neuronet 6.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (3) hide show
  1. data/README.md +871 -0
  2. data/lib/neuronet.rb +434 -0
  3. metadata +47 -0
@@ -0,0 +1,871 @@
1
+ # Neuronet 6.0.0
2
+
3
+ Library to create neural networks.
4
+
5
+ * Author: <carlosjhr64@gmail.com>
6
+ * Copyright: 2013
7
+ * License: [GPL](http://www.gnu.org/licenses/gpl.html)
8
+ * Git Page: <https://github.com/carlosjhr64/neuronet>
9
+
10
+ ## Installation
11
+
12
+ gem install neuronet
13
+
14
+ ## Synopsis
15
+
16
+ Given some set of inputs and targets that are Array's of Float's.
17
+ Then:
18
+
19
+ # data = [ [input, target], ... }
20
+ # n = input.length
21
+ # t = target.length
22
+ # m = n + t
23
+ # l = data.length
24
+ # Then:
25
+ # Create a general purpose neurnet
26
+
27
+ neuronet = Neuronet::ScaledNetwork.new([n, m, t])
28
+
29
+ # "Bless" it as a TaoYinYang,
30
+ # a perceptron hybrid with the middle layer
31
+ # initially mirroring the input layer and
32
+ # mirrored by the output layer.
33
+
34
+ Neuronet::TaoYinYang.bless(neuronet)
35
+
36
+ # The following sets the learning constant
37
+ # to something I think is reasonable.
38
+
39
+ neuronet.num(l)
40
+
41
+ # Start training
42
+
43
+ MANY.times do
44
+ data.shuffle.each do |input, target|
45
+ neuronet.exemplar(input, target)
46
+ end
47
+ end # or until some small enough error
48
+
49
+ # See how well the training went
50
+
51
+ require 'pp'
52
+ data.each do |input, target|
53
+ puts "Input:"
54
+ pp input
55
+ puts "Output:"
56
+ neuronet.reset(input) # sets the input values
57
+ pp neuronet.output # gets the output values
58
+ puts "Target:"
59
+ pp target
60
+ end
61
+
62
+ ## Introduction
63
+
64
+ Neuronet is a pure Ruby 1.9, sigmoid squashed, neural network building library.
65
+ It allows one to build a network by connecting one neuron at a time, or a layer at a time,
66
+ or up to a full feed forward network that automatically scales the inputs and outputs.
67
+
68
+ I chose a TaoYinYang'ed ScaledNetwork neuronet for the synopsis because
69
+ it'll probably handle most anything you'd throw at it.
70
+ But there's a lot you can do to the data before throwing it at a neuronet.
71
+ And you can build a neuronet specifically to solve a particular kind of problem.
72
+ Properly transforming the data and choosing the right neuronet architecture
73
+ can greatly reduce the amount of training time the neuronet will require.
74
+ A neuronet with the wrong architecture for a problem will be unable to solve it.
75
+ Raw data without hints as to what's important in the data will take longer to solve.
76
+
77
+ As an analogy, think of what you can do with linear regression.
78
+ Your raw data might not be linear, but if a transform converts it to a linear form,
79
+ you can use linear regression to find the best fit line, and
80
+ from that deduce the properties of the untransformed data.
81
+ Likewise, if you can transform the data into something the neuronet can solve,
82
+ you can by inverse get back the answer you're lookin for.
83
+
84
+ # WARNING: I STILL NEED TO REWRITE THE NOTES BELOW TO MATCH THE NEW CODE.
85
+
86
+ ## Example: Time Series
87
+
88
+ First, a little motivation...
89
+ A common use for a neural-net is to attempt to forecast future set of data points
90
+ based on past set of data points, [Time series](http://en.wikipedia.org/wiki/Time_series).
91
+ To demonstrate, I'll train a network with the following function:
92
+
93
+ f(t) = A + B sine(C + D t), t in [0,1,2,3,...]
94
+
95
+ I'll set A, B, C, and D to some random number and see
96
+ if eventually the network can predict the next set of values based on previous values.
97
+ I'll try:
98
+
99
+ [f(n),...,f(n+19)] => [f(n+20),...,f(n+24)]
100
+
101
+ That is... given 20 consecutive values, give the next 5 in the series.
102
+ There is no loss, and probably greater generality,
103
+ if I set at random the phase (C above), so that for any given random phase we want:
104
+
105
+ [f(0),...,f(19)] => [f(20),...,f(24)]
106
+
107
+ I'll be using [Neuronet::ScaledNetwork](http://rubydoc.info/gems/neuronet/Neuronet/ScaledNetwork).
108
+ Also note that the Sine function is entirely defined within a cycle ( 2 Math::PI ) and
109
+ so parameters (particularly C) need only to be set within the cycle.
110
+ After a lot of testing, I've verified that a
111
+ [Perceptron](http://en.wikipedia.org/wiki/Perceptron) is enough to solve the problem.
112
+ The Sine function is [Linearly separable](http://en.wikipedia.org/wiki/Linearly_separable).
113
+ Adding hidden layers needlessly adds training time, but does converge.
114
+
115
+
116
+ The gist of the
117
+ [example code](https://github.com/carlosjhr64/neuronet/blob/master/examples/sine_series.rb)
118
+ is:
119
+
120
+ ...
121
+ # The constructor
122
+ neuronet = Neuronet::ScaledNetwork.new([INPUTS, OUTPUTS])
123
+ ...
124
+ # Setting learning constant
125
+ neuronet.num(1.0)
126
+ ...
127
+ # Setting the input values
128
+ neuronet.reset(input)
129
+ ...
130
+ # Getting the neuronet's output
131
+ output = neuronet.output
132
+ ...
133
+ # Training the target
134
+ neuronet.train!(target)
135
+ ...
136
+
137
+ Heres a sample output:
138
+
139
+ f(phase, t) = 3.002 + 3.28*Sin(phase + 1.694*t)
140
+ Cycle step = 0.27
141
+
142
+ Iterations: 1738
143
+ Relative Error (std/B): 0.79% Standard Deviation: 0.026
144
+ Examples:
145
+
146
+ Input: 0.522, 1.178, 5.932, 4.104, -0.199, 2.689, 6.28, 2.506, -0.154, 4.276, 5.844, 1.028, 0.647, 5.557, 4.727, 0.022, 2.011, 6.227, 3.198, -0.271
147
+ Target: 3.613, 6.124, 1.621, 0.22, 5.069
148
+ Output: 3.575, 6.101, 1.664, 0.227, 5.028
149
+
150
+ Input: 5.265, 5.079, 0.227, 1.609, 6.12, 3.626, -0.27, 3.184, 6.229, 2.024, 0.016, 4.716, 5.565, 0.656, 1.017, 5.837, 4.288, -0.151, 2.493, 6.28
151
+ Target: 2.703, -0.202, 4.091, 5.938, 1.189
152
+ Output: 2.728, -0.186, 4.062, 5.931, 1.216
153
+
154
+ Input: 5.028, 0.193, 1.669, 6.14, 3.561, -0.274, 3.25, 6.217, 1.961, 0.044, 4.772, 5.524, 0.61, 1.07, 5.87, 4.227, -0.168, 2.558, 6.281, 2.637
155
+ Target: -0.188, 4.153, 5.908, 1.135, 0.557
156
+ Output: -0.158, 4.112, 5.887, 1.175, 0.564
157
+
158
+
159
+ ScaledNetwork automatically scales each input via
160
+ [Neuronet::Gaussian](http://rubydoc.info/gems/neuronet/Neuronet/Gaussian),
161
+ so the input needs to be many variables and
162
+ the output entirely determined by the shape of the input and not it's scale.
163
+ That is, two inputs that are different only in scale should
164
+ produce outputs that are different only in scale.
165
+ The input must have at least three points.
166
+
167
+ You can tackle many problems just with
168
+ [Neuronet::ScaledNetwork](http://rubydoc.info/gems/neuronet/Neuronet/ScaledNetwork)
169
+ as described above.
170
+ So now that you're hopefully interested and want to go on to exactly how it all works,
171
+ I'll describe Neuronet from the ground up.
172
+
173
+ ## Squashing Function
174
+
175
+ An artificial neural network uses an activation function
176
+ that determines the activation value of a neuron.
177
+ This activation value is often thought of on/off or true/false.
178
+ Neuronet uses a sigmoid function to set the neuron's activation value between 1.0 and 0.0.
179
+ For classification problems, activation values near one are considered true
180
+ while activation values near 0.0 are considered false.
181
+ In Neuronet I make a distinction between the neuron's activation value and
182
+ it's representation to the problem.
183
+ In the case of a true or false problem,
184
+ the neuron's value is either true or false,
185
+ while it's activation is between 1.0 and 0.0.
186
+ This attribute, activation, need never appear in an implementation of Neuronet, but
187
+ it is mapped back to it's unsquashed value every time
188
+ the implementation asks for the neuron's value.
189
+
190
+ Neuronet.squash( unsquashed )
191
+ 1.0 / ( 1.0 + Math.exp( -unsquashed ) )
192
+
193
+ Neuronet.unsquashed( squashed )
194
+ Math.log( squashed / ( 1.0 - squashed ) )
195
+
196
+ ## Learning Constant
197
+
198
+ **TODO: This section needs re-write**
199
+
200
+ One can think of a neural network as a sheet of very elastic rubber
201
+ which one pokes and pulls to fit the training data while
202
+ otherwise keeping the sheet as smooth as possible.
203
+ You don't want to hammer this malleable sheet too hard.
204
+ One concern is that the training data may contain noise, random errors.
205
+ So the training of the network should add up the true signal in the data
206
+ while canceling out the noise. This balance is set via the learning constant.
207
+
208
+
209
+ neuronet.learning
210
+ # Returns the current value of the network's learning constant
211
+
212
+ neuronet.learning = float
213
+ # where float is greater than zero but less than one.
214
+ # Sets the global learning constant by an implementation given value
215
+
216
+ I've not come across any hard rule for the learning constant.
217
+ I have my own intuition derived from the behavior of random walks.
218
+ The distance away from a starting point in a random walk is
219
+ proportional to the square root of the number of steps.
220
+ I conjecture that the number of training data points is related to
221
+ the optimal learning constant in the same way.
222
+ I have come across 0.2 as a good value for the learning constant, which
223
+ would mean the proponent of this value was working with a data set size of about 25.
224
+ In any case, I've had good results with the following:
225
+
226
+ # where number is the number of data points
227
+ neuronet.learning( number )
228
+ 1.0 / Math.sqrt( number + 1.0 )
229
+
230
+ In the case of setting number to 1.0,
231
+ the learning constant would be the square root of 1/2.
232
+ This would suggest that although we're taking larger steps than half steps,
233
+ due to the nature of a random walk, we're approaching the solution in half steps.
234
+
235
+ ## Noise
236
+
237
+ The literature I've read (probably outdated by now)
238
+ would have one create a neural network with random weights and
239
+ hope that training it will converge to a solution.
240
+ I've never really believed that to be a correct way.
241
+ Although the implementation is free to set all parameters for each neuron,
242
+ Neuronet by default creates zeroed neurons.
243
+ Association between inputs and outputs are trained, and
244
+ neurons differentiate from each other randomly.
245
+ Differentiation among neurons is achieved by noise in the back-propagation of errors.
246
+ This noise is provided by:
247
+
248
+ Neuronet.noise
249
+ rand + rand
250
+
251
+ I chose rand + rand to give the noise an average value of one and a bell shape distribution.
252
+
253
+ ## Node
254
+
255
+ A neuron is a node. In Neuronet, Neuronet::Neuron subclasses Neuronet::Node.
256
+ A node has a value which the implementation can set. A Node object is created via:
257
+
258
+ Neuronet::Node.new( value=0.0 )
259
+
260
+ and responds to the following methods:
261
+
262
+ value=( float )
263
+ value
264
+
265
+ The above methods work just as expected:
266
+
267
+ node = Neuronet::Node.new
268
+ a = node.value # sets a to 0.0
269
+ node.value = 1.37
270
+ b = node.value # sets b to 1.37
271
+
272
+ But if you look at the code for Neuronet::Node, you'll see that value is not stored,
273
+ but it's calculated activation is.
274
+ The implementation can get this value via the attribute reader:
275
+
276
+ activation
277
+
278
+ In Neuronet, a node is a constant neuron whose value is not changed by training,
279
+ backpropagation of errors. It is used for inputs.
280
+ It's used as a terminal where updates and back-propagations end.
281
+ For this purpose, it provides the following methods:
282
+
283
+ train( target=nil, learning=nil ) # returns nil
284
+ backpropagate( error ) # returns nil
285
+ update # returns activation
286
+
287
+ I consider these methods private.
288
+ I can't think of a reason they'd appear in the implementation.
289
+ Likewise, the implementation should not have to bother with activation.
290
+
291
+ ## Scaling The Problem
292
+
293
+ It's early to be talking about scaling the problem, but
294
+ since I just covered how to set values to a node above,
295
+ it's a good time to start thinking about scale.
296
+ The squashing function, sigmoid, maps real numbers (negative infinity, positive infinity)
297
+ to the segment zero to one (0,1).
298
+ But for the sake of computation in a neural net,
299
+ sigmoid works best if the problem is scaled to numbers
300
+ between negative one and positive one (-1, 1).
301
+ Study the following table and see if you can see why:
302
+
303
+ x => sigmoid(x)
304
+ 9 => 0.99987...
305
+ 3 => 0.95257...
306
+ 2 => 0.88079...
307
+ 1 => 0.73105...
308
+ 0 => 0.50000...
309
+ -1 => 0.26894...
310
+ -2 => 0.11920...
311
+ -3 => 0.04742...
312
+ -9 => 0.00012...
313
+
314
+ So as x gets much higher than 3, sigmoid(x) gets to be pretty close to just 1, and
315
+ as x gets much lower than -3, sigmoid(x) gets to be pretty close to 0.
316
+ Also note that sigmoid is centered about 0.5 which maps to 0.0 in problem space.
317
+ It is for this reason that I suggest the problem be displaced (subtracted)
318
+ by it's average to be centered about zero and scaled (divided) by it standard deviation.
319
+ For non gaussian data where outbounds are expected,
320
+ you should probably scale by a multiple of the standard deviation so
321
+ that most of the data fits within sigmoid's "field of view" (-1, 1).
322
+
323
+ ## Connection
324
+
325
+ This is where I think Neuronet gets it's architecture really right!
326
+ Connections between neurons (and nodes) are there own separate objects.
327
+ In other codes I've seen this is not abstracted out.
328
+ In Neuronet, a neuron contains it's bias, and a list of it's connections.
329
+ Each connection contains it's weight (strength) and connected terminal node.
330
+ Given a terminal, node, a connection is created as follows:
331
+
332
+ connection = Neuronet::Connection.new( node, weight=0.0 )
333
+
334
+ So a neuron connected to the given terminal node would have
335
+ the created connection in its connections list.
336
+ This will be discussed below under the topic Neuron.
337
+ The object, connection, responds to the following methods:
338
+
339
+ value
340
+ update
341
+ backpropagate( error )
342
+
343
+ The value of a connection is the weighted activation of
344
+ the node it's connected to ( weight node.activation ).
345
+ Similarly, update is the updated value of a connection,
346
+ which is the weighted updated activation of the node it's connected to ( weight*node.update ).
347
+ The method update is the one to use
348
+ whenever the value of the inputs are changed (or right after training).
349
+ Otherwise, both update and value should give the same result
350
+ with value avoiding the unnecessary back calculations.
351
+ The method backpropagate modifies the connection's weight in proportion to
352
+ the error given and passes that error to its connected node via the node's backpropagate.
353
+
354
+ ## Neuron
355
+
356
+ [Neuronet::Neuron](http://rubydoc.info/gems/neuronet/Neuronet/Neuron)
357
+ is a Neuronet::Node with some extra features.
358
+ It adds two attributes: connections, and bias.
359
+ As mentioned above, connections is a list, aka Array,
360
+ of the neuron's connections to other neurons (or nodes).
361
+ A neuron's bias is it's kicker (or deduction) to it's activation value
362
+ as a sum of its connections values. So a neuron's updated value is set as:
363
+
364
+ self.value = @bias + @connections.inject(0.0){|sum,connection| sum + connection.update}
365
+
366
+ If you're not familiar with ruby's Array::inject method,
367
+ it's the Ruby way of doing summations.
368
+ It's really cool once you get the gist of it. Checkout:
369
+
370
+ * Jay Field's Thoughts on Ruby: inject
371
+ * Induction ( for_all )
372
+
373
+ But that's a digression... Here's how an implementation creates a new neuron:
374
+
375
+ neuron = Neuronet::Neuron.new( bias=0.0 )
376
+
377
+ There's an attribute accessor for @bias, and an attribute reader for @connections. The object, neuron, responds to the following methods:
378
+
379
+ update
380
+ partial
381
+ backpropagate( error )
382
+ train( target, learning=Neuronet.learning )
383
+ connect( node, weight=0.0 )
384
+
385
+ The update method sets the neuron's value as described above. The partial method sets the neuron's value without calling the connections update methods as follows:
386
+
387
+ self.value = @bias + @connections.inject(0.0){|sum,connection| sum + connection.value}
388
+
389
+ It's not necessary to burrow all the way down to update the current neuron
390
+ if it's connected neurons have all been updated.
391
+ The implementation should set it's algorithm to use partial
392
+ instead of update as update will most likely needlessly update previously updated neurons.
393
+ The backpropagate method modifies the neuron's bias in proportion to the given error and
394
+ passes on this error to each of its connection's backpropagate method.
395
+ The connect method is how the implementation adds a connection,
396
+ the way to connect the neuron to another.
397
+ To connect neuron out to neuron in, for example, it is:
398
+
399
+ in = Neuronet::Neuron.new
400
+ out = Neuronet::Neuron.new
401
+ out.connect(in)
402
+
403
+ Think output connects to input.
404
+ Here, the input flow would be from in to out,
405
+ while back-propagation of errors flows from out to in.
406
+ If you wanted to train the value of out, out.value,
407
+ to be 1.5 with the given value of in set at 0.3, you do as follows:
408
+
409
+ puts "(#{in}, #{out})" # what you've got before (0.0, 0.0)
410
+ in.value = 0.3
411
+ out.train(1.5)
412
+ out.partial # don't forget to update (no need to go deeper than a, so partial)
413
+ puts "(#{in}, #{out})" # (0.3, 0.113022020702079)
414
+
415
+ Note that with continued training, b should approach it's target value of 1.5.
416
+
417
+ ## InputLayer
418
+
419
+ What follows next in lib/neuronet.rb's code is motivated by feedforward neural networks,
420
+ and Neuronet eventually gets to build one.
421
+ Neuronet::InputLayer is an Array of Neuronet::Node's.
422
+ An input layer of a given length (number of nodes) is created as follows:
423
+
424
+ input = Neuronet::InputLayer.new( length )
425
+
426
+ The object, input, responds to a couple of methods (on top of those from Array):
427
+
428
+ set( input )
429
+ values
430
+
431
+ For example, a three neuron input layer with it's neuron values set as -1, 0, and 1:
432
+
433
+ input = Neuronet::InputLayer(3)
434
+ input.set( [-1, 0, 1] )
435
+ puts input.values.join(', ') # [-1.0,0.0,1.0].join(', ')
436
+
437
+ ## Layer
438
+
439
+ In Neuronet, InputLayer is to Layer what Node is to Neuron.
440
+ Layer is an Array of Neurons.
441
+ A Layer object is created as follows:
442
+
443
+ # length is the number of neurons in the layer
444
+ layer = Neuronet::Layer.new( length )
445
+
446
+ The Layer object responds to the following methods:
447
+
448
+ connect( layer, weight=0.0 )
449
+ partial
450
+ train( targets, learning=Neuronet.learning )
451
+ values
452
+
453
+ So now one can create layers, connect them, train them, and update them (via partial).
454
+ A Perceptron is built this way:
455
+
456
+ n, m = 3, 3 # building a 3X3 perceptron
457
+ input_layer = Neuronet::InputLayer.new( n )
458
+ output_layer = Neuronet::Layer.new( m )
459
+ output_layer.connect( input_layer )
460
+ # to set the perceptron's input to -0.5,0.25,2.1...
461
+ input_layer.set( [-0.5, 0.25, 2.1] )
462
+ # to train it to -0.1, 0.2, 0.5
463
+ output_layer.train( [-0.1, 0.2, 0.5] )
464
+ output_layer.partial # update!
465
+ # to see its values
466
+ puts output_layer.values.join(', ')
467
+
468
+
469
+ ## FeedForwardNetwork
470
+
471
+ Now we're building complete networks.
472
+ To create a feedforward neural network with optional middle layers, ffnn:
473
+
474
+ ffnn = Neuronet::FeedForwardNetwork.new([input, <layer1, ...,> output])
475
+
476
+ The FeedForwardNetwork object, ffnn, responds to the following methods:
477
+
478
+ learning=( learning_constant ) # to explicitly set a learning constant
479
+ update
480
+ set( inputs )
481
+ train!( targets, learning=@learning )
482
+ exemplar( inputs, targets, learning=@learning ) # trains an input/output pair
483
+ values(layer) # layer's values
484
+ input # in (first layer's) values
485
+ output # out (last layer's) values
486
+ And has the following attribute readers:
487
+ in # input (first) layer
488
+ out # output (last) layer
489
+
490
+ Notice that this time I've named the training method train! (with the exclamation mark).
491
+ This is because train! automatically does the update as well.
492
+ I thought it might be confusing that at the lower level one had to call train and
493
+ either partial or update, so I made the distinction.
494
+ Neuronet also provides a convenience method exemplar to train input / output pairs.
495
+ It's equivalent the following:
496
+
497
+ ffnn.set( inputs ); ffnn.train!( targets );
498
+
499
+ ## Scale
500
+
501
+ Neuronet::Scale is a class to help scale problems to fit within a network's "field of view".
502
+ Given a list of values, it finds the minimum and maximum values and
503
+ establishes a mapping to a scaled set of numbers between minus one and one (-1,1).
504
+ For example:
505
+
506
+ scale = Neuronet::Scale.new
507
+ values = [ 1, -3, 5, -2 ]
508
+ scale.set( values )
509
+ mapped = scale.mapped( values )
510
+ puts mapped.join(', ') # 0.0, -1.0, 1.0, -0.75
511
+ puts scale.unmapped( mapped ).join(', ') # 1.0, -3.0, 5.0, -2.0
512
+
513
+ The mapping is like:
514
+
515
+ center = (maximum + minimum) / 2.0 if center.nil? # calculate center if not given
516
+ spread = (maximum - minimum) / 2.0 if spread.nil? # calculate spread if not given
517
+ inputs.map{ |value| (value - center) / (factor * spread) }
518
+
519
+ One can change the range of the map to (-1/factor, 1/factor)
520
+ where factor is the spread multiplier and force
521
+ a (prehaps pre-calculated) value for center and spread.
522
+ The constructor is:
523
+
524
+ scale = Neuronet::Scale.new( factor=1.0, center=nil, spread=nil )
525
+
526
+ In the constructor, if the value of center is provided, then
527
+ that value will be used instead of it being calculated from the values passed to method set.
528
+ Likewise, if spread is provided, that value of spread will be used.
529
+ There are two attribute accessors:
530
+
531
+ spread
532
+ center
533
+
534
+ One attribute writer:
535
+
536
+ init
537
+
538
+ In the code, the attribute @init flags if
539
+ there is a initiation phase to the calculation of @spread and @center.
540
+ For Scale, @init is true and the initiation phase calculates
541
+ the intermediate values @min and @max (the minimum and maximum values in the data set).
542
+ It's possible for subclasses of Scale, such as Gaussian, to not have this initiation phase.
543
+ An instance, scale, of class Scale will respond to the following methods considered to be public:
544
+
545
+ set( inputs )
546
+ mapped_input
547
+ mapped_output
548
+ unmapped_input
549
+ unmapped_output
550
+
551
+ In Scale, mapped\_input\ and mapped\_output are synonyms of mapped, but
552
+ in general this symmetry may be broken.
553
+ Likewise, unmapped\_input and unmapped\_output are synonyms of unmapped.
554
+ Scale also provides the following methods which are considered private:
555
+
556
+ set_init( inputs )
557
+ set_spread( inputs )
558
+ set_center( inputs )
559
+ mapped( inputs )
560
+ unmapped( outputs )
561
+
562
+ Except maybe for mapped and unmapped,
563
+ there should be no reason for the implementation to call these directly.
564
+ These are expected to be overridden by subclasses.
565
+ For example, in Gaussian, set\_spread calculates the standard deviation and
566
+ set\_center calculates the mean (average),
567
+ while set\_init is skipped by setting @init to false.
568
+
569
+ ## Gaussian
570
+
571
+ In Neuronet, Gaussian subclasses Scale and is used exactly the same way.
572
+ The only changes are that it calculates the arithmetic mean (average) for center and
573
+ the standard deviation for spread.
574
+ The following private methods are overridden to provide that effect:
575
+
576
+ set_center( inputs )
577
+ inputs.inject(0.0,:+) / inputs.length
578
+ set_spread( inputs )
579
+ Math.sqrt( inputs.map{|value| self.center - value}.inject(0.0){|sum,value| value*value + sum} / (inputs.length - 1.0) )
580
+
581
+ ## LogNormal
582
+
583
+ Neuronet::LogNormal subclasses Neuronet::Gaussian to transform the values to a logarithmic scale. It overrides the following methods:
584
+
585
+ set( inputs )
586
+ super( inputs.map{|value| Math::log(value)} )
587
+ mapped(inputs)
588
+ super( inputs.map{|value| Math::log(value)} )
589
+ unmapped(inputs)
590
+ super( inputs.map{|value| Math::exp(value)} )
591
+
592
+ So LogNormal is just Gaussian except that it first pipes values through a logarithm, and
593
+ then pipes the output back through exponentiation.
594
+
595
+ ## ScaledNetwork
596
+
597
+ So now we're back to where we started.
598
+ In Neuronet, ScaledNetwork is a subclass of FeedForwardNetwork.
599
+ It automatically scales the problem given to it by using a Scale type instance,
600
+ Gaussian by default.
601
+ It adds on attribute accessor:
602
+
603
+ distribution
604
+
605
+ The attribute, distribution, is set to Neuronet::Gausian.new by default,
606
+ but one can change this to Scale, LogNormal, or one's own custom mapper.
607
+ ScaledNetwork also adds one method:
608
+
609
+ reset( values )
610
+
611
+ This method, reset, works just like FeedForwardNetwork's set method,
612
+ but calls distribution.set( values ) first.
613
+ Sometimes you'll want to set the distribution with the entire data set and the use set,
614
+ and then there will be times you'll want to set the distribution with each input and use reset.
615
+ For example, either:
616
+
617
+ scaled_network.distribution.set( data_set.flatten )
618
+ data_set.each do |inputs,outputs|
619
+ # ... do your stuff using scaled_network.set( inputs )
620
+ end
621
+
622
+ or:
623
+
624
+ data_set.each do |inputs,outputs|
625
+ # ... do your stuff using scaled_network.reset( inputs )
626
+ end
627
+
628
+ ## Pit Falls
629
+
630
+ When sub-classing a Neuronet::Scale type class,
631
+ make sure mapped\_input, mapped\_output, unmapped\_input,
632
+ and unmapped\_output are defined as you intended.
633
+ If you don't override them, they will point to the first ancestor that defines them.
634
+ I had a bug (in 2.0.0, fixed in 2.0.1) where
635
+ I assumed overriding mapped redefined along all it's parent's synonyms...
636
+ it does not work that way.
637
+ Another pitfall is confusing the input/output flow in connections and back-propagation.
638
+ Remember to connect outputs to inputs (out.connect(in)) and
639
+ to back-propagate from outputs to inputs (out.train(targets)).
640
+
641
+ # THE FOLLOWING SECTIONS NEEDS A COMPLETE REWRITE!
642
+
643
+ ## Custom Networks
644
+
645
+ To demonstrate how this library can build custom networks,
646
+ I've created four new classes of feed forward networks.
647
+ By the way, I'm completely making these up and was about to call them
648
+ HotDog, Taco, Burrito, and Enchilada when I then thought of Tao/Yin/Yang:
649
+
650
+ ## Tao
651
+
652
+ In Neuronet, Tao is a three or more layered feed forward neural network
653
+ with it's output and input connected directly.
654
+ It effectively makes it a hybrid perceptron. It subclasses ScaledNetwork.
655
+
656
+ ## Yin
657
+
658
+ In Neuronet, Yin is a Tao with the first hidden layer, hereby called yin,
659
+ initially set to have corresponding neuron pairs with
660
+ it's input layer's with weights set to 1.0 and bias 0.5.
661
+ This makes yin initially mirror the input layer.
662
+ The correspondence is done between the first neurons in the yin layer and the input layer.
663
+
664
+ ## Yang
665
+
666
+ In Neuronet, Yang is a Tao with it's output layer connected to the last hidden layer,
667
+ hereby called yang, such that corresponding neuron pairs have weights set to 1.0 and bias 0.5.
668
+ This makes output initially mirror yang.
669
+ The correspondence is done between the last neurons in the yang layer and the output layer.
670
+
671
+ ## YinYang
672
+
673
+ In Neuronet, YinYang is a Tao that's been Yin'ed Yang'ed. :))
674
+ That's a feed forward network of at least three layers with
675
+ its output layer also connected directly to the input layer, and
676
+ with the output layer initially mirroring the last hidden layer, and
677
+ the first hidden layer initially mirroring the input layer.
678
+ Note that a particularly interesting YinYang with n inputs and m outputs
679
+ would be constructed this way:
680
+
681
+ yinyang = Neuronet::YinYang.new( [n, n+m, m] )
682
+
683
+ Here yinyang's hidden layer (which is both yin and yang)
684
+ initially would have the first n neurons mirror the input and
685
+ the last m neurons be mirrored by the output.
686
+ Another interesting YinYang would be:
687
+
688
+ yinyang = Neuronet::YinYang.new( [n, n, n] )
689
+
690
+ The following code demonstrates what is meant by "mirroring":
691
+
692
+ yinyang = Neuronet::YinYang.new( [3, 3, 3] )
693
+ yinyang.reset( [-1,0,1] )
694
+ puts yinyang.in.map{|x| x.activation}.join(', ')
695
+ puts yinyang.yin.map{|x| x.activation}.join(', ')
696
+ puts yinyang.out.map{|x| x.activation}.join(', ')
697
+ puts yinyang.output.join(', ')
698
+
699
+ Here's the output:
700
+
701
+ 0.268941421369995, 0.5, 0.731058578630005
702
+ 0.442490985892539, 0.5, 0.557509014107461
703
+ 0.485626707638021, 0.5, 0.514373292361979
704
+ -0.0575090141074614, 0.0, 0.057509014107461
705
+
706
+ ## Questions?
707
+
708
+ Email me.
709
+
710
+ # AND A LOT OF MATH I NEED TO GO OVER AND CLEAN UP
711
+
712
+ ## Notes I had on my old ynot2day
713
+
714
+ My sources are Neural Networks & Fuzzy Logic by Dr. Valluru B. Rao and Hayagriva V. Rao (1995), and Neural Computing Architectures edited by Igor Aleksander (1989) which includes "A theory of neural networks" by Eduardo R. Caianiello and "Backpropagation in non-feedforward networks" by Luis B. Almeida. The following is my analysis of the general mathematics of neural networks, which clarity I have not found elsewhere.
715
+
716
+ First, let me define my notation. I hate to reinvent the wheel (well, actually, it is kind of fun to do so), but I do not know the standard math notation when using straight ASCII typed from a normal keyboard. So I define the notation for sumation, differentiation, the sigmoid function, and the exponential function given as Exp{}. Indexes to vectors and arrays are bracketed with []. Objects acted on by functions are bracketed by {}. Grouping of variables/objects is achieved with (). I also use () to include parameters that modify a function.
717
+
718
+ Definition of Sum:
719
+
720
+ Sum(j=1 to 3){A[j]} = A[1]+A[2]+A[3]
721
+ Sum(i=0 to N){f[i]} = f[i]+...+f[N]
722
+
723
+ Definition of Dif:
724
+
725
+ Dif(x){x^n} = n*x^(n-1)
726
+ Dif(y){f{u}} = Dif(u){f{u}}*Dif(y){u}
727
+
728
+ Definition of Sig:
729
+
730
+ Sig{z} = 1/(1+Exp{-z})
731
+
732
+ Next, I describe a mathematical model of a neuron. Usually a neuron is described as being either on or off. I believe it more usefull to describe a neuron as having a pulse rate. A boolean (true or false) neuron would either have a high or a low pulse rate. In absence of any stimuli from neighbohring neurons, the neuron may also have a rest pulse rate. The rest pulse rate is due to the the bias of a neuron. A neuron receives stimuli from other neurons through the axons that connect them. These axons communicate to the receiving neuron the pulse rates of the transmitting neurons. The signal from other neurons are either strengthen or weakened at the synapse, and might either inhibit or excite the receiving neuron. The sum of all these signals is the activation of the receiving neuron. The activation of a neuron determines the neuron's actual response (its pulse rate), which the neuron then transmits to other neurons through its axons. Finally, a neuron has a maximum pulse rate which I map to 1, and a minimum pulse rate of 0.
733
+
734
+ Let the bias of a neuron be b[], the activation, y[], the response, x[], and the weights, w[,]. The pulse rate of a receiving neuron, r, is related to its activation which is related to the pulse rates of the other transmitting neurons, t, by the following equations:
735
+
736
+ x[r] = Sig{ y[r] }
737
+ y[r] = b[r] + Sum(All t){ w[r,t] * x[t] }
738
+ x[r] = Sig{ b[r] + Sum(All t){w[r,t] * x[t]} }
739
+
740
+ Next I try to derive the learning rule of the neural network. Somehow, a neuron can be trained to become more or less sensitive to stimuli from another neuron and to become more or less sensitive in general. That is, we can change the neuron's bias and synaptic weights. To do it right, I need an estimate of the error in the neuron's pulse and relate this to the correction needed in the bias and each synaptic weight. This type of error analysis is usually aproximated through differentiation. What is the error in the pulse rate due to an error in a synaptic weight?
741
+
742
+ Dif(w[r,t]){x[r]} = Dif(y[r]){Sig{y[r]}}*Dif(w[r,t]){y[r]}}
743
+
744
+ Dif(z){Sig{z}} = -Exp{-z}/(1+Exp{-z})^2
745
+ = (1-1-Exp{-z})/(1+Exp{-z})^2
746
+ = (1-(1+Exp{-z}))/(1+Exp{-z})^2
747
+ = 1/(1+Exp{-z})^2 - 1/(1+Exp{-z})
748
+ = Sig{z}^2 - Sig{z}
749
+ = Sig{z}*(Sig{z}-1) # <== THIS HAS TO BE WRONG! Looking for D{f}=f(1-f)
750
+
751
+ Dif(y[r]){Sig{y[r]}} = Sig{y[r]}*(Sig{y[r]}-1) =
752
+ = x[r]*(x[r]-1)
753
+
754
+ Dif(w[r,t]){y[r]} = Dif(w[r,t]){Sum(t){w[r,t]*x[t]}} = x[t]
755
+
756
+ Dif(w[r,t]){x[r]} = x[r] * (x[r]-1) * x[t]
757
+
758
+ Let X[r] be the correct pulse rate. The error in the pulse rate is the difference between the correct value and the actual computation, e[r]=X[r]-x[r]. Let dx[r,t] be the error in x[r] due to weight w[r,t]. Consider that dx[r,t]/dw[r,t] aproximates Dif(w[r,t]){x[r]}.
759
+
760
+ dx[r,t]/dw[r,t] = Dif(w[r,t]){x[r]}
761
+ dx[r,t] = x[r] * (x[r]-1) * x[t] * dw[r,t]
762
+
763
+ Then e[r] is the sum of all errors, dx[r,t].
764
+
765
+ e[r] = Sum(t){ dx[r,t] } =
766
+ = Sum(t=1 to N){ x[r]*(x[r]-1)*x[t]*dw[r,t] }
767
+
768
+ Straight Algebra thus far. Now the tricky part... I have related the error in a neuron's pulse to the sum of the errors in the neurons receiving synapses. What I really want is to relate it to a particular synapse. This information is lost in the sum, and I must rely on statistical chance. Let me first pretend I know that the error partitions itself among the synapses with distribution u[i,j].
769
+
770
+ e[r] = Sum(t=1 to N){ u[r,t] e[r] }
771
+ u[r,t] * e[r] = x[r] * (x[r]-1) * x[t] * dw[r,t]
772
+
773
+ The average value of u[r,t] is probably 1/N. In any case, the point is that this average is a small number less than 1. We use an equi-partition hypothesis and assume that each dw[r,t] is equally likely to be the source of error. Let u[r,t] ~ u, a small number, for all r and t. The best estimate of dw[r,t] becomes:
774
+
775
+ u * e[r] = x[r] * (x[r]-1) * x[t] * dw[r,t]
776
+ dw[r,t] = u * e[r] / ( x[r] * (x[r]-1) * x[t] ) ???
777
+
778
+ If u~1/N was not tricky, then consider this. x[] is meant to converge to either 0 or 1. That is x[] is meant to be boolean. Note how the above equation for dw[i,j] could not really work if x[] truly were 0 or 1. But x[] is a fuzzy variable never really achieving 0 or 1.
779
+
780
+ How do I conclude that... dw[r,t]=u * x[r] * (1-x[r]) * x[t] * e[r] ...which is the correct learning rule?
781
+
782
+ This is the part of the Neural Net jargon I have not been able to bring to my level. I believe the answer is buried in what is being called transposition of linear networks. My analysis is correct up to this:
783
+
784
+ u * e[r] = x[r] * (x[r]-1) * x[t] * dw[r,t]
785
+
786
+ This equation relates the error in the pulse of neuron to the error in the synaptic weight between the transmiting neuron, t, and the receiving neuron, r. I believe the transposition of linear networks states that the relationship remains the same when back propagating the error in the neural pulse to the the synaptic weight. That is, we do not invert the multiplication factor. This seems intuitive, but I admit I am confused by the paradox in the algebra above. Thus...
787
+
788
+ The Learning Rule for the (0,1) sigmoid neuron
789
+ dw[r,t] = x[r] * (x[r]-1) * x[t] * u * e[r]
790
+
791
+ The derivation for the correction to the bias is analogous. Note that the x[t] factor does not appear in this case.
792
+
793
+ db[r] = Dif(b[r]){x[r]} * u * e[r]
794
+ = x[r]*(x[r]-1)*Dif(b[r]){br} * u * e[r] = x[r]*(x[r]-1)*1 * u * e[r]
795
+ db[r] = x[r]*(x[r]-1) * u * e[r]
796
+
797
+ I was able to arrive at an estimate to the correction needed for the output neuron's synaptic weight and bias. I knew what the output was suppose to be, X[r], and the actual computation, x[r]. The error of the output neuron, e[r], was X[r]-x[r]. But what if the neuron was not an output neuron? I need to propagate back the error of the output neuron (and later for the general receiving neuron) to each of its transmitting neuron. The error of a transmitting neuron is assigned to be the sum of all errors propagated back from all of its receiving neurons.
798
+
799
+ e[t] = Sum(r){ x[r] * (x[r]-1) * x[t] * u * e[r] }
800
+
801
+ Then, when we get to adjusting the transmitting neuron we will have an estimate of its pulse error. These are the learning equations for the general neural network:
802
+
803
+ dw[r,t] = Dif(w[r,t]){x[r]} * u * e[r]
804
+ db[r] = Dif(b[r]){x[r]} * u * e[r]
805
+
806
+ The above equations give the correction to the synaptic weight and neural bias once we are given the error in a neuron. Next, we need to propagate back the known errors in the output through the network.
807
+
808
+ e[t] = X[t] - x[t] if the i'th neuron is also the output.
809
+ e[t] = Sum(r){ w[r,t] * e[r] * Dif(b[r]){x[r]} } for the rest.
810
+
811
+ Note how I sent the errors from the receiving neurons to the transmitting neuron. I hope this explains the theory well. I distilled it from the above sources.
812
+
813
+
814
+ ## Notes from reading neuronet
815
+
816
+ For some Neuronet::FeedForward object, obj:
817
+
818
+ obj.output
819
+ obj.out.values
820
+ obj.out.map{|node| node.to_f}
821
+ obj.out.map{|node| node.value}
822
+ obj.out.map{|node| unsquash(node.activation)}
823
+ obj.out.map{|node| bias+connections }
824
+
825
+ O[i] = b + Sum(1,J){|j| W[i,j] Squash(I[j])}
826
+
827
+ 100 +/- 1 = 50 + sum[1,50]{|j| w[i,j]I[j]}
828
+ de = 1/100
829
+ b += b*de
830
+
831
+ If we say that the value of some output is
832
+
833
+ Output[o] = Bias[o] + Sum{ Connection[m,o] }
834
+
835
+ has some error E
836
+
837
+ Target[o] = Output[o] + E
838
+
839
+ Then there is an e such that
840
+
841
+ Output[o](1+e) = Output[o] + E
842
+ (1+e) = (Output[o] + E)/Output[o]
843
+ 1+e = 1 + E/Output[o]
844
+ e = E/Output[o]
845
+
846
+ And Target can be set as
847
+
848
+ Target[o] = (Bias[o] + Sum{ Connection[m,o] })(1+e)
849
+ Target[o] = Bias[o](1+e) + Sum{ Connection[m,o] }(1+e)
850
+
851
+ Assumping equipartition in error,
852
+ we might then suggest the following correction to Bias:
853
+
854
+ Bias[o] = Bias[o](1+e)
855
+ Bias[o] = Bias[o]+Bias[o]e
856
+ Bias[o] += Bias[o]e
857
+
858
+
859
+ Remember that:
860
+ D{squash(u)} = squash(u)*(1-squash(u))*D{u}
861
+
862
+ @activation = squash( @bias + @connections...)
863
+ D{ @activation } = D{ squash( @bias + @connections...) }
864
+ D{ @activation } = @activation*(1-@activation) D{ @bias + @connections... }
865
+ Just the part due to bias...
866
+ D.bias{ @activation } = @activation*(1-@activation) D{ @bias }
867
+ D.bias{ @activation } / (@activation*(1-@activation)) = D{ @bias }
868
+ Just the part due to connection...
869
+ D.connection{ @activation } = @activation*(1-@activation) D{ @connections... }
870
+
871
+ D
@@ -0,0 +1,434 @@
1
+ # Neuronet module
2
+ module Neuronet
3
+ VERSION = '6.0.0'
4
+
5
+ # The squash function for Neuronet is the sigmoid function.
6
+ # One should scale the problem with most data points between -1 and 1,
7
+ # extremes under 2s, and no outbounds above 3s.
8
+ # Standard deviations from the mean is probably a good way to figure the scale of the problem.
9
+ def self.squash(unsquashed)
10
+ 1.0 / (1.0 + Math.exp(-unsquashed))
11
+ end
12
+
13
+ def self.unsquash(squashed)
14
+ Math.log(squashed / (1.0 - squashed))
15
+ end
16
+
17
+ # By default, Neuronet builds a zeroed network.
18
+ # Noise adds random fluctuations to create a search for minima.
19
+ def self.noise
20
+ rand + rand
21
+ end
22
+
23
+ # A Node, used for the input layer.
24
+ class Node
25
+ attr_reader :activation
26
+ # A Node is constant (Input)
27
+ alias update activation
28
+
29
+ # The "real world" value of a node is the value of it's activation unsquashed.
30
+ def value=(val)
31
+ @activation = Neuronet.squash(val)
32
+ end
33
+
34
+ def initialize(val=0.0)
35
+ self.value = val
36
+ end
37
+
38
+ # The "real world" value is stored as a squashed activation.
39
+ def value
40
+ Neuronet.unsquash(@activation)
41
+ end
42
+
43
+ # Node is a terminal where backpropagation ends.
44
+ def backpropagate(error)
45
+ # to be over-ridden
46
+ nil
47
+ end
48
+ end
49
+
50
+ # A weighted connection to a neuron (or node).
51
+ class Connection
52
+ attr_accessor :node, :weight
53
+ def initialize(node, weight=0.0)
54
+ @node, @weight = node, weight
55
+ end
56
+
57
+ # The value of a connection is the weighted activation of the connected node.
58
+ def value
59
+ @node.activation * @weight
60
+ end
61
+
62
+ # Updates and returns the value of the connection.
63
+ # Updates the connected node.
64
+ def update
65
+ @node.update * @weight
66
+ end
67
+
68
+ # Adjusts the connection weight according to error and
69
+ # backpropagates the error to the connected node.
70
+ def backpropagate(error)
71
+ @weight += @node.activation * error * Neuronet.noise
72
+ @node.backpropagate(error)
73
+ end
74
+ end
75
+
76
+ # A Neuron with bias and connections
77
+ class Neuron < Node
78
+ attr_reader :connections
79
+ attr_accessor :bias
80
+ def initialize(bias=0.0)
81
+ super(bias)
82
+ @connections = []
83
+ @bias = bias
84
+ end
85
+
86
+ # Updates the activation with the current value of bias and updated values of connections.
87
+ def update
88
+ self.value = @bias + @connections.inject(0.0){|sum,connection| sum + connection.update}
89
+ end
90
+
91
+ # Updates the activation with the current values of bias and connections
92
+ # For when connections are already updated.
93
+ def partial
94
+ self.value = @bias + @connections.inject(0.0){|sum,connection| sum + connection.value}
95
+ end
96
+
97
+ # Adjusts bias according to error and
98
+ # backpropagates the error to the connections.
99
+ def backpropagate(error)
100
+ @bias += error * Neuronet.noise
101
+ @connections.each{|connection| connection.backpropagate(error)}
102
+ end
103
+
104
+ # Connects the neuron to another node.
105
+ # Updates the activation with the new connection.
106
+ # The default weight=0 means there is no initial association
107
+ def connect(node, weight=0.0)
108
+ @connections.push(Connection.new(node,weight))
109
+ update
110
+ end
111
+ end
112
+
113
+ # This is the Input Layer
114
+ class InputLayer < Array
115
+ def initialize(length) # number of nodes
116
+ super(length)
117
+ 0.upto(length-1){|index| self[index] = Neuronet::Node.new }
118
+ end
119
+
120
+ # This is where one enters the "real world" inputs.
121
+ def set(inputs)
122
+ 0.upto(self.length-1){|index| self[index].value = inputs[index]}
123
+ end
124
+ end
125
+
126
+ # Just a regular Layer
127
+ class Layer < Array
128
+ def initialize(length)
129
+ super(length)
130
+ 0.upto(length-1){|index| self[index] = Neuronet::Neuron.new }
131
+ end
132
+
133
+ # Allows one to fully connect layers.
134
+ def connect(layer, weight=0.0)
135
+ # creates the neuron matrix... note that node can be either Neuron or Node class.
136
+ self.each{|neuron| layer.each{|node| neuron.connect(node,weight) }}
137
+ end
138
+
139
+ # updates layer with current values of the previous layer
140
+ def partial
141
+ self.each{|neuron| neuron.partial}
142
+ end
143
+
144
+ # Takes the real world targets for each node in this layer
145
+ # and backpropagates the error to each node.
146
+ # Note that the learning constant is really a value
147
+ # that needs to be determined for each network.
148
+ def train(targets, learning)
149
+ 0.upto(self.length-1) do |index|
150
+ node = self[index]
151
+ node.backpropagate(learning*(targets[index] - node.value))
152
+ end
153
+ end
154
+
155
+ # Returns the real world values of this layer.
156
+ def values
157
+ self.map{|node| node.value}
158
+ end
159
+ end
160
+
161
+ # A Feed Forward Network
162
+ class FeedForward < Array
163
+ # Whatchamacallits?
164
+ def mu
165
+ sum = 1.0
166
+ 1.upto(self.length-1) do |i|
167
+ n, m = self[i-1].length, self[i].length
168
+ sum += n + n*m
169
+ end
170
+ return sum
171
+ end
172
+ def muk(k=1.0)
173
+ @learning = k/mu
174
+ end
175
+ def num(n)
176
+ @learning = 1.0/(Math.sqrt(1.0+n) * mu)
177
+ end
178
+
179
+ attr_reader :in, :out
180
+ attr_reader :yin, :yang
181
+ attr_accessor :learning
182
+ def initialize(layers)
183
+ super(length = layers.length)
184
+ @in = self[0] = Neuronet::InputLayer.new(layers[0])
185
+ (1).upto(length-1){|index|
186
+ self[index] = Neuronet::Layer.new(layers[index])
187
+ self[index].connect(self[index-1])
188
+ }
189
+ @out = self.last
190
+ @yin = self[1] # first middle layer
191
+ @yang = self[-2] # last middle layer
192
+ @learning = 1.0/mu
193
+ end
194
+
195
+ def update
196
+ # update up the layers
197
+ (1).upto(self.length-1){|index| self[index].partial}
198
+ end
199
+
200
+ def set(inputs)
201
+ @in.set(inputs)
202
+ update
203
+ end
204
+
205
+ def train!(targets)
206
+ @out.train(targets, @learning)
207
+ update
208
+ end
209
+
210
+ # trains an input/output pair
211
+ def exemplar(inputs, targets)
212
+ set(inputs)
213
+ train!(targets)
214
+ end
215
+
216
+ def input
217
+ @in.values
218
+ end
219
+
220
+ def output
221
+ @out.values
222
+ end
223
+ end
224
+
225
+ # Scales the problem
226
+ class Scale
227
+ attr_accessor :spread, :center
228
+ attr_writer :init
229
+
230
+ def initialize(factor=1.0,center=nil,spread=nil)
231
+ @factor,@center,@spread = factor,center,spread
232
+ @centered, @spreaded = center.nil?, spread.nil?
233
+ @init = true
234
+ end
235
+
236
+ def set_init(inputs)
237
+ @min, @max = inputs.minmax
238
+ end
239
+
240
+ # In this case, inputs is unused, but
241
+ # it's there for the general case.
242
+ def set_spread(inputs)
243
+ @spread = (@max - @min) / 2.0
244
+ end
245
+
246
+ # In this case, inputs is unused, but
247
+ # it's there for the general case.
248
+ def set_center(inputs)
249
+ @center = (@max + @min) / 2.0
250
+ end
251
+
252
+ def set(inputs)
253
+ set_init(inputs) if @init
254
+ set_center(inputs) if @centered
255
+ set_spread(inputs) if @spreaded
256
+ end
257
+
258
+ def mapped(inputs)
259
+ factor = 1.0 / (@factor*@spread)
260
+ inputs.map{|value| factor*(value - @center)}
261
+ end
262
+ alias mapped_input mapped
263
+ alias mapped_output mapped
264
+
265
+ # Note that it could also unmap inputs, but
266
+ # outputs is typically what's being transformed back.
267
+ def unmapped(outputs)
268
+ factor = @factor*@spread
269
+ outputs.map{|value| factor*value + @center}
270
+ end
271
+ alias unmapped_input unmapped
272
+ alias unmapped_output unmapped
273
+ end
274
+
275
+ # Normal Distribution
276
+ class Gaussian < Scale
277
+ def initialize(factor=1.0,center=nil,spread=nil)
278
+ super(factor, center, spread)
279
+ self.init = false
280
+ end
281
+
282
+ def set_center(inputs)
283
+ self.center = inputs.inject(0.0,:+) / inputs.length
284
+ end
285
+
286
+ def set_spread(inputs)
287
+ self.spread = Math.sqrt(inputs.map{|value|
288
+ self.center - value}.inject(0.0){|sum,value|
289
+ value*value + sum} / (inputs.length - 1.0))
290
+ end
291
+ end
292
+
293
+ # Log-Normal Distribution
294
+ class LogNormal < Gaussian
295
+ def initialize(factor=1.0,center=nil,spread=nil)
296
+ super(factor, center, spread)
297
+ end
298
+
299
+ def set(inputs)
300
+ super( inputs.map{|value| Math::log(value)} )
301
+ end
302
+
303
+ def mapped(inputs)
304
+ super( inputs.map{|value| Math::log(value)} )
305
+ end
306
+ alias mapped_input mapped
307
+ alias mapped_output mapped
308
+
309
+ def unmapped(outputs)
310
+ super(outputs).map{|value| Math::exp(value)}
311
+ end
312
+ alias unmapped_input unmapped
313
+ alias unmapped_output unmapped
314
+ end
315
+
316
+ # Series Network for similar input/output values
317
+ class ScaledNetwork < FeedForward
318
+ attr_accessor :distribution
319
+
320
+ def initialize(layers)
321
+ super(layers)
322
+ @distribution = Gaussian.new
323
+ end
324
+
325
+ def train!(targets)
326
+ super(@distribution.mapped_output(targets))
327
+ end
328
+
329
+ # @param (List of Float) values
330
+ def set(inputs)
331
+ super(@distribution.mapped_input(inputs))
332
+ end
333
+
334
+ def reset(inputs)
335
+ @distribution.set(inputs)
336
+ set(inputs)
337
+ end
338
+
339
+ def output
340
+ @distribution.unmapped_output(super)
341
+ end
342
+
343
+ def input
344
+ @distribution.unmapped_input(super)
345
+ end
346
+ end
347
+
348
+ # A Perceptron Hybrid
349
+ module Tao
350
+ def mu
351
+ sum = super
352
+ sum += self.first.length * self.last.length
353
+ return sum
354
+ end
355
+ def self.bless(myself)
356
+ # @out directly connects to @in
357
+ myself.out.connect(myself.in)
358
+ myself.extend Tao
359
+ # Save current learning and set it to muk(1).
360
+ l, m = myself.learning, myself.muk
361
+ # If learning was lower b/4, revert.
362
+ myself.learning = l if l<m
363
+ return myself
364
+ end
365
+ end
366
+
367
+ # sets @yin to initially mirror @in
368
+ module Yin
369
+ def self.bless(myself)
370
+ yin = myself.yin
371
+ if yin.length < (in_length = myself.in.length)
372
+ raise "First hidden layer, yin, needs to have at least the same length as input"
373
+ end
374
+ # connections from yin[i] to in[i] are 1... mirroring to start.
375
+ 0.upto(in_length-1) do |index|
376
+ node = yin[index]
377
+ node.connections[index].weight = 1.0
378
+ node.bias = -0.5
379
+ end
380
+ return myself
381
+ end
382
+ end
383
+
384
+ # sets @out to initially mirror @yang
385
+ module Yang
386
+ def self.bless(myself)
387
+ offset = myself.yang.length - (out_length = (out = myself.out).length)
388
+ raise "Last hidden layer, yang, needs to have at least the same length as output" if offset < 0
389
+ 0.upto(out_length-1) do |index|
390
+ node = out[index]
391
+ node.connections[offset+index].weight = 1.0
392
+ node.bias = -0.5
393
+ end
394
+ return myself
395
+ end
396
+ end
397
+
398
+ # And convenient composites...
399
+
400
+ # Yin-Yang-ed :))
401
+ module YinYang
402
+ def self.bless(myself)
403
+ Yin.bless(myself)
404
+ Yang.bless(myself)
405
+ return myself
406
+ end
407
+ end
408
+
409
+ module TaoYinYang
410
+ def self.bless(myself)
411
+ Tao.bless(myself)
412
+ Yin.bless(myself)
413
+ Yang.bless(myself)
414
+ return myself
415
+ end
416
+ end
417
+
418
+ module TaoYin
419
+ def self.bless(myself)
420
+ Tao.bless(myself)
421
+ Yin.bless(myself)
422
+ return myself
423
+ end
424
+ end
425
+
426
+ module TaoYang
427
+ def self.bless(myself)
428
+ Tao.bless(myself)
429
+ Yang.bless(myself)
430
+ return myself
431
+ end
432
+ end
433
+
434
+ end
metadata ADDED
@@ -0,0 +1,47 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: neuronet
3
+ version: !ruby/object:Gem::Version
4
+ version: 6.0.0
5
+ prerelease:
6
+ platform: ruby
7
+ authors:
8
+ - carlosjhr64@gmail.com
9
+ autorequire:
10
+ bindir: bin
11
+ cert_chain: []
12
+ date: 2013-06-16 00:00:00.000000000 Z
13
+ dependencies: []
14
+ description: Build custom neural networks. 100% 1.9 Ruby.
15
+ email: carlosjhr64@gmail.com
16
+ executables: []
17
+ extensions: []
18
+ extra_rdoc_files: []
19
+ files:
20
+ - ./lib/neuronet.rb
21
+ - ./README.md
22
+ homepage: https://github.com/carlosjhr64/neuronet
23
+ licenses: []
24
+ post_install_message:
25
+ rdoc_options: []
26
+ require_paths:
27
+ - lib
28
+ required_ruby_version: !ruby/object:Gem::Requirement
29
+ none: false
30
+ requirements:
31
+ - - ! '>='
32
+ - !ruby/object:Gem::Version
33
+ version: '0'
34
+ required_rubygems_version: !ruby/object:Gem::Requirement
35
+ none: false
36
+ requirements:
37
+ - - ! '>='
38
+ - !ruby/object:Gem::Version
39
+ version: '0'
40
+ requirements: []
41
+ rubyforge_project:
42
+ rubygems_version: 1.8.11
43
+ signing_key:
44
+ specification_version: 3
45
+ summary: Library to create neural networks.
46
+ test_files: []
47
+ has_rdoc: