networkx 0.1.0 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +5 -5
- data/{CODE_OF_CONDUCT.md → .github/CODE_OF_CONDUCT.md} +0 -0
- data/{CONTRIBUTING.md → .github/CONTRIBUTING.md} +21 -11
- data/.github/ISSUE_TEMPLATE.md +15 -0
- data/.github/PULL_REQUEST_TEMPLATE.md +10 -0
- data/.github/workflows/ci.yml +17 -0
- data/.github/workflows/doc.yml +23 -0
- data/.github/workflows/gem-push.yml +45 -0
- data/.rspec +0 -1
- data/.rubocop.yml +56 -63
- data/.yardopts +0 -1
- data/README.md +27 -27
- data/Rakefile +2 -3
- data/lib/networkx/auxillary_functions/cliques.rb +62 -0
- data/lib/networkx/auxillary_functions/cycles.rb +114 -0
- data/lib/networkx/auxillary_functions/dag.rb +59 -0
- data/lib/networkx/auxillary_functions/eccentricity.rb +37 -0
- data/lib/networkx/auxillary_functions/mis.rb +23 -0
- data/lib/networkx/auxillary_functions/mst.rb +33 -0
- data/lib/networkx/auxillary_functions/union_find.rb +104 -0
- data/lib/networkx/auxillary_functions/vitality.rb +13 -0
- data/lib/networkx/auxillary_functions/wiener.rb +13 -0
- data/lib/networkx/converters/to_csv.rb +45 -0
- data/lib/networkx/converters/to_json.rb +37 -0
- data/lib/networkx/digraph.rb +234 -0
- data/lib/networkx/flow/capacityscaling.rb +249 -0
- data/lib/networkx/flow/edmondskarp.rb +115 -0
- data/lib/networkx/flow/preflowpush.rb +249 -0
- data/lib/networkx/flow/shortestaugmentingpath.rb +154 -0
- data/lib/networkx/flow/utils.rb +139 -0
- data/lib/networkx/graph.rb +448 -0
- data/lib/networkx/link_analysis/hits.rb +59 -0
- data/lib/networkx/link_analysis/pagerank.rb +89 -0
- data/lib/networkx/multidigraph.rb +249 -0
- data/lib/networkx/multigraph.rb +199 -0
- data/lib/networkx/operators/all.rb +65 -0
- data/lib/networkx/operators/binary.rb +222 -0
- data/lib/networkx/operators/product.rb +201 -0
- data/lib/networkx/operators/unary.rb +17 -0
- data/lib/networkx/others/bridges.rb +30 -0
- data/lib/networkx/others/generators.rb +237 -0
- data/lib/networkx/others/grid_2d_graph.rb +38 -0
- data/lib/networkx/others/info.rb +11 -0
- data/lib/networkx/others/number_connected_components.rb +17 -0
- data/lib/networkx/others/reads.rb +52 -0
- data/lib/networkx/shortest_path/astar.rb +73 -0
- data/lib/networkx/shortest_path/dense.rb +29 -0
- data/lib/networkx/shortest_path/unweighted.rb +136 -0
- data/lib/networkx/shortest_path/weighted.rb +417 -0
- data/lib/networkx/to_matrix.rb +51 -0
- data/lib/networkx/traversals/bfs.rb +110 -0
- data/lib/networkx/traversals/dfs.rb +135 -0
- data/lib/networkx/traversals/edge_dfs.rb +114 -0
- data/lib/networkx/version.rb +1 -1
- data/lib/networkx.rb +43 -1
- data/networkx.gemspec +14 -12
- metadata +118 -62
- data/.rspec_formatter.rb +0 -24
- data/.travis.yml +0 -18
- data/Guardfile +0 -7
@@ -0,0 +1,222 @@
|
|
1
|
+
module NetworkX
|
2
|
+
# Returns the edges of the graph in an array
|
3
|
+
def self.get_edges(graph)
|
4
|
+
edges = []
|
5
|
+
if graph.is_a?(MultiGraph)
|
6
|
+
graph.adj.each do |u, v_keys|
|
7
|
+
v_keys.each do |v, key_attrs|
|
8
|
+
next if u > v
|
9
|
+
|
10
|
+
key_attrs.each do |_key, attributes|
|
11
|
+
edges << [u, v, attributes]
|
12
|
+
end
|
13
|
+
end
|
14
|
+
end
|
15
|
+
else
|
16
|
+
graph.adj.each do |u, u_attrs|
|
17
|
+
u_attrs.each do |v, uv_attrs|
|
18
|
+
edges << [u, v, uv_attrs]
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
22
|
+
edges
|
23
|
+
end
|
24
|
+
|
25
|
+
# Transforms the labels of the nodes of the graphs
|
26
|
+
# so that they are disjoint.
|
27
|
+
def self.convert_to_distinct_labels(graph, starting_int = -1)
|
28
|
+
new_graph = graph.class.new
|
29
|
+
|
30
|
+
idx_dict = graph.nodes.keys.to_h do |v|
|
31
|
+
starting_int += 1
|
32
|
+
[v, starting_int]
|
33
|
+
end
|
34
|
+
|
35
|
+
graph.nodes.each do |u, attrs|
|
36
|
+
new_graph.add_node(u.to_s + idx_dict[u].to_s, **attrs)
|
37
|
+
end
|
38
|
+
|
39
|
+
graph.adj.each do |u, u_edges|
|
40
|
+
u_edges.each do |v, uv_attrs|
|
41
|
+
if graph.multigraph?
|
42
|
+
uv_attrs.each do |_k, attrs|
|
43
|
+
new_graph.add_edge(u.to_s + idx_dict[u].to_s, v.to_s + idx_dict[v].to_s, **attrs)
|
44
|
+
end
|
45
|
+
else
|
46
|
+
new_graph.add_edge(u.to_s + idx_dict[u].to_s, v.to_s + idx_dict[v].to_s, **uv_attrs)
|
47
|
+
end
|
48
|
+
end
|
49
|
+
end
|
50
|
+
new_graph
|
51
|
+
end
|
52
|
+
|
53
|
+
# Performs the intersection of two graphs
|
54
|
+
#
|
55
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
56
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
57
|
+
#
|
58
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the intersection of the two graphs
|
59
|
+
def self.intersection(g1, g2)
|
60
|
+
result = g1.class.new
|
61
|
+
|
62
|
+
raise ArgumentError, 'Arguments must be both Graphs or MultiGraphs!' unless g1.multigraph? == g2.multigraph?
|
63
|
+
raise ArgumentError, 'Node sets must be equal!' unless (g1.nodes.keys - g2.nodes.keys).empty?
|
64
|
+
|
65
|
+
g1.nodes.each { |u, attrs| result.add_node(u, **attrs) }
|
66
|
+
|
67
|
+
g1, g2 = g2, g1 if g1.number_of_edges > g2.number_of_edges
|
68
|
+
g1.adj.each do |u, u_edges|
|
69
|
+
u_edges.each do |v, uv_attrs|
|
70
|
+
if g1.multigraph?
|
71
|
+
next if u > v && g1.instance_of?(MultiGraph)
|
72
|
+
|
73
|
+
uv_attrs.each do |k, attrs|
|
74
|
+
result.add_edge(u, v, **attrs) if g2.edge?(u, v, k)
|
75
|
+
end
|
76
|
+
elsif g2.edge?(u, v)
|
77
|
+
result.add_edge(u, v, **uv_attrs)
|
78
|
+
end
|
79
|
+
end
|
80
|
+
end
|
81
|
+
result
|
82
|
+
end
|
83
|
+
|
84
|
+
# Performs the difference of two graphs
|
85
|
+
#
|
86
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
87
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
88
|
+
#
|
89
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the difference of the two graphs
|
90
|
+
def self.difference(g1, g2)
|
91
|
+
result = g1.class.new
|
92
|
+
|
93
|
+
raise ArgumentError, 'Arguments must be both Graphs or MultiGraphs!' unless g1.multigraph? == g2.multigraph?
|
94
|
+
raise ArgumentError, 'Node sets must be equal!' unless (g1.nodes.keys - g2.nodes.keys).empty?
|
95
|
+
|
96
|
+
g1.nodes.each { |u, attrs| result.add_node(u, **attrs) }
|
97
|
+
|
98
|
+
g1.adj.each do |u, u_edges|
|
99
|
+
u_edges.each do |v, uv_attrs|
|
100
|
+
if g1.multigraph?
|
101
|
+
next if u > v && g1.instance_of?(MultiGraph)
|
102
|
+
|
103
|
+
uv_attrs.each do |k, attrs|
|
104
|
+
result.add_edge(u, v, **attrs) unless g2.edge?(u, v, k)
|
105
|
+
end
|
106
|
+
else
|
107
|
+
result.add_edge(u, v, **uv_attrs) unless g2.edge?(u, v)
|
108
|
+
end
|
109
|
+
end
|
110
|
+
end
|
111
|
+
result
|
112
|
+
end
|
113
|
+
|
114
|
+
# Performs the symmetric difference of two graphs
|
115
|
+
#
|
116
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
117
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
118
|
+
#
|
119
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the symmetric difference of the two graphs
|
120
|
+
def self.symmetric_difference(g1, g2)
|
121
|
+
result = g1.class.new
|
122
|
+
|
123
|
+
raise ArgumentError, 'Arguments must be both Graphs or MultiGraphs!' unless g1.multigraph? == g2.multigraph?
|
124
|
+
raise ArgumentError, 'Node sets must be equal!' unless (g1.nodes.keys - g2.nodes.keys).empty?
|
125
|
+
|
126
|
+
g1.nodes.each { |u, attrs| result.add_node(u, **attrs) }
|
127
|
+
|
128
|
+
g1.adj.each do |u, u_edges|
|
129
|
+
u_edges.each do |v, uv_attrs|
|
130
|
+
if g1.multigraph?
|
131
|
+
next if u > v && g1.instance_of?(MultiGraph)
|
132
|
+
|
133
|
+
uv_attrs.each do |k, attrs|
|
134
|
+
result.add_edge(u, v, **attrs) unless g2.edge?(u, v, k)
|
135
|
+
end
|
136
|
+
else
|
137
|
+
result.add_edge(u, v, **uv_attrs) unless g2.edge?(u, v)
|
138
|
+
end
|
139
|
+
end
|
140
|
+
end
|
141
|
+
|
142
|
+
g2.adj.each do |u, u_edges|
|
143
|
+
u_edges.each do |v, uv_attrs|
|
144
|
+
next if u > v && g1.instance_of?(MultiGraph)
|
145
|
+
|
146
|
+
if g2.multigraph?
|
147
|
+
uv_attrs.each do |k, attrs|
|
148
|
+
result.add_edge(u, v, **attrs) unless g1.edge?(u, v, k)
|
149
|
+
end
|
150
|
+
else
|
151
|
+
result.add_edge(u, v, **uv_attrs) unless g1.edge?(u, v)
|
152
|
+
end
|
153
|
+
end
|
154
|
+
end
|
155
|
+
result
|
156
|
+
end
|
157
|
+
|
158
|
+
# Performs the composition of two graphs
|
159
|
+
#
|
160
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
161
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
162
|
+
#
|
163
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the composition of the two graphs
|
164
|
+
def self.compose(g1, g2)
|
165
|
+
result = g1.class.new
|
166
|
+
|
167
|
+
raise ArgumentError, 'Arguments must be both Graphs or MultiGraphs!' unless g1.multigraph? == g2.multigraph?
|
168
|
+
|
169
|
+
result.add_nodes(g1.nodes.map { |u, attrs| [u, attrs] })
|
170
|
+
result.add_nodes(g2.nodes.map { |u, attrs| [u, attrs] })
|
171
|
+
|
172
|
+
if g1.multigraph?
|
173
|
+
g1.adj.each { |u, e| e.each { |v, uv_edges| uv_edges.each_value { |attrs| result.add_edge(u, v, **attrs) } } }
|
174
|
+
g2.adj.each { |u, e| e.each { |v, uv_edges| uv_edges.each_value { |attrs| result.add_edge(u, v, **attrs) } } }
|
175
|
+
else
|
176
|
+
g1.adj.each { |u, u_edges| u_edges.each { |v, attrs| result.add_edge(u, v, **attrs) } }
|
177
|
+
g2.adj.each { |u, u_edges| u_edges.each { |v, attrs| result.add_edge(u, v, **attrs) } }
|
178
|
+
end
|
179
|
+
result
|
180
|
+
end
|
181
|
+
|
182
|
+
# Performs the union of two graphs
|
183
|
+
#
|
184
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
185
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
186
|
+
#
|
187
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the union of the two graphs
|
188
|
+
def self.union(g1, g2)
|
189
|
+
raise ArgumentError, 'Arguments must be both Graphs or MultiGraphs!' unless g1.multigraph? == g2.multigraph?
|
190
|
+
|
191
|
+
new_graph = g1.class.new
|
192
|
+
new_graph.graph.merge!(g1.graph)
|
193
|
+
new_graph.graph.merge!(g2.graph)
|
194
|
+
|
195
|
+
raise ArgumentError, 'Graphs must be disjoint!' unless (g1.nodes.keys & g2.nodes.keys).empty?
|
196
|
+
|
197
|
+
g1_edges = get_edges(g1)
|
198
|
+
g2_edges = get_edges(g2)
|
199
|
+
|
200
|
+
new_graph.add_nodes(g1.nodes.keys)
|
201
|
+
new_graph.add_edges(g1_edges)
|
202
|
+
new_graph.add_nodes(g2.nodes.keys)
|
203
|
+
new_graph.add_edges(g2_edges)
|
204
|
+
|
205
|
+
new_graph
|
206
|
+
end
|
207
|
+
|
208
|
+
# Performs the disjoint union of two graphs
|
209
|
+
#
|
210
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
211
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
212
|
+
#
|
213
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the disjoint union of the two graphs
|
214
|
+
def self.disjoint_union(g1, g2)
|
215
|
+
new_g1 = convert_to_distinct_labels(g1)
|
216
|
+
new_g2 = convert_to_distinct_labels(g2)
|
217
|
+
result = union(new_g1, new_g2)
|
218
|
+
result.graph.merge!(g1.graph)
|
219
|
+
result.graph.merge!(g2.graph)
|
220
|
+
result
|
221
|
+
end
|
222
|
+
end
|
@@ -0,0 +1,201 @@
|
|
1
|
+
module NetworkX
|
2
|
+
# Returns the edges of the graph in an array
|
3
|
+
def self.edges_in_array(graph)
|
4
|
+
edge_array = []
|
5
|
+
if graph.multigraph?
|
6
|
+
graph.adj.each do |u, u_edges|
|
7
|
+
u_edges.each do |v, uv_edges|
|
8
|
+
uv_edges.each do |_k, attrs|
|
9
|
+
edge_array << [u, v, attrs]
|
10
|
+
end
|
11
|
+
end
|
12
|
+
end
|
13
|
+
else
|
14
|
+
graph.adj.each do |u, u_edges|
|
15
|
+
u_edges.each do |v, attrs|
|
16
|
+
edge_array << [u, v, attrs]
|
17
|
+
end
|
18
|
+
end
|
19
|
+
end
|
20
|
+
edge_array
|
21
|
+
end
|
22
|
+
|
23
|
+
# Returns the hash product of two hashes
|
24
|
+
def self.hash_product(hash1, hash2)
|
25
|
+
(hash1.keys | hash2.keys).to_h { |n| [n, [hash1[n], hash2[n]]] }
|
26
|
+
end
|
27
|
+
|
28
|
+
# Returns the node product of nodes of two graphs
|
29
|
+
def self.node_product(g1, g2)
|
30
|
+
n_product = []
|
31
|
+
g1.nodes.each do |k1, attrs1|
|
32
|
+
g2.nodes.each do |k2, attrs2|
|
33
|
+
n_product << [[k1, k2], hash_product(attrs1, attrs2)]
|
34
|
+
end
|
35
|
+
end
|
36
|
+
n_product
|
37
|
+
end
|
38
|
+
|
39
|
+
# Returns the product of directed edges with edges
|
40
|
+
def self.directed_edges_cross_edges(g1, g2)
|
41
|
+
result = []
|
42
|
+
edges_in_array(g1).each do |u, v, c|
|
43
|
+
edges_in_array(g2).each do |x, y, d|
|
44
|
+
result << [[u, x], [v, y], hash_product(c, d)]
|
45
|
+
end
|
46
|
+
end
|
47
|
+
result
|
48
|
+
end
|
49
|
+
|
50
|
+
# Returns the product of undirected edges with edges
|
51
|
+
def self.undirected_edges_cross_edges(g1, g2)
|
52
|
+
result = []
|
53
|
+
edges_in_array(g1).each do |u, v, c|
|
54
|
+
edges_in_array(g2).each do |x, y, d|
|
55
|
+
result << [[v, x], [u, y], hash_product(c, d)]
|
56
|
+
end
|
57
|
+
end
|
58
|
+
result
|
59
|
+
end
|
60
|
+
|
61
|
+
# Returns the product of edges with edges
|
62
|
+
def self.edges_cross_nodes(g1, g2)
|
63
|
+
result = []
|
64
|
+
edges_in_array(g1).each do |u, v, d|
|
65
|
+
g2.nodes.each_key do |x|
|
66
|
+
result << [[u, x], [v, x], d]
|
67
|
+
end
|
68
|
+
end
|
69
|
+
result
|
70
|
+
end
|
71
|
+
|
72
|
+
# Returns the product of directed nodes with edges
|
73
|
+
def self.nodes_cross_edges(g1, g2)
|
74
|
+
result = []
|
75
|
+
g1.nodes.each_key do |x|
|
76
|
+
edges_in_array(g2).each do |u, v, d|
|
77
|
+
result << [[x, u], [x, v], d]
|
78
|
+
end
|
79
|
+
end
|
80
|
+
result
|
81
|
+
end
|
82
|
+
|
83
|
+
# Returns the product of edges with pairs of nodes
|
84
|
+
def self.edges_cross_nodes_and_nodes(g1, g2)
|
85
|
+
result = []
|
86
|
+
edges_in_array(g1).each do |u, v, d|
|
87
|
+
g2.nodes.each_key do |x|
|
88
|
+
g2.nodes.each_key do |y|
|
89
|
+
result << [[u, x], [v, y], d]
|
90
|
+
end
|
91
|
+
end
|
92
|
+
end
|
93
|
+
result
|
94
|
+
end
|
95
|
+
|
96
|
+
# Initializes the product graph
|
97
|
+
def self.init_product_graph(g1, g2)
|
98
|
+
raise ArgumentError, 'Arguments must be both directed or undirected!' unless g1.directed? == g2.directed?
|
99
|
+
|
100
|
+
g = if g1.multigraph? || g2.multigraph?
|
101
|
+
NetworkX::MultiGraph.new
|
102
|
+
else
|
103
|
+
NetworkX::Graph.new
|
104
|
+
end
|
105
|
+
g = g.to_directed if g.directed?
|
106
|
+
g
|
107
|
+
end
|
108
|
+
|
109
|
+
# Returns the tensor product of two graphs
|
110
|
+
#
|
111
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
112
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
113
|
+
#
|
114
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the tensor product of the two graphs
|
115
|
+
def self.tensor_product(g1, g2)
|
116
|
+
g = init_product_graph(g1, g2)
|
117
|
+
g.add_nodes(node_product(g1, g2))
|
118
|
+
g.add_edges(directed_edges_cross_edges(g1, g2))
|
119
|
+
g.add_edges(undirected_edges_cross_edges(g1, g2)) unless g.directed?
|
120
|
+
g
|
121
|
+
end
|
122
|
+
|
123
|
+
# Returns the cartesian product of two graphs
|
124
|
+
#
|
125
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
126
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
127
|
+
#
|
128
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the cartesian product of the two graphs
|
129
|
+
def self.cartesian_product(g1, g2)
|
130
|
+
g = init_product_graph(g1, g2)
|
131
|
+
g.add_nodes(node_product(g1, g2))
|
132
|
+
g.add_edges(edges_cross_nodes(g1, g2))
|
133
|
+
g.add_edges(nodes_cross_edges(g1, g2))
|
134
|
+
g
|
135
|
+
end
|
136
|
+
|
137
|
+
# Returns the lexicographic product of two graphs
|
138
|
+
#
|
139
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
140
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
141
|
+
#
|
142
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the lexicographic product of the two graphs
|
143
|
+
def self.lexicographic_product(g1, g2)
|
144
|
+
g = init_product_graph(g1, g2)
|
145
|
+
g.add_nodes(node_product(g1, g2))
|
146
|
+
g.add_edges(edges_cross_nodes_and_nodes(g1, g2))
|
147
|
+
g.add_edges(nodes_cross_edges(g1, g2))
|
148
|
+
g
|
149
|
+
end
|
150
|
+
|
151
|
+
# Returns the strong product of two graphs
|
152
|
+
#
|
153
|
+
# @param g1 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
154
|
+
# @param g2 [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.2
|
155
|
+
#
|
156
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the strong product of the two graphs
|
157
|
+
def self.strong_product(g1, g2)
|
158
|
+
g = init_product_graph(g1, g2)
|
159
|
+
g.add_nodes(node_product(g1, g2))
|
160
|
+
g.add_edges(nodes_cross_edges(g1, g2))
|
161
|
+
g.add_edges(edges_cross_nodes(g1, g2))
|
162
|
+
g.add_edges(directed_edges_cross_edges(g1, g2))
|
163
|
+
g.add_edges(undirected_edges_cross_edges(g1, g2)) unless g.directed?
|
164
|
+
g
|
165
|
+
end
|
166
|
+
|
167
|
+
# Returns the specified power of the graph
|
168
|
+
#
|
169
|
+
# @param graph [Graph, DiGraph, MultiGraph, MultiDiGraph] graph no.1
|
170
|
+
# @param pow [Numeric] the power to which to raise the graph to
|
171
|
+
#
|
172
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the power of the graph
|
173
|
+
def self.power(graph, pow)
|
174
|
+
raise ArgumentError, 'Power must be a positive quantity!' if pow <= 0
|
175
|
+
|
176
|
+
result = NetworkX::Graph.new
|
177
|
+
result.add_nodes(graph.nodes.map { |n, attrs| [n, attrs] })
|
178
|
+
graph.nodes.each do |n, _attrs|
|
179
|
+
seen = {}
|
180
|
+
level = 1
|
181
|
+
next_level = graph.adj[n]
|
182
|
+
until next_level.empty?
|
183
|
+
this_level = next_level
|
184
|
+
next_level = {}
|
185
|
+
this_level.each do |v, _attrs|
|
186
|
+
next if v == n
|
187
|
+
|
188
|
+
unless seen.has_key?(v)
|
189
|
+
seen[v] = level
|
190
|
+
next_level.merge!(graph.adj[v])
|
191
|
+
end
|
192
|
+
end
|
193
|
+
break if pow <= level
|
194
|
+
|
195
|
+
level += 1
|
196
|
+
end
|
197
|
+
result.add_edges(seen.map { |v, _| [n, v] })
|
198
|
+
end
|
199
|
+
result
|
200
|
+
end
|
201
|
+
end
|
@@ -0,0 +1,17 @@
|
|
1
|
+
module NetworkX
|
2
|
+
# Performs the complement operation on the graph
|
3
|
+
#
|
4
|
+
# @param [Graph, DiGraph, MultiGraph, MultiDiGraph] graph
|
5
|
+
#
|
6
|
+
# @return [Graph, DiGraph, MultiGraph, MultiDiGraph] the complement of the graph
|
7
|
+
def self.complement(graph)
|
8
|
+
result = Marshal.load(Marshal.dump(graph))
|
9
|
+
result.clear
|
10
|
+
|
11
|
+
result.add_nodes(graph.nodes.map { |u, attrs| [u, attrs] })
|
12
|
+
graph.adj.each do |u, u_edges|
|
13
|
+
graph.nodes.each { |v, attrs| result.add_edge(u, v, **attrs) if !u_edges.has_key?(v) && u != v }
|
14
|
+
end
|
15
|
+
result
|
16
|
+
end
|
17
|
+
end
|
@@ -0,0 +1,30 @@
|
|
1
|
+
require_relative '../auxillary_functions/union_find'
|
2
|
+
|
3
|
+
module NetworkX
|
4
|
+
# @return [[Object, Object]] bridges
|
5
|
+
#
|
6
|
+
# @param graph [Graph] Graph
|
7
|
+
def self.bridges(graph)
|
8
|
+
each_bridge(graph).to_a
|
9
|
+
end
|
10
|
+
|
11
|
+
# @param graph [Graph] Graph
|
12
|
+
def self.each_bridge(graph)
|
13
|
+
return enum_for(:each_bridge, graph) unless block_given?
|
14
|
+
|
15
|
+
graph.each_edge.with_index do |(s_i, t_i), i|
|
16
|
+
uf = UnionFind.new(1..graph.number_of_nodes)
|
17
|
+
graph.each_edge.with_index do |(s_j, t_j), j|
|
18
|
+
uf.unite(s_j, t_j) if i != j
|
19
|
+
end
|
20
|
+
yield [s_i, t_i] unless uf.same?(s_i, t_i)
|
21
|
+
end
|
22
|
+
end
|
23
|
+
|
24
|
+
# @return [Integer] the number of bridges
|
25
|
+
#
|
26
|
+
# @param graph [Graph] Graph
|
27
|
+
def self.number_of_bridges(graph)
|
28
|
+
bridges(graph).size
|
29
|
+
end
|
30
|
+
end
|
@@ -0,0 +1,237 @@
|
|
1
|
+
require_relative '../../networkx'
|
2
|
+
|
3
|
+
module NetworkX
|
4
|
+
class Graph
|
5
|
+
# private class method
|
6
|
+
def self.complete_edges(n)
|
7
|
+
n = (0...n) if n.is_a?(Integer)
|
8
|
+
|
9
|
+
edges = []
|
10
|
+
n.each do |i|
|
11
|
+
n.each do |j|
|
12
|
+
edges << [i, j] if i < j
|
13
|
+
end
|
14
|
+
end
|
15
|
+
edges
|
16
|
+
end
|
17
|
+
|
18
|
+
def self.balanced_tree(r, h)
|
19
|
+
edges = []
|
20
|
+
q = [0]
|
21
|
+
i = 0
|
22
|
+
h.times do
|
23
|
+
t = q.dup
|
24
|
+
q.clear
|
25
|
+
t.each do |v|
|
26
|
+
r.times do
|
27
|
+
i += 1
|
28
|
+
edges << [v, i]
|
29
|
+
q << i
|
30
|
+
end
|
31
|
+
end
|
32
|
+
end
|
33
|
+
graph = new(name: "balanced_tree(#{r}, #{h})")
|
34
|
+
graph.add_edges(edges)
|
35
|
+
graph
|
36
|
+
end
|
37
|
+
|
38
|
+
def self.barbell_graph(m1, m2)
|
39
|
+
edges = complete_edges(m1)
|
40
|
+
edges.concat((m1..m2 + m1).map { |k| [k - 1, k] })
|
41
|
+
edges.concat complete_edges(m1 + m2...m1 + m2 + m1)
|
42
|
+
|
43
|
+
graph = new(name: "barbell_graph(#{m1}, #{m2})")
|
44
|
+
graph.add_edges(edges)
|
45
|
+
graph
|
46
|
+
end
|
47
|
+
|
48
|
+
def self.complete_graph(n)
|
49
|
+
n = (0...n) if n.is_a?(Integer)
|
50
|
+
|
51
|
+
edges = []
|
52
|
+
n.each do |i|
|
53
|
+
n.each do |j|
|
54
|
+
edges << [i, j] if i < j
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
graph = new(name: "complete_graph(#{n})")
|
59
|
+
graph.add_edges(edges)
|
60
|
+
graph
|
61
|
+
end
|
62
|
+
|
63
|
+
def self.circular_ladder_graph(n)
|
64
|
+
edges = (0...n - 1).map { |v| [v, v + 1] }
|
65
|
+
edges << [n - 1, 0]
|
66
|
+
edges.concat((n...2 * n - 1).map { |v| [v, v + 1] })
|
67
|
+
edges << [2 * n - 1, n]
|
68
|
+
edges.concat((0...n).map { |v| [v, v + n] })
|
69
|
+
|
70
|
+
graph = new(name: "circular_ladder_graph(#{n})")
|
71
|
+
graph.add_edges(edges)
|
72
|
+
graph
|
73
|
+
end
|
74
|
+
|
75
|
+
def self.cycle_graph(n)
|
76
|
+
edges = (0...n - 1).map { |v| [v, v + 1] }
|
77
|
+
edges << [n - 1, 0]
|
78
|
+
|
79
|
+
graph = new(name: "cycle_graph(#{n})")
|
80
|
+
graph.add_edges(edges)
|
81
|
+
graph
|
82
|
+
end
|
83
|
+
|
84
|
+
def self.empty_graph(number_of_nodes)
|
85
|
+
empty_graph = new(name: "empty_graph#{number_of_nodes}")
|
86
|
+
empty_graph.add_nodes_from(0...number_of_nodes)
|
87
|
+
empty_graph
|
88
|
+
end
|
89
|
+
|
90
|
+
def self.ladder_graph(n)
|
91
|
+
edges = (0...n - 1).map { |k| [k, k + 1] }
|
92
|
+
edges.concat((n...2 * n - 1).map { |k| [k, k + 1] })
|
93
|
+
edges.concat((0...n).map { |k| [k, k + n] })
|
94
|
+
|
95
|
+
graph = new(name: "ladder_graph(#{n})")
|
96
|
+
graph.add_edges(edges)
|
97
|
+
graph
|
98
|
+
end
|
99
|
+
|
100
|
+
def self.lollipop_graph(m, n)
|
101
|
+
edges = complete_edges(m)
|
102
|
+
edges.concat((m - 1...m - 1 + n).map { |v| [v, v + 1] })
|
103
|
+
|
104
|
+
graph = new(name: "lollipop_graph(#{m}, #{n})")
|
105
|
+
graph.add_edges(edges)
|
106
|
+
graph
|
107
|
+
end
|
108
|
+
|
109
|
+
def self.null_graph
|
110
|
+
new(name: 'null_graph')
|
111
|
+
end
|
112
|
+
|
113
|
+
def self.path_graph(n)
|
114
|
+
edges = (0...n - 1).map { |v| [v, v + 1] }
|
115
|
+
|
116
|
+
graph = new(name: "path_graph(#{n})")
|
117
|
+
graph.add_edges(edges)
|
118
|
+
graph
|
119
|
+
end
|
120
|
+
|
121
|
+
def self.star_graph(n)
|
122
|
+
edges = (1..n).map { |i| [0, i] }
|
123
|
+
|
124
|
+
graph = new(name: "star_graph(#{n})")
|
125
|
+
graph.add_edges(edges)
|
126
|
+
graph
|
127
|
+
end
|
128
|
+
|
129
|
+
def self.trivial_graph
|
130
|
+
trivial_graph = new(name: 'trivial_grpph')
|
131
|
+
trivial_graph.add_node(0)
|
132
|
+
trivial_graph
|
133
|
+
end
|
134
|
+
|
135
|
+
def self.wheel_graph(n)
|
136
|
+
edges = (1..n - 1).map { |i| [0, i] }
|
137
|
+
edges.concat((1...n - 1).map { |i| [i, i + 1] })
|
138
|
+
edges << [1, n - 1]
|
139
|
+
|
140
|
+
graph = new(name: "wheel_graph(#{n})")
|
141
|
+
graph.add_edges(edges)
|
142
|
+
graph
|
143
|
+
end
|
144
|
+
|
145
|
+
def self.bull_graph
|
146
|
+
edges = [[0, 1], [1, 2], [2, 0], [1, 3], [2, 4]]
|
147
|
+
graph = new(name: 'bull_graph')
|
148
|
+
graph.add_edges(edges)
|
149
|
+
graph
|
150
|
+
end
|
151
|
+
|
152
|
+
def self.cubical_graph
|
153
|
+
graph = circular_ladder_graph(4)
|
154
|
+
graph.graph[:name] = 'cubical_graph'
|
155
|
+
graph
|
156
|
+
end
|
157
|
+
|
158
|
+
def self.diamond_graph
|
159
|
+
edges = [[0, 1], [0, 2], [1, 2], [1, 3], [2, 3]]
|
160
|
+
graph = new(name: 'diamond_graph')
|
161
|
+
graph.add_edges(edges)
|
162
|
+
graph
|
163
|
+
end
|
164
|
+
|
165
|
+
# 12
|
166
|
+
def self.dodecahedral_graph
|
167
|
+
edges = (0...19).map { |k| [k, k + 1] }
|
168
|
+
edges.concat [[0, 19], [0, 10], [1, 8], [2, 6], [3, 19], [4, 17], [5, 15], [7, 14], [9, 13], [11, 18], [12, 16]]
|
169
|
+
graph = new(name: 'dodecahedral_graph')
|
170
|
+
graph.add_edges(edges)
|
171
|
+
graph
|
172
|
+
end
|
173
|
+
|
174
|
+
def self.heawood_graph
|
175
|
+
edges = (0...13).map { |k| [k, k + 1] }
|
176
|
+
edges << [13, 0]
|
177
|
+
edges.concat [[0, 5], [1, 10], [2, 7], [3, 12], [4, 9], [6, 11], [8, 13]]
|
178
|
+
graph = new(name: 'heawood_graph')
|
179
|
+
graph.add_edges(edges)
|
180
|
+
graph
|
181
|
+
end
|
182
|
+
|
183
|
+
def self.house_graph
|
184
|
+
edges = [[0, 1], [0, 2], [1, 3], [2, 3], [2, 4], [3, 4]]
|
185
|
+
graph = new(name: 'house_graph')
|
186
|
+
graph.add_edges(edges)
|
187
|
+
graph
|
188
|
+
end
|
189
|
+
|
190
|
+
def self.house_x_graph
|
191
|
+
edges = (0...4).map { |k| [k, k + 1] }
|
192
|
+
edges.concat [[0, 2], [0, 3], [1, 3], [2, 4], [3, 4]]
|
193
|
+
graph = new(name: 'house_x_graph')
|
194
|
+
graph.add_edges(edges)
|
195
|
+
graph
|
196
|
+
end
|
197
|
+
|
198
|
+
def self.moebius_kantor_graph
|
199
|
+
edges = (0...15).map { |k| [k, k + 1] }
|
200
|
+
edges << [15, 0]
|
201
|
+
edges.concat [[0, 5], [1, 12], [2, 7], [4, 9], [3, 14], [6, 11], [8, 13], [10, 15]]
|
202
|
+
graph = new(name: 'moebius_kantor_graph')
|
203
|
+
graph.add_edges(edges)
|
204
|
+
graph
|
205
|
+
end
|
206
|
+
|
207
|
+
# 8: 6 nodes, 12 edges
|
208
|
+
def self.octahedral_graph
|
209
|
+
edges = []
|
210
|
+
6.times do |i|
|
211
|
+
6.times do |j|
|
212
|
+
edges << [i, j] if i != j && i + j != 5
|
213
|
+
end
|
214
|
+
end
|
215
|
+
graph = new(name: 'octahedral_graph')
|
216
|
+
graph.add_edges(edges)
|
217
|
+
graph
|
218
|
+
end
|
219
|
+
|
220
|
+
def self.tetrahedral_graph
|
221
|
+
graph = complete_graph(4)
|
222
|
+
graph.graph[:name] = 'tetrahedral_graph'
|
223
|
+
graph
|
224
|
+
end
|
225
|
+
|
226
|
+
# Experimental For debug.
|
227
|
+
#
|
228
|
+
# @return data for https://hello-world-494ec.firebaseapp.com/
|
229
|
+
def put_graph_x2
|
230
|
+
output = <<~"OUTPUT"
|
231
|
+
#{number_of_nodes} #{number_of_edges}
|
232
|
+
#{edges.map { |edge| edge.join(' ') }.join("\n")}
|
233
|
+
OUTPUT
|
234
|
+
puts output
|
235
|
+
end
|
236
|
+
end
|
237
|
+
end
|