nendo 0.5.0 → 0.5.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1367,7 +1367,29 @@ trampCall(
1367
1367
  ))
1368
1368
  ]
1369
1369
  )) ,
1370
- Cell.new(LispKeyword.new( "empty?" ),Cell.new(true))
1370
+ trampCall( self._cons_METHOD( 'cons',
1371
+ begin
1372
+ if @global_lisp_binding.has_key?('_cons') then
1373
+ trampCall(@_cons)
1374
+ else raise NameError.new( "Error: undefined variable _cons", "_cons" ) end
1375
+ rescue => __e ; __e.set_backtrace( [":1"] + __e.backtrace ) ; raise __e
1376
+ end ,
1377
+ [
1378
+ LispKeyword.new( "empty?" ) ,
1379
+ trampCall( self._cons_METHOD( 'cons',
1380
+ begin
1381
+ if @global_lisp_binding.has_key?('_cons') then
1382
+ trampCall(@_cons)
1383
+ else raise NameError.new( "Error: undefined variable _cons", "_cons" ) end
1384
+ rescue => __e ; __e.set_backtrace( [":1"] + __e.backtrace ) ; raise __e
1385
+ end ,
1386
+ [
1387
+ true ,
1388
+ Cell.new()
1389
+ ]
1390
+ ))
1391
+ ]
1392
+ ))
1371
1393
  ]
1372
1394
  ))
1373
1395
  ]
@@ -0,0 +1,290 @@
1
+ ;;;-*- mode: nendo; syntax: scheme -*-;;
2
+ ;;;
3
+ ;;; combinations.scm - combinations and that sort of stuff.
4
+ ;;;
5
+ ;;; Copyright(C) 2003 by Alex Shinn (foof@synthcode.com)
6
+ ;;; Copyright (c) 2003-2010 Shiro Kawai <shiro@acm.org>
7
+ ;;;
8
+ ;;; Permission to use, copy, modify, distribute this software and
9
+ ;;; accompanying documentation for any purpose is hereby granted,
10
+ ;;; provided that existing copyright notices are retained in all
11
+ ;;; copies and that this notice is included verbatim in all
12
+ ;;; distributions.
13
+ ;;; This software is provided as is, without express or implied
14
+ ;;; warranty. In no circumstances the author(s) shall be liable
15
+ ;;; for any damages arising out of the use of this software.
16
+ ;;;
17
+
18
+ ;; Initially written by Alex Shinn.
19
+ ;; Modifided by Shiro Kawai
20
+
21
+ (use srfi-1)
22
+ (use srfi-26)
23
+ (use util.match)
24
+
25
+ ;;----------------------------------------------------------------
26
+ ;; permuations
27
+ ;;
28
+
29
+ ;; return a list of k-th element is removed
30
+ (define (but-kth lis k)
31
+ (case k
32
+ [(0) (cdr lis)]
33
+ [(1) (cons (car lis) (cddr lis))]
34
+ [(2) (list* (car lis) (cadr lis) (cdddr lis))]
35
+ [(3) (list* (car lis) (cadr lis) (caddr lis) (cddddr lis))]
36
+ [else (receive (head tail) (split-at lis k)
37
+ (append! head (cdr tail)))]))
38
+
39
+ ;; permute set. all elements are considered distinct.
40
+ ;; the shortcut for 3 elements or less speeds up a bit.
41
+ (define (permutations set)
42
+ (match set
43
+ [() (list '())]
44
+ [(a) (list set)]
45
+ [(a b) `(,set (,b ,a))]
46
+ [(a b c)
47
+ `(,set (,a ,c ,b) (,b ,a ,c) (,b ,c ,a) (,c ,a ,b) (,c ,b ,a))]
48
+ [else
49
+ (append-map
50
+ (lambda (ind head)
51
+ (map
52
+ (lambda (rest)
53
+ (cons head rest))
54
+ (permutations (but-kth set ind))))
55
+ (iota (length set))
56
+ set)]))
57
+
58
+ ;; permute set, considering equal elements, a.k.a multiset permutations
59
+ (define (permutations* set :optional (eq eqv?))
60
+ (define (rec set)
61
+ (match set
62
+ [() (list '())]
63
+ [(a) (list set)]
64
+ [(a b) (if (eq a b) (list set) `(,set (,b ,a)))]
65
+ [else
66
+ (let loop ((i 0)
67
+ (seen '())
68
+ (p set)
69
+ (r '()))
70
+ (cond [(null? p) (reverse! r)]
71
+ [(member (car p) seen eq) (loop (+ i 1) seen (cdr p) r)]
72
+ [else
73
+ (loop (+ i 1)
74
+ (cons (car p) seen)
75
+ (cdr p)
76
+ (fold (lambda (subperm r) (acons (car p) subperm r))
77
+ r
78
+ (rec (but-kth set i))))]))]))
79
+ (rec set))
80
+
81
+ ;; permutations without generating entire list.
82
+ ;; We use shortcut for (<= length 4) case, which boosts performace.
83
+ (define (p/each3 proc x1 x2 x3)
84
+ (proc `(,x1 ,x2 ,x3)) (proc `(,x1 ,x3 ,x2))
85
+ (proc `(,x2 ,x1 ,x3)) (proc `(,x2 ,x3 ,x1))
86
+ (proc `(,x3 ,x1 ,x2)) (proc `(,x3 ,x2 ,x1)))
87
+ (define (p/each4 proc x1 x2 x3 x4)
88
+ (p/each3 (lambda (xs) (proc (cons x1 xs))) x2 x3 x4)
89
+ (p/each3 (lambda (xs) (proc (cons x2 xs))) x1 x3 x4)
90
+ (p/each3 (lambda (xs) (proc (cons x3 xs))) x1 x2 x4)
91
+ (p/each3 (lambda (xs) (proc (cons x4 xs))) x1 x2 x3))
92
+ (define (p/each* proc len xs)
93
+ (if (= len 4)
94
+ (apply p/each4 proc xs)
95
+ (let1 len1 (- len 1)
96
+ (for-each
97
+ (lambda (ind elt)
98
+ (p/each* (lambda (subperm) (proc (cons elt subperm)))
99
+ len1
100
+ (but-kth xs ind)))
101
+ (iota (length xs))
102
+ xs))))
103
+ (define (permutations-for-each proc set)
104
+ (match set
105
+ [() nil]
106
+ [(x) (proc set)]
107
+ [(x1 x2) (proc `(,x1 ,x2)) (proc `(,x2 ,x1))]
108
+ [(x1 x2 x3) (p/each3 proc x1 x2 x3)]
109
+ [(x1 x2 x3 x4) (p/each4 proc x1 x2 x3 x4)]
110
+ [else (p/each* proc (length set) set)]))
111
+
112
+ ;; Like permutations-for-each, but considering duplications.
113
+ (define (permutations*-for-each proc set :optional (eq eqv?))
114
+ (define (rec proc set)
115
+ (match set
116
+ [() nil]
117
+ [(a) (proc set)]
118
+ [(a b) (cond [(eq a b) (proc set)] [else (proc set) (proc `(,b ,a))])]
119
+ [else
120
+ (let loop ((i 0)
121
+ (seen '())
122
+ (p set))
123
+ (cond [(null? p)]
124
+ [(member (car p) seen eq) (loop (+ i 1) seen (cdr p))]
125
+ [else (rec (lambda (subperm) (proc (cons (car p) subperm)))
126
+ (but-kth set i))
127
+ (loop (+ i 1) (cons (car p) seen) (cdr p))]))]))
128
+ (rec proc set))
129
+
130
+ ;;----------------------------------------------------------------
131
+ ;; combinations
132
+ ;;
133
+
134
+ (define (combinations set n)
135
+ (if (not (positive? n))
136
+ (list '())
137
+ (pair-fold-right
138
+ (lambda (pr acc)
139
+ (fold-right (cut acons (car pr) <> <>)
140
+ acc
141
+ (combinations (cdr pr) (- n 1))))
142
+ '()
143
+ set)))
144
+
145
+ (define (combinations* set n :optional (eq eqv?))
146
+ (define (rec set n)
147
+ (if (not (positive? n))
148
+ (list '())
149
+ (let loop ((p set)
150
+ (seen '())
151
+ (r '()))
152
+ (cond [(null? p) (reverse! r)]
153
+ [(member (car p) seen eq) (loop (cdr p) seen r)]
154
+ [else
155
+ (loop (cdr p)
156
+ (cons (car p) seen)
157
+ (fold (cut acons (car p) <> <>)
158
+ r
159
+ (rec (lset-difference eq (cdr p) seen) (- n 1))))]
160
+ ))))
161
+ (rec set n))
162
+
163
+ (define (combinations-for-each proc set n)
164
+ (if (not (positive? n))
165
+ (proc '())
166
+ (pair-for-each
167
+ (lambda (pr)
168
+ (combinations-for-each
169
+ (lambda (sub-comb) (proc (cons (car pr) sub-comb)))
170
+ (cdr pr)
171
+ (- n 1)))
172
+ set)))
173
+
174
+ (define (combinations*-for-each proc set n :optional (eq eqv?))
175
+ (define (rec proc set n)
176
+ (if (not (positive? n))
177
+ (proc '())
178
+ (let loop ((p set)
179
+ (seen '()))
180
+ (cond [(null? p)]
181
+ [(member (car p) seen eq) (loop (cdr p) seen)]
182
+ [else
183
+ (rec (lambda (sub-comb) (proc (cons (car p) sub-comb)))
184
+ (lset-difference eq (cdr p) seen)
185
+ (- n 1))
186
+ (loop (cdr p) (cons (car p) seen))]))))
187
+ (rec proc set n))
188
+
189
+ ;;----------------------------------------------------------------
190
+ ;; power sets (all subsets of any size of a given set)
191
+ ;;
192
+
193
+ ;; the easy binary way
194
+ (define (power-set-binary set)
195
+ (if (null? set)
196
+ (list '())
197
+ (let ((x (car set))
198
+ (rest (power-set-binary (cdr set))))
199
+ (append rest (map (lambda (s) (cons x s)) rest)))))
200
+
201
+ ;; use combinations for nice ordering
202
+ (define (power-set set)
203
+ (let ((size (length set)))
204
+ (let loop ((i 0))
205
+ (if (> i size)
206
+ '()
207
+ (append! (combinations set i)
208
+ (loop (+ i 1)))))))
209
+
210
+ ;; also ordered
211
+ (define (power-set-for-each proc set)
212
+ (let ((size (length set)))
213
+ (let loop ((i 0))
214
+ (if (> i size)
215
+ '()
216
+ (begin
217
+ (combinations-for-each proc set i)
218
+ (loop (+ i 1)))))))
219
+
220
+ ;; w/o duplicate entry
221
+ (define (power-set* set . maybe-eq)
222
+ (let ((size (length set)))
223
+ (let loop ((i 0))
224
+ (if (> i size)
225
+ '()
226
+ (append! (apply combinations* set i maybe-eq)
227
+ (loop (+ i 1)))))))
228
+
229
+ (define (power-set*-for-each proc set . maybe-eq)
230
+ (let ((size (length set)))
231
+ (let loop ((i 0))
232
+ (if (> i size)
233
+ '()
234
+ (begin
235
+ (apply combinations*-for-each proc set i maybe-eq)
236
+ (loop (+ i 1)))))))
237
+
238
+ ;;----------------------------------------------------------------
239
+ ;; cartesian product (all combinations of one element from each set)
240
+ ;;
241
+
242
+ (define (cartesian-product lol)
243
+ (if (null? lol)
244
+ (list '())
245
+ (let ((l (car lol))
246
+ (rest (cartesian-product (cdr lol))))
247
+ (append-map!
248
+ (lambda (x)
249
+ (map (lambda (sub-prod) (cons x sub-prod)) rest))
250
+ l))))
251
+
252
+ (define (cartesian-product-for-each proc lol)
253
+ (if (null? lol)
254
+ (proc '())
255
+ (for-each
256
+ (lambda (x)
257
+ (cartesian-product-for-each
258
+ (lambda (sub-prod)
259
+ (proc (cons x sub-prod)))
260
+ (cdr lol)))
261
+ (car lol))))
262
+
263
+ ;; The above is left fixed (it varies elements to the right first).
264
+ ;; Below is a right fixed product which could be defined with two
265
+ ;; reverses but is short enough to warrant the performance gain of a
266
+ ;; separate procedure.
267
+
268
+ ;;(define (cartesian-product-right lol)
269
+ ;; (map reverse (cartesian-product (reverse lol))))
270
+
271
+ (define (cartesian-product-right lol)
272
+ (if (null? lol)
273
+ (list '())
274
+ (let ((l (car lol))
275
+ (rest (cartesian-product (cdr lol))))
276
+ (append-map!
277
+ (lambda (sub-prod)
278
+ (map (lambda (x) (cons x sub-prod)) l))
279
+ rest))))
280
+
281
+ (define (cartesian-product-right-for-each proc lol)
282
+ (if (null? lol)
283
+ (proc '())
284
+ (cartesian-product-right-for-each
285
+ (lambda (sub-prod)
286
+ (for-each (lambda (x) (proc (cons x sub-prod))) (car lol)))
287
+ (cdr lol))))
288
+
289
+
290
+