronet can solve,
82
85
  you can by inverse get back the answer you're lookin for.
83
86
 
84
- # WARNING: I STILL NEED TO REWRITE THE NOTES BELOW TO MATCH THE NEW CODE.
87
+ # Examples
85
88
 
86
- ## Example: Time Series
89
+ ## Time Series
87
90
 
88
- First, a little motivation...
89
91
  A common use for a neural-net is to attempt to forecast future set of data points
90
92
  based on past set of data points, [Time series](http://en.wikipedia.org/wiki/Time_series).
91
93
  To demonstrate, I'll train a network with the following function:
92
94
 
93
95
  f(t) = A + B sine(C + D t), t in [0,1,2,3,...]
94
96
 
95
- I'll set A, B, C, and D to some random number and see
97
+ I'll set A, B, C, and D with random numbers and see
96
98
  if eventually the network can predict the next set of values based on previous values.
97
99
  I'll try:
98
100
 
@@ -106,13 +108,12 @@ if I set at random the phase (C above), so that for any given random phase we wa
106
108
 
107
109
  I'll be using [Neuronet::ScaledNetwork](http://rubydoc.info/gems/neuronet/Neuronet/ScaledNetwork).
108
110
  Also note that the Sine function is entirely defined within a cycle ( 2 Math::PI ) and
109
- so parameters (particularly C) need only to be set within the cycle.
111
+ so parameters (particularly C) need only to be set within this cycle.
110
112
  After a lot of testing, I've verified that a
111
113
  [Perceptron](http://en.wikipedia.org/wiki/Perceptron) is enough to solve the problem.
112
114
  The Sine function is [Linearly separable](http://en.wikipedia.org/wiki/Linearly_separable).
113
115
  Adding hidden layers needlessly adds training time, but does converge.
114
116
 
115
-
116
117
  The gist of the
117
118
  [example code](https://github.com/carlosjhr64/neuronet/blob/master/examples/sine_series.rb)
118
119
  is:
@@ -155,7 +156,6 @@ Heres a sample output:
155
156
  Target: -0.188, 4.153, 5.908, 1.135, 0.557
156
157
  Output: -0.158, 4.112, 5.887, 1.175, 0.564
157
158
 
158
-
159
159
  ScaledNetwork automatically scales each input via
160
160
  [Neuronet::Gaussian](http://rubydoc.info/gems/neuronet/Neuronet/Gaussian),
161
161
  so the input needs to be many variables and
@@ -167,340 +167,247 @@ The input must have at least three points.
167
167
  You can tackle many problems just with
168
168
  [Neuronet::ScaledNetwork](http://rubydoc.info/gems/neuronet/Neuronet/ScaledNetwork)
169
169
  as described above.
170
- So now that you're hopefully interested and want to go on to exactly how it all works,
171
- I'll describe Neuronet from the ground up.
172
-
173
- ## Squashing Function
174
-
175
- An artificial neural network uses an activation function
176
- that determines the activation value of a neuron.
177
- This activation value is often thought of on/off or true/false.
178
- Neuronet uses a sigmoid function to set the neuron's activation value between 1.0 and 0.0.
179
- For classification problems, activation values near one are considered true
180
- while activation values near 0.0 are considered false.
181
- In Neuronet I make a distinction between the neuron's activation value and
182
- it's representation to the problem.
183
- In the case of a true or false problem,
184
- the neuron's value is either true or false,
185
- while it's activation is between 1.0 and 0.0.
186
- This attribute, activation, need never appear in an implementation of Neuronet, but
187
- it is mapped back to it's unsquashed value every time
188
- the implementation asks for the neuron's value.
189
-
190
- Neuronet.squash( unsquashed )
191
- 1.0 / ( 1.0 + Math.exp( -unsquashed ) )
192
-
193
- Neuronet.unsquashed( squashed )
194
- Math.log( squashed / ( 1.0 - squashed ) )
195
170
 
196
- ## Learning Constant
171
+ # Component Architecture
197
172
 
198
- **TODO: This section needs re-write**
173
+ ## Nodes and Neurons
199
174
 
200
- One can think of a neural network as a sheet of very elastic rubber
201
- which one pokes and pulls to fit the training data while
202
- otherwise keeping the sheet as smooth as possible.
203
- You don't want to hammer this malleable sheet too hard.
204
- One concern is that the training data may contain noise, random errors.
205
- So the training of the network should add up the true signal in the data
206
- while canceling out the noise. This balance is set via the learning constant.
207
-
208
-
209
- neuronet.learning
210
- # Returns the current value of the network's learning constant
175
+ [Nodes](http://rubydoc.info/gems/neuronet/Neuronet/Node)
176
+ are used to set inputs while
177
+ [Neurons](http://rubydoc.info/gems/neuronet/Neuronet/Neuron)
178
+ are used for outputs and middle layers.
179
+ It's easy to create and connect Nodes and Neurons.
180
+ You can assemble custom neuronets one neuron at a time.
181
+ Too illustrate, here's a simple network that adds two random numbers.
211
182
 
212
- neuronet.learning = float
213
- # where float is greater than zero but less than one.
214
- # Sets the global learning constant by an implementation given value
183
+ require 'neuronet'
184
+ include Neuronet
215
185
 
216
- I've not come across any hard rule for the learning constant.
217
- I have my own intuition derived from the behavior of random walks.
218
- The distance away from a starting point in a random walk is
219
- proportional to the square root of the number of steps.
220
- I conjecture that the number of training data points is related to
221
- the optimal learning constant in the same way.
222
- I have come across 0.2 as a good value for the learning constant, which
223
- would mean the proponent of this value was working with a data set size of about 25.
224
- In any case, I've had good results with the following:
225
-
226
- # where number is the number of data points
227
- neuronet.learning( number )
228
- 1.0 / Math.sqrt( number + 1.0 )
186
+ def random
187
+ rand - rand
188
+ end
229
189
 
230
- In the case of setting number to 1.0,
231
- the learning constant would be the square root of 1/2.
232
- This would suggest that although we're taking larger steps than half steps,
233
- due to the nature of a random walk, we're approaching the solution in half steps.
190
+ # create the input nodes
191
+ a = Node.new
192
+ b = Node.new
234
193
 
235
- ## Noise
194
+ # create the output neuron
195
+ sum = Neuron.new
236
196
 
237
- The literature I've read (probably outdated by now)
238
- would have one create a neural network with random weights and
239
- hope that training it will converge to a solution.
240
- I've never really believed that to be a correct way.
241
- Although the implementation is free to set all parameters for each neuron,
242
- Neuronet by default creates zeroed neurons.
243
- Association between inputs and outputs are trained, and
244
- neurons differentiate from each other randomly.
245
- Differentiation among neurons is achieved by noise in the back-propagation of errors.
246
- This noise is provided by:
197
+ # and a neuron on the side
198
+ adjuster = Neuron.new
247
199
 
248
- Neuronet.noise
249
- rand + rand
200
+ # connect the adjuster to a and b
201
+ adjuster.connect(a)
202
+ adjuster.connect(b)
250
203
 
251
- I chose rand + rand to give the noise an average value of one and a bell shape distribution.
204
+ # connect sum to a and b
205
+ sum.connect(a)
206
+ sum.connect(b)
207
+ # and to the adjuster
208
+ sum.connect(adjuster)
252
209
 
253
- ## Node
210
+ # The learning constant is about...
211
+ learning = 0.1
254
212
 
255
- A neuron is a node. In Neuronet, Neuronet::Neuron subclasses Neuronet::Node.
256
- A node has a value which the implementation can set. A Node object is created via:
213
+ # Train the tiny network
214
+ 10_000.times do
215
+ a.value = x = random
216
+ b.value = y = random
217
+ target = x+y
218
+ output = sum.update
219
+ sum.backpropagate(learning*(target-output))
220
+ end
257
221
 
258
- Neuronet::Node.new( value=0.0 )
222
+ # Let's see how well the training went
223
+ 10.times do
224
+ a.value = x = random
225
+ b.value = y = random
226
+ target = x+y
227
+ output = sum.update
228
+ puts "#{x.round(3)} + #{y.round(3)} = #{target.round(3)}"
229
+ puts " Neuron says #{output.round(3)}, #{(100.0*(target-output)/target).round(2)}% error."
230
+ end
259
231
 
260
- and responds to the following methods:
261
232
 
262
- value=( float )
263
- value
233
+ Here's a sample output:
234
+
235
+ 0.003 + -0.413 = -0.41
236
+ Neuron says -0.413, -0.87% error.
237
+ -0.458 + 0.528 = 0.07
238
+ Neuron says 0.07, -0.45% error.
239
+ 0.434 + -0.125 = 0.309
240
+ Neuron says 0.313, -1.43% error.
241
+ -0.212 + 0.34 = 0.127
242
+ Neuron says 0.131, -2.83% error.
243
+ -0.364 + 0.659 = 0.294
244
+ Neuron says 0.286, 2.86% error.
245
+ 0.045 + 0.323 = 0.368
246
+ Neuron says 0.378, -2.75% error.
247
+ 0.545 + 0.901 = 1.446
248
+ Neuron says 1.418, 1.9% error.
249
+ -0.451 + -0.486 = -0.937
250
+ Neuron says -0.944, -0.77% error.
251
+ -0.008 + 0.219 = 0.211
252
+ Neuron says 0.219, -3.58% error.
253
+ 0.61 + 0.554 = 1.163
254
+ Neuron says 1.166, -0.25% error.
255
+
256
+ Note that the tiny neuronet has a limit on how precisely it can match the target, and
257
+ even after a million times training it won't do any beter than when it trains a few thousands.
258
+ [code](https://github.com/carlosjhr64/neuronet/blob/master/examples/neurons.rb)
259
+
260
+
261
+ ## InputLayer and Layer
262
+
263
+ Instead of working with individual neurons, you can work with layers.
264
+ Here we build a [Perceptron](http://en.wikipedia.org/wiki/Perceptron):
265
+
266
+ in = InputLayer.new(9)
267
+ out = Layer.new(1)
268
+ out.connect(in)
264
269
 
265
- The above methods work just as expected:
270
+ When making connections keep in mind "outputs connects to inputs",
271
+ not the other way around.
272
+ You can set the input values and update this way:
266
273
 
267
- node = Neuronet::Node.new
268
- a = node.value # sets a to 0.0
269
- node.value = 1.37
270
- b = node.value # sets b to 1.37
274
+ in.set([1,2,3,4,5,6,7,8,9])
275
+ out.partial
271
276
 
272
- But if you look at the code for Neuronet::Node, you'll see that value is not stored,
273
- but it's calculated activation is.
274
- The implementation can get this value via the attribute reader:
277
+ Partial means the update wont travel further than the current layer,
278
+ which is all we have in this case anyways.
279
+ You get the output this way:
275
280
 
276
- activation
281
+ output = out.output # returns an array of values
277
282
 
278
- In Neuronet, a node is a constant neuron whose value is not changed by training,
279
- backpropagation of errors. It is used for inputs.
280
- It's used as a terminal where updates and back-propagations end.
281
- For this purpose, it provides the following methods:
283
+ You train this way:
282
284
 
283
- train( target=nil, learning=nil ) # returns nil
284
- backpropagate( error ) # returns nil
285
- update # returns activation
285
+ target = [1] #<= whatever value you want in the array
286
+ learning = 0.1
287
+ out.train(target, learning)
286
288
 
287
- I consider these methods private.
288
- I can't think of a reason they'd appear in the implementation.
289
- Likewise, the implementation should not have to bother with activation.
289
+ ## FeedForward Network
290
290
 
291
- ## Scaling The Problem
291
+ Most of the time, you'll just use a network created with the
292
+ [FeedForward](http://rubydoc.info/gems/neuronet/Neuronet/FeedForward) class,
293
+ or a modified version or subclass of it.
294
+ Here we build a neuronet with four layers.
295
+ The input layer has four neurons, and the output has three.
296
+ Then we train it with a list of inputs and targets
297
+ using the method [#exemplar](http://rubydoc.info/gems/neuronet/Neuronet/FeedForward:exemplar):
292
298
 
293
- It's early to be talking about scaling the problem, but
294
- since I just covered how to set values to a node above,
295
- it's a good time to start thinking about scale.
296
- The squashing function, sigmoid, maps real numbers (negative infinity, positive infinity)
297
- to the segment zero to one (0,1).
298
- But for the sake of computation in a neural net,
299
- sigmoid works best if the problem is scaled to numbers
300
- between negative one and positive one (-1, 1).
301
- Study the following table and see if you can see why:
302
-
303
- x => sigmoid(x)
304
- 9 => 0.99987...
305
- 3 => 0.95257...
306
- 2 => 0.88079...
307
- 1 => 0.73105...
308
- 0 => 0.50000...
309
- -1 => 0.26894...
310
- -2 => 0.11920...
311
- -3 => 0.04742...
312
- -9 => 0.00012...
313
-
314
- So as x gets much higher than 3, sigmoid(x) gets to be pretty close to just 1, and
315
- as x gets much lower than -3, sigmoid(x) gets to be pretty close to 0.
316
- Also note that sigmoid is centered about 0.5 which maps to 0.0 in problem space.
317
- It is for this reason that I suggest the problem be displaced (subtracted)
318
- by it's average to be centered about zero and scaled (divided) by it standard deviation.
319
- For non gaussian data where outbounds are expected,
320
- you should probably scale by a multiple of the standard deviation so
321
- that most of the data fits within sigmoid's "field of view" (-1, 1).
322
-
323
- ## Connection
324
-
325
- This is where I think Neuronet gets it's architecture really right!
326
- Connections between neurons (and nodes) are there own separate objects.
327
- In other codes I've seen this is not abstracted out.
328
- In Neuronet, a neuron contains it's bias, and a list of it's connections.
329
- Each connection contains it's weight (strength) and connected terminal node.
330
- Given a terminal, node, a connection is created as follows:
331
-
332
- connection = Neuronet::Connection.new( node, weight=0.0 )
333
-
334
- So a neuron connected to the given terminal node would have
335
- the created connection in its connections list.
336
- This will be discussed below under the topic Neuron.
337
- The object, connection, responds to the following methods:
338
-
339
- value
340
- update
341
- backpropagate( error )
342
-
343
- The value of a connection is the weighted activation of
344
- the node it's connected to ( weight node.activation ).
345
- Similarly, update is the updated value of a connection,
346
- which is the weighted updated activation of the node it's connected to ( weight*node.update ).
347
- The method update is the one to use
348
- whenever the value of the inputs are changed (or right after training).
349
- Otherwise, both update and value should give the same result
350
- with value avoiding the unnecessary back calculations.
351
- The method backpropagate modifies the connection's weight in proportion to
352
- the error given and passes that error to its connected node via the node's backpropagate.
353
-
354
- ## Neuron
355
-
356
- [Neuronet::Neuron](http://rubydoc.info/gems/neuronet/Neuronet/Neuron)
357
- is a Neuronet::Node with some extra features.
358
- It adds two attributes: connections, and bias.
359
- As mentioned above, connections is a list, aka Array,
360
- of the neuron's connections to other neurons (or nodes).
361
- A neuron's bias is it's kicker (or deduction) to it's activation value
362
- as a sum of its connections values. So a neuron's updated value is set as:
363
-
364
- self.value = @bias + @connections.inject(0.0){|sum,connection| sum + connection.update}
365
-
366
- If you're not familiar with ruby's Array::inject method,
367
- it's the Ruby way of doing summations.
368
- It's really cool once you get the gist of it. Checkout:
369
-
370
- * Jay Field's Thoughts on Ruby: inject
371
- * Induction ( for_all )
372
-
373
- But that's a digression... Here's how an implementation creates a new neuron:
374
-
375
- neuron = Neuronet::Neuron.new( bias=0.0 )
376
-
377
- There's an attribute accessor for @bias, and an attribute reader for @connections. The object, neuron, responds to the following methods:
378
-
379
- update
380
- partial
381
- backpropagate( error )
382
- train( target, learning=Neuronet.learning )
383
- connect( node, weight=0.0 )
384
-
385
- The update method sets the neuron's value as described above. The partial method sets the neuron's value without calling the connections update methods as follows:
386
-
387
- self.value = @bias + @connections.inject(0.0){|sum,connection| sum + connection.value}
388
-
389
- It's not necessary to burrow all the way down to update the current neuron
390
- if it's connected neurons have all been updated.
391
- The implementation should set it's algorithm to use partial
392
- instead of update as update will most likely needlessly update previously updated neurons.
393
- The backpropagate method modifies the neuron's bias in proportion to the given error and
394
- passes on this error to each of its connection's backpropagate method.
395
- The connect method is how the implementation adds a connection,
396
- the way to connect the neuron to another.
397
- To connect neuron out to neuron in, for example, it is:
398
-
399
- in = Neuronet::Neuron.new
400
- out = Neuronet::Neuron.new
401
- out.connect(in)
402
-
403
- Think output connects to input.
404
- Here, the input flow would be from in to out,
405
- while back-propagation of errors flows from out to in.
406
- If you wanted to train the value of out, out.value,
407
- to be 1.5 with the given value of in set at 0.3, you do as follows:
408
-
409
- puts "(#{in}, #{out})" # what you've got before (0.0, 0.0)
410
- in.value = 0.3
411
- out.train(1.5)
412
- out.partial # don't forget to update (no need to go deeper than a, so partial)
413
- puts "(#{in}, #{out})" # (0.3, 0.113022020702079)
414
-
415
- Note that with continued training, b should approach it's target value of 1.5.
299
+ neuronet = Neuronet::FeedForward.new([4,5,6,3])
300
+ LIST.each do |input, target|
301
+ neuronet.exemplar(input, target)
302
+ # you could also train this way:
303
+ # neuronet.set(input)
304
+ # neuronet.train!(target)
305
+ end
416
306
 
417
- ## InputLayer
307
+ The first layer is the input layer and the last layer is the output layer.
308
+ Neuronet also names the second and second last layer.
309
+ The second layer is called yin.
310
+ The second last layer is called yang.
311
+ For the example above, we can check their lengths.
418
312
 
419
- What follows next in lib/neuronet.rb's code is motivated by feedforward neural networks,
420
- and Neuronet eventually gets to build one.
421
- Neuronet::InputLayer is an Array of Neuronet::Node's.
422
- An input layer of a given length (number of nodes) is created as follows:
313
+ puts neuronet.in.length #=> 4
314
+ puts neuronet.yin.length #=> 5
315
+ puts neuronet.yang.length #=> 6
316
+ puts neuronet.out.length #=> 3
317
+
318
+ ## Tao, Yin, and Yang
423
319
 
424
- input = Neuronet::InputLayer.new( length )
320
+ Tao
321
+ : The absolute principle underlying the universe,
322
+ combining within itself the principles of yin and yang and
323
+ signifying the way, or code of behavior,
324
+ that is in harmony with the natural order.
425
325
 
426
- The object, input, responds to a couple of methods (on top of those from Array):
326
+ Perceptrons are already very capable and quick to train.
327
+ By connecting the input layer to the output layer of a multilayer FeedForward network,
328
+ you'll get the Perceptron solution quicker while the middle layers work on the harder problem.
329
+ You can do that this way:
427
330
 
428
- set( input )
429
- values
331
+ neronet.out.connect(neuronet.in)
430
332
 
431
- For example, a three neuron input layer with it's neuron values set as -1, 0, and 1:
333
+ But giving that a name, [Tao](http://rubydoc.info/gems/neuronet/Neuronet/Tao),
334
+ and using a prototype pattern to modify the instance is more fun:
432
335
 
433
- input = Neuronet::InputLayer(3)
434
- input.set( [-1, 0, 1] )
435
- puts input.values.join(', ') # [-1.0,0.0,1.0].join(', ')
336
+ Tao.bless(neuronet)
436
337
 
437
- ## Layer
338
+ Yin
339
+ : The passive female principle of the universe, characterized as female and
340
+ sustaining and associated with earth, dark, and cold.
438
341
 
439
- In Neuronet, InputLayer is to Layer what Node is to Neuron.
440
- Layer is an Array of Neurons.
441
- A Layer object is created as follows:
342
+ Initially FeedForward sets the weights of all connections to zero.
343
+ That is, there is no association made from input to ouput.
344
+ Changes in the inputs have no effect on the output.
345
+ Training begins the process that sets the weights to associate the two.
346
+ But you can also manually set the initial weights.
347
+ One useful way to initially set the weigths is to have one layer mirror another.
348
+ The [Yin](http://rubydoc.info/gems/neuronet/Neuronet/Yin) bless makes yin mirror the input.
442
349
 
443
- # length is the number of neurons in the layer
444
- layer = Neuronet::Layer.new( length )
350
+ Yin.bless(neuronet)
445
351
 
446
- The Layer object responds to the following methods:
352
+ Yang
353
+ : The active male principle of the universe, characterized as male and
354
+ creative and associated with heaven, heat, and light.
447
355
 
448
- connect( layer, weight=0.0 )
449
- partial
450
- train( targets, learning=Neuronet.learning )
451
- values
356
+ One the other hand, the [Yang](http://rubydoc.info/gems/neuronet/Neuronet/Yang)
357
+ bless makes the output mirror yang.
452
358
 
453
- So now one can create layers, connect them, train them, and update them (via partial).
454
- A Perceptron is built this way:
359
+ Yang.bless(neuronet)
455
360
 
456
- n, m = 3, 3 # building a 3X3 perceptron
457
- input_layer = Neuronet::InputLayer.new( n )
458
- output_layer = Neuronet::Layer.new( m )
459
- output_layer.connect( input_layer )
460
- # to set the perceptron's input to -0.5,0.25,2.1...
461
- input_layer.set( [-0.5, 0.25, 2.1] )
462
- # to train it to -0.1, 0.2, 0.5
463
- output_layer.train( [-0.1, 0.2, 0.5] )
464
- output_layer.partial # update!
465
- # to see its values
466
- puts output_layer.values.join(', ')
361
+ Bless
362
+ : Pronounce words in a religious rite, to confer or invoke divine favor upon.
467
363
 
364
+ The reason Tao, Yin, and Yang are not classes onto themselves is that
365
+ you can combine these, and a protoptype pattern (bless) works better in this case.
366
+ Bless is the keyword used in [Perl](http://www.perl.org/) to create objects,
367
+ so it's not without precedent.
368
+ To combine all three features, Tao, Yin, and Yang, do this:
468
369
 
469
- ## FeedForwardNetwork
370
+ Tao.bless Yin.bless Yang.bless neuronet
470
371
 
471
- Now we're building complete networks.
472
- To create a feedforward neural network with optional middle layers, ffnn:
372
+ To save typing, the library provides the possible combinations.
373
+ For example:
473
374
 
474
- ffnn = Neuronet::FeedForwardNetwork.new([input, <layer1, ...,> output])
375
+ TaoYinYang.bless neuronet
475
376
 
476
- The FeedForwardNetwork object, ffnn, responds to the following methods:
377
+ # Scaling The Problem
477
378
 
478
- learning=( learning_constant ) # to explicitly set a learning constant
479
- update
480
- set( inputs )
481
- train!( targets, learning=@learning )
482
- exemplar( inputs, targets, learning=@learning ) # trains an input/output pair
483
- values(layer) # layer's values
484
- input # in (first layer's) values
485
- output # out (last layer's) values
486
- And has the following attribute readers:
487
- in # input (first) layer
488
- out # output (last) layer
379
+ The squashing function, sigmoid, maps real numbers (negative infinity, positive infinity)
380
+ to the segment zero to one (0,1).
381
+ But for the sake of computation in a neural net,
382
+ sigmoid works best if the problem is scaled to numbers
383
+ between negative one and positive one (-1, 1).
384
+ Study the following table and see if you can see why:
489
385
 
490
- Notice that this time I've named the training method train! (with the exclamation mark).
491
- This is because train! automatically does the update as well.
492
- I thought it might be confusing that at the lower level one had to call train and
493
- either partial or update, so I made the distinction.
494
- Neuronet also provides a convenience method exemplar to train input / output pairs.
495
- It's equivalent the following:
386
+ x => sigmoid(x)
387
+ 9 => 0.99987...
388
+ 3 => 0.95257...
389
+ 2 => 0.88079...
390
+ 1 => 0.73105...
391
+ 0 => 0.50000...
392
+ -1 => 0.26894...
393
+ -2 => 0.11920...
394
+ -3 => 0.04742...
395
+ -9 => 0.00012...
496
396
 
497
- ffnn.set( inputs ); ffnn.train!( targets );
397
+ As x gets much higher than 3, sigmoid(x) gets to be pretty close to just 1, and
398
+ as x gets much lower than -3, sigmoid(x) gets to be pretty close to 0.
399
+ Note that sigmoid is centered about 0.5 which maps to 0.0 in problem space.
400
+ It is for this reason that I suggest the problem be displaced (subtracted)
401
+ by it's average to be centered about zero and scaled (divided) by it standard deviation.
402
+ Try to get most of the data to fit within sigmoid's central "field of view" (-1, 1).
498
403
 
499
- ## Scale
404
+ ## Scale, Gaussian, and Log Normal
500
405
 
501
- Neuronet::Scale is a class to help scale problems to fit within a network's "field of view".
502
- Given a list of values, it finds the minimum and maximum values and
503
- establishes a mapping to a scaled set of numbers between minus one and one (-1,1).
406
+ Neuronet provides three classes to help scale the problem space.
407
+ [Neuronet::Scale](http://rubydoc.info/gems/neuronet/Neuronet/Scale)
408
+ is the simplest most straight forward.
409
+ It finds the range and center of a list of values, and
410
+ linearly tranforms it to a range of (-1,1) centered at 0.
504
411
  For example:
505
412
 
506
413
  scale = Neuronet::Scale.new
@@ -510,7 +417,7 @@ For example:
510
417
  puts mapped.join(', ') # 0.0, -1.0, 1.0, -0.75
511
418
  puts scale.unmapped( mapped ).join(', ') # 1.0, -3.0, 5.0, -2.0
512
419
 
513
- The mapping is like:
420
+ The mapping is the following:
514
421
 
515
422
  center = (maximum + minimum) / 2.0 if center.nil? # calculate center if not given
516
423
  spread = (maximum - minimum) / 2.0 if spread.nil? # calculate spread if not given
@@ -518,7 +425,7 @@ The mapping is like:
518
425
 
519
426
  One can change the range of the map to (-1/factor, 1/factor)
520
427
  where factor is the spread multiplier and force
521
- a (prehaps pre-calculated) value for center and spread.
428
+ a (perhaps pre-calculated) value for center and spread.
522
429
  The constructor is:
523
430
 
524
431
  scale = Neuronet::Scale.new( factor=1.0, center=nil, spread=nil )
@@ -526,171 +433,74 @@ The constructor is:
526
433
  In the constructor, if the value of center is provided, then
527
434
  that value will be used instead of it being calculated from the values passed to method set.
528
435
  Likewise, if spread is provided, that value of spread will be used.
529
- There are two attribute accessors:
530
-
531
- spread
532
- center
533
-
534
- One attribute writer:
535
-
536
- init
537
-
538
- In the code, the attribute @init flags if
539
- there is a initiation phase to the calculation of @spread and @center.
540
- For Scale, @init is true and the initiation phase calculates
541
- the intermediate values @min and @max (the minimum and maximum values in the data set).
542
- It's possible for subclasses of Scale, such as Gaussian, to not have this initiation phase.
543
- An instance, scale, of class Scale will respond to the following methods considered to be public:
544
-
545
- set( inputs )
546
- mapped_input
547
- mapped_output
548
- unmapped_input
549
- unmapped_output
550
-
551
- In Scale, mapped\_input\ and mapped\_output are synonyms of mapped, but
552
- in general this symmetry may be broken.
553
- Likewise, unmapped\_input and unmapped\_output are synonyms of unmapped.
554
- Scale also provides the following methods which are considered private:
555
-
556
- set_init( inputs )
557
- set_spread( inputs )
558
- set_center( inputs )
559
- mapped( inputs )
560
- unmapped( outputs )
561
-
562
- Except maybe for mapped and unmapped,
563
- there should be no reason for the implementation to call these directly.
564
- These are expected to be overridden by subclasses.
565
- For example, in Gaussian, set\_spread calculates the standard deviation and
566
- set\_center calculates the mean (average),
567
- while set\_init is skipped by setting @init to false.
568
-
569
- ## Gaussian
570
-
571
- In Neuronet, Gaussian subclasses Scale and is used exactly the same way.
572
- The only changes are that it calculates the arithmetic mean (average) for center and
573
- the standard deviation for spread.
574
- The following private methods are overridden to provide that effect:
575
-
576
- set_center( inputs )
577
- inputs.inject(0.0,:+) / inputs.length
578
- set_spread( inputs )
579
- Math.sqrt( inputs.map{|value| self.center - value}.inject(0.0){|sum,value| value*value + sum} / (inputs.length - 1.0) )
580
-
581
- ## LogNormal
582
-
583
- Neuronet::LogNormal subclasses Neuronet::Gaussian to transform the values to a logarithmic scale. It overrides the following methods:
584
-
585
- set( inputs )
586
- super( inputs.map{|value| Math::log(value)} )
587
- mapped(inputs)
588
- super( inputs.map{|value| Math::log(value)} )
589
- unmapped(inputs)
590
- super( inputs.map{|value| Math::exp(value)} )
591
-
592
- So LogNormal is just Gaussian except that it first pipes values through a logarithm, and
593
- then pipes the output back through exponentiation.
594
-
595
- ## ScaledNetwork
596
-
597
- So now we're back to where we started.
598
- In Neuronet, ScaledNetwork is a subclass of FeedForwardNetwork.
599
- It automatically scales the problem given to it by using a Scale type instance,
600
- Gaussian by default.
601
- It adds on attribute accessor:
602
436
 
603
- distribution
437
+ [Neuronet::Gaussian](http://rubydoc.info/gems/neuronet/Neuronet/Gaussian)
438
+ works the same way, except that it uses the average value of the list given
439
+ for the center, and the standard deviation for the spread.
604
440
 
605
- The attribute, distribution, is set to Neuronet::Gausian.new by default,
606
- but one can change this to Scale, LogNormal, or one's own custom mapper.
607
- ScaledNetwork also adds one method:
441
+ And [Neuronet::LogNormal](http://rubydoc.info/gems/neuronet/Neuronet/LogNormal)
442
+ is just like Gaussian except that it first pipes values through a logarithm, and
443
+ then pipes the output back through exponentiation.
608
444
 
609
- reset( values )
445
+ ## ScaledNetwork
610
446
 
611
- This method, reset, works just like FeedForwardNetwork's set method,
612
- but calls distribution.set( values ) first.
613
- Sometimes you'll want to set the distribution with the entire data set and the use set,
614
- and then there will be times you'll want to set the distribution with each input and use reset.
615
- For example, either:
447
+ [Neuronet::ScaledNetwork](http://rubydoc.info/gems/neuronet/Neuronet/ScaledNetwork)
448
+ automates the problem space scaling.
449
+ You can choose to do your scaling over the entire data set if you think
450
+ the relative scale of the individual inputs matter.
451
+ For example if in the problem one apple is good but two is to many...
452
+ In that case do this:
616
453
 
617
454
  scaled_network.distribution.set( data_set.flatten )
618
455
  data_set.each do |inputs,outputs|
619
456
  # ... do your stuff using scaled_network.set( inputs )
620
457
  end
621
458
 
622
- or:
459
+ If on the other hand the scale of the individual inputs is not the relevant feature,
460
+ you can you your scaling per individual input.
461
+ For example a small apple is an apple, and so is the big one. They're both apples.
462
+ Then do this:
623
463
 
624
464
  data_set.each do |inputs,outputs|
625
465
  # ... do your stuff using scaled_network.reset( inputs )
626
466
  end
627
467
 
628
- ## Pit Falls
468
+ Note that in the first case you are using
469
+ [#set](http://rubydoc.info/gems/neuronet/Neuronet/ScaledNetwork:set)
470
+ and in the second case you are using
471
+ [#reset](http://rubydoc.info/gems/neuronet/Neuronet/ScaledNetwork:reset).
472
+
473
+ # Pit Falls
629
474
 
630
475
  When sub-classing a Neuronet::Scale type class,
631
476
  make sure mapped\_input, mapped\_output, unmapped\_input,
632
477
  and unmapped\_output are defined as you intended.
633
478
  If you don't override them, they will point to the first ancestor that defines them.
634
- I had a bug (in 2.0.0, fixed in 2.0.1) where
635
- I assumed overriding mapped redefined along all it's parent's synonyms...
636
- it does not work that way.
479
+ Overriding #mapped does not piggyback the aliases and
480
+ they will continue to point to the original #mapped method.
481
+
637
482
  Another pitfall is confusing the input/output flow in connections and back-propagation.
638
483
  Remember to connect outputs to inputs (out.connect(in)) and
639
484
  to back-propagate from outputs to inputs (out.train(targets)).
640
485
 
641
- # THE FOLLOWING SECTIONS NEEDS A COMPLETE REWRITE!
642
-
643
- ## Custom Networks
644
-
645
- To demonstrate how this library can build custom networks,
646
- I've created four new classes of feed forward networks.
647
- By the way, I'm completely making these up and was about to call them
648
- HotDog, Taco, Burrito, and Enchilada when I then thought of Tao/Yin/Yang:
649
-
650
- ## Tao
651
-
652
- In Neuronet, Tao is a three or more layered feed forward neural network
653
- with it's output and input connected directly.
654
- It effectively makes it a hybrid perceptron. It subclasses ScaledNetwork.
486
+ # Interesting Custom Networks
655
487
 
656
- ## Yin
657
-
658
- In Neuronet, Yin is a Tao with the first hidden layer, hereby called yin,
659
- initially set to have corresponding neuron pairs with
660
- it's input layer's with weights set to 1.0 and bias 0.5.
661
- This makes yin initially mirror the input layer.
662
- The correspondence is done between the first neurons in the yin layer and the input layer.
663
-
664
- ## Yang
665
-
666
- In Neuronet, Yang is a Tao with it's output layer connected to the last hidden layer,
667
- hereby called yang, such that corresponding neuron pairs have weights set to 1.0 and bias 0.5.
668
- This makes output initially mirror yang.
669
- The correspondence is done between the last neurons in the yang layer and the output layer.
670
-
671
- ## YinYang
672
-
673
- In Neuronet, YinYang is a Tao that's been Yin'ed Yang'ed. :))
674
- That's a feed forward network of at least three layers with
675
- its output layer also connected directly to the input layer, and
676
- with the output layer initially mirroring the last hidden layer, and
677
- the first hidden layer initially mirroring the input layer.
678
488
  Note that a particularly interesting YinYang with n inputs and m outputs
679
489
  would be constructed this way:
680
490
 
681
- yinyang = Neuronet::YinYang.new( [n, n+m, m] )
491
+ yinyang = YinYang.bless FeedForward.new( [n, n+m, m] )
682
492
 
683
493
  Here yinyang's hidden layer (which is both yin and yang)
684
494
  initially would have the first n neurons mirror the input and
685
495
  the last m neurons be mirrored by the output.
686
496
  Another interesting YinYang would be:
687
497
 
688
- yinyang = Neuronet::YinYang.new( [n, n, n] )
498
+ yinyang = YinYang.bless FeedForward.new( [n, n, n] )
689
499
 
690
500
  The following code demonstrates what is meant by "mirroring":
691
501
 
692
- yinyang = Neuronet::YinYang.new( [3, 3, 3] )
693
- yinyang.reset( [-1,0,1] )
502
+ yinyang = YinYang.bless FeedForward.new( [3, 3, 3] )
503
+ yinyang.set( [-1,0,1] )
694
504
  puts yinyang.in.map{|x| x.activation}.join(', ')
695
505
  puts yinyang.yin.map{|x| x.activation}.join(', ')
696
506
  puts yinyang.out.map{|x| x.activation}.join(', ')
@@ -703,169 +513,202 @@ Here's the output:
703
513
  0.485626707638021, 0.5, 0.514373292361979
704
514
  -0.0575090141074614, 0.0, 0.057509014107461
705
515
 
706
- ## Questions?
707
-
708
- Email me.
709
-
710
- # AND A LOT OF MATH I NEED TO GO OVER AND CLEAN UP
711
-
712
- ## Notes I had on my old ynot2day
713
-
714
- My sources are Neural Networks & Fuzzy Logic by Dr. Valluru B. Rao and Hayagriva V. Rao (1995), and Neural Computing Architectures edited by Igor Aleksander (1989) which includes "A theory of neural networks" by Eduardo R. Caianiello and "Backpropagation in non-feedforward networks" by Luis B. Almeida. The following is my analysis of the general mathematics of neural networks, which clarity I have not found elsewhere.
715
-
716
- First, let me define my notation. I hate to reinvent the wheel (well, actually, it is kind of fun to do so), but I do not know the standard math notation when using straight ASCII typed from a normal keyboard. So I define the notation for sumation, differentiation, the sigmoid function, and the exponential function given as Exp{}. Indexes to vectors and arrays are bracketed with []. Objects acted on by functions are bracketed by {}. Grouping of variables/objects is achieved with (). I also use () to include parameters that modify a function.
717
-
718
- Definition of Sum:
719
-
720
- Sum(j=1 to 3){A[j]} = A[1]+A[2]+A[3]
721
- Sum(i=0 to N){f[i]} = f[i]+...+f[N]
722
-
723
- Definition of Dif:
724
-
725
- Dif(x){x^n} = n*x^(n-1)
726
- Dif(y){f{u}} = Dif(u){f{u}}*Dif(y){u}
727
-
728
- Definition of Sig:
729
-
730
- Sig{z} = 1/(1+Exp{-z})
731
-
732
- Next, I describe a mathematical model of a neuron. Usually a neuron is described as being either on or off. I believe it more usefull to describe a neuron as having a pulse rate. A boolean (true or false) neuron would either have a high or a low pulse rate. In absence of any stimuli from neighbohring neurons, the neuron may also have a rest pulse rate. The rest pulse rate is due to the the bias of a neuron. A neuron receives stimuli from other neurons through the axons that connect them. These axons communicate to the receiving neuron the pulse rates of the transmitting neurons. The signal from other neurons are either strengthen or weakened at the synapse, and might either inhibit or excite the receiving neuron. The sum of all these signals is the activation of the receiving neuron. The activation of a neuron determines the neuron's actual response (its pulse rate), which the neuron then transmits to other neurons through its axons. Finally, a neuron has a maximum pulse rate which I map to 1, and a minimum pulse rate of 0.
733
-
734
- Let the bias of a neuron be b[], the activation, y[], the response, x[], and the weights, w[,]. The pulse rate of a receiving neuron, r, is related to its activation which is related to the pulse rates of the other transmitting neurons, t, by the following equations:
735
-
736
- x[r] = Sig{ y[r] }
737
- y[r] = b[r] + Sum(All t){ w[r,t] * x[t] }
738
- x[r] = Sig{ b[r] + Sum(All t){w[r,t] * x[t]} }
739
-
740
- Next I try to derive the learning rule of the neural network. Somehow, a neuron can be trained to become more or less sensitive to stimuli from another neuron and to become more or less sensitive in general. That is, we can change the neuron's bias and synaptic weights. To do it right, I need an estimate of the error in the neuron's pulse and relate this to the correction needed in the bias and each synaptic weight. This type of error analysis is usually aproximated through differentiation. What is the error in the pulse rate due to an error in a synaptic weight?
741
-
742
- Dif(w[r,t]){x[r]} = Dif(y[r]){Sig{y[r]}}*Dif(w[r,t]){y[r]}}
743
-
744
- Dif(z){Sig{z}} = -Exp{-z}/(1+Exp{-z})^2
745
- = (1-1-Exp{-z})/(1+Exp{-z})^2
746
- = (1-(1+Exp{-z}))/(1+Exp{-z})^2
747
- = 1/(1+Exp{-z})^2 - 1/(1+Exp{-z})
748
- = Sig{z}^2 - Sig{z}
749
- = Sig{z}*(Sig{z}-1) # <== THIS HAS TO BE WRONG! Looking for D{f}=f(1-f)
750
-
751
- Dif(y[r]){Sig{y[r]}} = Sig{y[r]}*(Sig{y[r]}-1) =
752
- = x[r]*(x[r]-1)
753
-
754
- Dif(w[r,t]){y[r]} = Dif(w[r,t]){Sum(t){w[r,t]*x[t]}} = x[t]
516
+ # Theory
755
517
 
756
- Dif(w[r,t]){x[r]} = x[r] * (x[r]-1) * x[t]
518
+ ## The Biological Description of a Neuron
757
519
 
758
- Let X[r] be the correct pulse rate. The error in the pulse rate is the difference between the correct value and the actual computation, e[r]=X[r]-x[r]. Let dx[r,t] be the error in x[r] due to weight w[r,t]. Consider that dx[r,t]/dw[r,t] aproximates Dif(w[r,t]){x[r]}.
520
+ Usually a neuron is described as being either on or off.
521
+ I think it is more useful to describe a neuron as having a pulse rate.
522
+ A neuron would either have a high or a low pulse rate.
523
+ In absence of any stimuli from neighboring neurons, the neuron may also have a rest pulse rate.
524
+ A neuron receives stimuli from other neurons through the axons that connects them.
525
+ These axons communicate to the receiving neuron the pulse rates of the transmitting neurons.
526
+ The signal from other neurons are either strengthen or weakened at the synapse, and
527
+ might either inhibit or excite the receiving neuron.
528
+ Regardless of how much stimuli the neuron gets,
529
+ a neuron has a maximum pulse it cannot exceed.
759
530
 
760
- dx[r,t]/dw[r,t] = Dif(w[r,t]){x[r]}
761
- dx[r,t] = x[r] * (x[r]-1) * x[t] * dw[r,t]
531
+ ## The Mathematical Model of a Neuron
762
532
 
763
- Then e[r] is the sum of all errors, dx[r,t].
533
+ Since my readers here are probably Ruby programmers, I'll write the math in a Ruby-ish way.
534
+ Allow me to sum this way:
764
535
 
765
- e[r] = Sum(t){ dx[r,t] } =
766
- = Sum(t=1 to N){ x[r]*(x[r]-1)*x[t]*dw[r,t] }
767
-
768
- Straight Algebra thus far. Now the tricky part... I have related the error in a neuron's pulse to the sum of the errors in the neurons receiving synapses. What I really want is to relate it to a particular synapse. This information is lost in the sum, and I must rely on statistical chance. Let me first pretend I know that the error partitions itself among the synapses with distribution u[i,j].
769
-
770
- e[r] = Sum(t=1 to N){ u[r,t] e[r] }
771
- u[r,t] * e[r] = x[r] * (x[r]-1) * x[t] * dw[r,t]
772
-
773
- The average value of u[r,t] is probably 1/N. In any case, the point is that this average is a small number less than 1. We use an equi-partition hypothesis and assume that each dw[r,t] is equally likely to be the source of error. Let u[r,t] ~ u, a small number, for all r and t. The best estimate of dw[r,t] becomes:
774
-
775
- u * e[r] = x[r] * (x[r]-1) * x[t] * dw[r,t]
776
- dw[r,t] = u * e[r] / ( x[r] * (x[r]-1) * x[t] ) ???
777
-
778
- If u~1/N was not tricky, then consider this. x[] is meant to converge to either 0 or 1. That is x[] is meant to be boolean. Note how the above equation for dw[i,j] could not really work if x[] truly were 0 or 1. But x[] is a fuzzy variable never really achieving 0 or 1.
779
-
780
- How do I conclude that... dw[r,t]=u * x[r] * (1-x[r]) * x[t] * e[r] ...which is the correct learning rule?
781
-
782
- This is the part of the Neural Net jargon I have not been able to bring to my level. I believe the answer is buried in what is being called transposition of linear networks. My analysis is correct up to this:
783
-
784
- u * e[r] = x[r] * (x[r]-1) * x[t] * dw[r,t]
785
-
786
- This equation relates the error in the pulse of neuron to the error in the synaptic weight between the transmiting neuron, t, and the receiving neuron, r. I believe the transposition of linear networks states that the relationship remains the same when back propagating the error in the neural pulse to the the synaptic weight. That is, we do not invert the multiplication factor. This seems intuitive, but I admit I am confused by the paradox in the algebra above. Thus...
787
-
788
- The Learning Rule for the (0,1) sigmoid neuron
789
- dw[r,t] = x[r] * (x[r]-1) * x[t] * u * e[r]
536
+ module Enumerable
537
+ def sum
538
+ map{|a| yield(a)}.inject(0, :+)
539
+ end
540
+ end
541
+ [1,2,3].sum{|i| 2*i} == 2+4+6 # => true
790
542
 
791
- The derivation for the correction to the bias is analogous. Note that the x[t] factor does not appear in this case.
543
+ Can I convince you that taking the derivative of a function looks like this?
792
544
 
793
- db[r] = Dif(b[r]){x[r]} * u * e[r]
794
- = x[r]*(x[r]-1)*Dif(b[r]){br} * u * e[r] = x[r]*(x[r]-1)*1 * u * e[r]
795
- db[r] = x[r]*(x[r]-1) * u * e[r]
545
+ def d(x)
546
+ dx = SMALL
547
+ f = yield(x)
548
+ (yield(x+dx) - f)/dx
549
+ end
550
+ dfdx = d(a){|x| f(x)}
796
551
 
797
- I was able to arrive at an estimate to the correction needed for the output neuron's synaptic weight and bias. I knew what the output was suppose to be, X[r], and the actual computation, x[r]. The error of the output neuron, e[r], was X[r]-x[r]. But what if the neuron was not an output neuron? I need to propagate back the error of the output neuron (and later for the general receiving neuron) to each of its transmitting neuron. The error of a transmitting neuron is assigned to be the sum of all errors propagated back from all of its receiving neurons.
552
+ So the Ruby-ish way to write one of the rules of Calculus is:
798
553
 
799
- e[t] = Sum(r){ x[r] * (x[r]-1) * x[t] * u * e[r] }
554
+ d{|x| Ax^n} == nAx^(n-1)
800
555
 
801
- Then, when we get to adjusting the transmitting neuron we will have an estimate of its pulse error. These are the learning equations for the general neural network:
556
+ We won't bother distinguishing integers from floats.
557
+ The sigmoid function is:
802
558
 
803
- dw[r,t] = Dif(w[r,t]){x[r]} * u * e[r]
804
- db[r] = Dif(b[r]){x[r]} * u * e[r]
559
+ def sigmoid(x)
560
+ 1/(1+exp(-x))
561
+ end
562
+ sigmoid(a) == 1/(1+exp(a))
563
+
564
+ A neuron's pulserate increases with increasing stimulus, so
565
+ we need a model that adds up all the stimuli a neuron gets.
566
+ The sum of all stimuli we will call the neuron's value.
567
+ (I find this confusing, but
568
+ it works out that it is this sum that will give us the problem space value.)
569
+ To model the neuron's rest pulse, we'll say that it has a bias value, it's own stimuli.
570
+ Stimuli from other neurons comes through the connections,
571
+ so there is a sum over all the connections.
572
+ The stimuli from other transmitting neurons is be proportional to their own pulsetates and
573
+ the weight the receiving neuron gives them.
574
+ In the model we will call the pulserate the neuron's activation.
575
+ Lastly, to more closely match the code, a neuron is a node.
576
+ This is what we have so far:
577
+
578
+ value = bias + connections.sum{|connection| connection.weight * connection.node.activation }
579
+
580
+ # or by their biological synonyms
581
+
582
+ stimulus = unsquashed_rest_pulse_rate +
583
+ connections.sum{|connection| connection.weight * connection.neuron.pulserate}
584
+
585
+ Unsquashed rest pulse rate? Yeah, I'm about to close the loop here.
586
+ As described, a neuron can have a very low pulse rate, effectively zero,
587
+ and a maximum pulse which I will define as being one.
588
+ The sigmoid function will take any amount it gets and
589
+ squashes it to a number between zero and one,
590
+ which is what we need to model the neuron's behavior.
591
+ To get the node's activation (aka neuron's pulserate)
592
+ from the node's value (aka neuron's stimulus),
593
+ we squash the value with the sigmoid function.
594
+
595
+ # the node's activation from it's value
596
+ activation = sigmoid(value)
597
+
598
+ # or by their biological synonyms
599
+
600
+ # the neuron's pulserate from its stimulus
601
+ pulserate = sigmoid(stimulus)
602
+
603
+ So the "rest pulse rate" is sigmoid("unsquashed rest pulse rate").
604
+
605
+ ## Backpropagation of Errors
606
+
607
+ There's a lot of really complicated math in understanding how neural networks work.
608
+ But if we concentrate on just the part pertinent to the bacpkpropagation code, it's not that bad.
609
+ The trick is to do the analysis in the problem space (otherwise things get real ugly).
610
+ When we train a neuron, we want the neuron's value to match a target as closely as possible.
611
+ The deviation from the target is the error:
612
+
613
+ error = target - value
614
+
615
+ Where does the error come from?
616
+ It comes from deviations from the ideal bias and weights the neuron should have.
617
+
618
+ target = value + error
619
+ target = bias + bias_error +
620
+ connections.sum{|connection| (connection.weight + weight_error) * connection.node.activation }
621
+ error = bias_error + connections.sum{|connection| weight_error * connection.node.activation }
622
+
623
+ Next we assume that the errors are equally likely everywhere,
624
+ so that the bias error is expected to be same on average as weight error.
625
+ That's where the learning constant comes in.
626
+ We need to divide the error equally among all contributors, say 1/N.
627
+ Then:
805
628
 
806
- The above equations give the correction to the synaptic weight and neural bias once we are given the error in a neuron. Next, we need to propagate back the known errors in the output through the network.
629
+ error = error/N + connections.sum{|connection| error/N * connection.node.activation }
807
630
 
808
- e[t] = X[t] - x[t] if the i'th neuron is also the output.
809
- e[t] = Sum(r){ w[r,t] * e[r] * Dif(b[r]){x[r]} } for the rest.
631
+ Note that if the equation above represents the entire network, then
810
632
 
811
- Note how I sent the errors from the receiving neurons to the transmitting neuron. I hope this explains the theory well. I distilled it from the above sources.
633
+ N = 1 + connections.length
812
634
 
635
+ So now that we know the error, we can modify the bias and weights.
813
636
 
814
- ## Notes from reading neuronet
637
+ bias += error/N
638
+ connection.weight += connection.node.activation * error/N
815
639
 
816
- For some Neuronet::FeedForward object, obj:
640
+ The Calculus is:
817
641
 
818
- obj.output
819
- obj.out.values
820
- obj.out.map{|node| node.to_f}
821
- obj.out.map{|node| node.value}
822
- obj.out.map{|node| unsquash(node.activation)}
823
- obj.out.map{|node| bias+connections }
642
+ d{|bias| bias + connections.sum{|connection| connection.weight * connection.node.activation }}
643
+ == d{|bias| bias}
824
644
 
825
- O[i] = b + Sum(1,J){|j| W[i,j] Squash(I[j])}
645
+ d{|connection.weight| bias + connections.sum{|connection| connection.weight * connection.node.activation }}
646
+ == connection.node.activation * d{|weight| connection.weight }
826
647
 
827
- 100 +/- 1 = 50 + sum[1,50]{|j| w[i,j]I[j]}
828
- de = 1/100
829
- b += b*de
648
+ So what's all the ugly math you'll see elsewhere?
649
+ Well, you can try to do the above analysis in neuron space.
650
+ Then you're inside the squash function.
651
+ I'll just show derivative of the sigmoid function:
830
652
 
831
- If we say that the value of some output is
653
+ d{|x| sigmoid(x)} ==
654
+ d{|x| 1/(1+exp(-x))} ==
655
+ 1/(1+exp(-x))^2 * d{|x|(1+exp(-x)} ==
656
+ 1/(1+exp(-x))^2 * d{|x|(exp(-x)} ==
657
+ 1/(1+exp(-x))^2 * d{|x| -x}*exp(-x) ==
658
+ 1/(1+exp(-x))^2 * (-1)*exp(-x) ==
659
+ -exp(-x)/(1+exp(-x))^2 ==
660
+ (1 -1 - exp(-x))/(1+exp(-x))^2 ==
661
+ (1 - (1 + exp(-x)))/(1+exp(-x))^2 ==
662
+ (1 - 1/sigmoid(x)) * sigmoid^2(x) ==
663
+ (sigmoid(x) - 1) * sigmoid(x) ==
664
+ sigmoid(x)*(sigmoid(x) - 1)
665
+ # =>
666
+ d{|x| sigmoid(x)} == sigmoid(x)*(sigmoid(x) - 1)
832
667
 
833
- Output[o] = Bias[o] + Sum{ Connection[m,o] }
668
+ From there you try to find the errors from the point of view of the activation instead of the value.
669
+ But as the code clearly shows, the analysis need not get this deep.
834
670
 
835
- has some error E
671
+ ## Learning Constant
836
672
 
837
- Target[o] = Output[o] + E
673
+ One can think of a neural network as a sheet of very elastic rubber
674
+ which one pokes and pulls to fit the training data while
675
+ otherwise keeping the sheet as smooth as possible.
676
+ One concern is that the training data may contain noise, random errors.
677
+ So the training of the network should add up the true signal in the data
678
+ while canceling out the noise. This balance is set via the learning constant.
838
679
 
839
- Then there is an e such that
680
+ neuronet.learning
681
+ # Returns the current value of the network's learning constant
840
682
 
841
- Output[o](1+e) = Output[o] + E
842
- (1+e) = (Output[o] + E)/Output[o]
843
- 1+e = 1 + E/Output[o]
844
- e = E/Output[o]
683
+ neuronet.learning = float
684
+ # where float is greater than zero but less than one.
845
685
 
846
- And Target can be set as
686
+ By default, Neuronet::FeedForward sets the learning constant to 1/N, where
687
+ N is the number of biases and weights in the network
688
+ (plus one, just because...). You can get the vale of N with
689
+ [#mu](http://rubydoc.info/gems/neuronet/Neuronet/FeedForward:mu).
847
690
 
848
- Target[o] = (Bias[o] + Sum{ Connection[m,o] })(1+e)
849
- Target[o] = Bias[o](1+e) + Sum{ Connection[m,o] }(1+e)
691
+ So I'm now making up a few more names for stuff.
692
+ The number of contributors to errors in the network is #mu.
693
+ The learning constant based on #mu is
694
+ [#muk](http://rubydoc.info/gems/neuronet/Neuronet/FeedForward:muk).
695
+ You can modify the learning constant to some fraction of muk, say 0.7, this way:
850
696
 
851
- Assumping equipartition in error,
852
- we might then suggest the following correction to Bias:
697
+ neuronet.muk(0.7)
853
698
 
854
- Bias[o] = Bias[o](1+e)
855
- Bias[o] = Bias[o]+Bias[o]e
856
- Bias[o] += Bias[o]e
699
+ I've not come across any hard rule for the learning constant.
700
+ I have my own intuition derived from the behavior of random walks.
701
+ The distance away from a starting point in a random walk is
702
+ proportional to the square root of the number of steps.
703
+ I conjecture that the number of training data points is related to
704
+ the optimal learning constant in the same way.
705
+ So I provide a way to set the learning constant based on the size of the data with
706
+ [#num](http://rubydoc.info/gems/neuronet/Neuronet/FeedForward:num)
857
707
 
708
+ neuronet.num(n)
858
709
 
859
- Remember that:
860
- D{squash(u)} = squash(u)*(1-squash(u))*D{u}
710
+ The value of #num(n) is #muk(1.0)/Math.sqrt(n)).
861
711
 
862
- @activation = squash( @bias + @connections...)
863
- D{ @activation } = D{ squash( @bias + @connections...) }
864
- D{ @activation } = @activation*(1-@activation) D{ @bias + @connections... }
865
- Just the part due to bias...
866
- D.bias{ @activation } = @activation*(1-@activation) D{ @bias }
867
- D.bias{ @activation } / (@activation*(1-@activation)) = D{ @bias }
868
- Just the part due to connection...
869
- D.connection{ @activation } = @activation*(1-@activation) D{ @connections... }
712
+ # Questions?
870
713
 
871
- D
714
+ Email me!