ndtypes 0.2.0dev4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CONTRIBUTING.md +50 -0
- data/Gemfile +2 -0
- data/History.md +0 -0
- data/README.md +19 -0
- data/Rakefile +125 -0
- data/ext/ruby_ndtypes/extconf.rb +55 -0
- data/ext/ruby_ndtypes/gc_guard.c +36 -0
- data/ext/ruby_ndtypes/gc_guard.h +12 -0
- data/ext/ruby_ndtypes/ndtypes/AUTHORS.txt +5 -0
- data/ext/ruby_ndtypes/ndtypes/INSTALL.txt +101 -0
- data/ext/ruby_ndtypes/ndtypes/LICENSE.txt +29 -0
- data/ext/ruby_ndtypes/ndtypes/MANIFEST.in +3 -0
- data/ext/ruby_ndtypes/ndtypes/Makefile.in +87 -0
- data/ext/ruby_ndtypes/ndtypes/README.rst +47 -0
- data/ext/ruby_ndtypes/ndtypes/config.guess +1530 -0
- data/ext/ruby_ndtypes/ndtypes/config.h.in +67 -0
- data/ext/ruby_ndtypes/ndtypes/config.sub +1782 -0
- data/ext/ruby_ndtypes/ndtypes/configure +5260 -0
- data/ext/ruby_ndtypes/ndtypes/configure.ac +161 -0
- data/ext/ruby_ndtypes/ndtypes/doc/Makefile +14 -0
- data/ext/ruby_ndtypes/ndtypes/doc/_static/copybutton.js +66 -0
- data/ext/ruby_ndtypes/ndtypes/doc/conf.py +26 -0
- data/ext/ruby_ndtypes/ndtypes/doc/grammar/grammar.rst +27 -0
- data/ext/ruby_ndtypes/ndtypes/doc/index.rst +56 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/context.rst +131 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/encodings.rst +68 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/fields-values.rst +175 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/functions.rst +72 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/index.rst +43 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/init.rst +48 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/io.rst +100 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/memory.rst +124 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/predicates.rst +110 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/typedef.rst +31 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/types.rst +594 -0
- data/ext/ruby_ndtypes/ndtypes/doc/libndtypes/util.rst +166 -0
- data/ext/ruby_ndtypes/ndtypes/doc/ndtypes/buffer-protocol.rst +27 -0
- data/ext/ruby_ndtypes/ndtypes/doc/ndtypes/index.rst +21 -0
- data/ext/ruby_ndtypes/ndtypes/doc/ndtypes/pattern-matching.rst +330 -0
- data/ext/ruby_ndtypes/ndtypes/doc/ndtypes/quickstart.rst +144 -0
- data/ext/ruby_ndtypes/ndtypes/doc/ndtypes/types.rst +544 -0
- data/ext/ruby_ndtypes/ndtypes/doc/releases/index.rst +35 -0
- data/ext/ruby_ndtypes/ndtypes/install-sh +527 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/Makefile.in +271 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/Makefile.vc +269 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/alloc.c +230 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/attr.c +268 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/attr.h +109 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/Makefile.in +73 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/Makefile.vc +70 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/README.txt +16 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/bpgrammar.c +2179 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/bpgrammar.h +134 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/bpgrammar.y +428 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/bplexer.c +2543 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/bplexer.h +735 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/bplexer.l +176 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/export.c +543 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/compat/import.c +110 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/context.c +228 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/copy.c +634 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/encodings.c +116 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/equal.c +288 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/grammar.c +3067 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/grammar.h +180 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/grammar.y +417 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/io.c +1658 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/lexer.c +2773 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/lexer.h +734 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/lexer.l +222 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/match.c +1132 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/ndtypes.c +2323 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/ndtypes.h.in +893 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/overflow.h +161 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/parsefuncs.c +473 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/parsefuncs.h +92 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/parser.c +246 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/seq.c +269 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/seq.h +197 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/serialize/Makefile.in +48 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/serialize/Makefile.vc +46 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/serialize/deserialize.c +1007 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/serialize/serialize.c +442 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/slice.h +42 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/substitute.c +238 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/substitute.h +50 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/symtable.c +371 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/symtable.h +100 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/Makefile.in +55 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/Makefile.vc +45 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/alloc_fail.c +82 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/alloc_fail.h +49 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/runtest.c +1657 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test.h +85 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_array.c +115 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_buffer.c +137 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_indent.c +201 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_match.c +2397 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_numba.c +57 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_parse.c +349 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_parse_error.c +27839 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_parse_roundtrip.c +350 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_record.c +231 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_typecheck.c +375 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/test_typedef.c +65 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tests/valgrind.supp +30 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tools/bench.c +79 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tools/indent.c +94 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/tools/print_ast.c +96 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/util.c +474 -0
- data/ext/ruby_ndtypes/ndtypes/libndtypes/values.c +228 -0
- data/ext/ruby_ndtypes/ndtypes/python/bench.py +49 -0
- data/ext/ruby_ndtypes/ndtypes/python/ndt_randtype.py +409 -0
- data/ext/ruby_ndtypes/ndtypes/python/ndt_support.py +14 -0
- data/ext/ruby_ndtypes/ndtypes/python/ndtypes/__init__.py +70 -0
- data/ext/ruby_ndtypes/ndtypes/python/ndtypes/_ndtypes.c +1332 -0
- data/ext/ruby_ndtypes/ndtypes/python/ndtypes/docstrings.h +319 -0
- data/ext/ruby_ndtypes/ndtypes/python/ndtypes/pyndtypes.h +154 -0
- data/ext/ruby_ndtypes/ndtypes/python/test_ndtypes.py +1977 -0
- data/ext/ruby_ndtypes/ndtypes/setup.py +288 -0
- data/ext/ruby_ndtypes/ndtypes/vcbuild/INSTALL.txt +41 -0
- data/ext/ruby_ndtypes/ndtypes/vcbuild/runtest32.bat +15 -0
- data/ext/ruby_ndtypes/ndtypes/vcbuild/runtest64.bat +13 -0
- data/ext/ruby_ndtypes/ndtypes/vcbuild/vcbuild32.bat +38 -0
- data/ext/ruby_ndtypes/ndtypes/vcbuild/vcbuild64.bat +38 -0
- data/ext/ruby_ndtypes/ndtypes/vcbuild/vcclean.bat +13 -0
- data/ext/ruby_ndtypes/ndtypes/vcbuild/vcdistclean.bat +14 -0
- data/ext/ruby_ndtypes/ruby_ndtypes.c +1003 -0
- data/ext/ruby_ndtypes/ruby_ndtypes.h +37 -0
- data/ext/ruby_ndtypes/ruby_ndtypes_internal.h +28 -0
- data/lib/ndtypes.rb +45 -0
- data/lib/ndtypes/errors.rb +2 -0
- data/lib/ndtypes/version.rb +6 -0
- data/ndtypes.gemspec +47 -0
- data/spec/gc_table_spec.rb +10 -0
- data/spec/ndtypes_spec.rb +289 -0
- data/spec/spec_helper.rb +241 -0
- metadata +242 -0
@@ -0,0 +1,144 @@
|
|
1
|
+
.. meta::
|
2
|
+
:robots: index,follow
|
3
|
+
:description: ndtypes quickstart
|
4
|
+
:keywords: ndtypes examples
|
5
|
+
|
6
|
+
.. sectionauthor:: Stefan Krah <skrah at bytereef.org>
|
7
|
+
|
8
|
+
|
9
|
+
Quick Start
|
10
|
+
===========
|
11
|
+
|
12
|
+
Install
|
13
|
+
-------
|
14
|
+
|
15
|
+
Prerequisites
|
16
|
+
~~~~~~~~~~~~~
|
17
|
+
|
18
|
+
Python2 is not supported. If not already present, install the Python3
|
19
|
+
development packages:
|
20
|
+
|
21
|
+
.. code-block:: sh
|
22
|
+
|
23
|
+
# Debian, Ubuntu:
|
24
|
+
sudo apt-get install gcc make
|
25
|
+
sudo apt-get install python3-dev
|
26
|
+
|
27
|
+
# Fedora, RedHat:
|
28
|
+
sudo yum install gcc make
|
29
|
+
sudo yum install python3-devel
|
30
|
+
|
31
|
+
# openSUSE:
|
32
|
+
sudo zypper install gcc make
|
33
|
+
sudo zypper install python3-devel
|
34
|
+
|
35
|
+
# BSD:
|
36
|
+
# You know what to do.
|
37
|
+
|
38
|
+
# Mac OS X:
|
39
|
+
# Install Xcode and Python 3 headers.
|
40
|
+
|
41
|
+
|
42
|
+
Install
|
43
|
+
~~~~~~~
|
44
|
+
|
45
|
+
If `pip <http://pypi.python.org/pypi/pip>`_ is present on the system, installation
|
46
|
+
should be as easy as:
|
47
|
+
|
48
|
+
.. code-block:: sh
|
49
|
+
|
50
|
+
pip install ndtypes
|
51
|
+
|
52
|
+
|
53
|
+
Otherwise:
|
54
|
+
|
55
|
+
.. code-block:: sh
|
56
|
+
|
57
|
+
tar xvzf ndtypes-0.2.0dev3.tar.gz
|
58
|
+
cd ndtypes-0.2.0dev3
|
59
|
+
python3 setup.py install
|
60
|
+
|
61
|
+
|
62
|
+
Windows
|
63
|
+
~~~~~~~
|
64
|
+
|
65
|
+
Refer to the instructions in the *vcbuild* directory in the source distribution.
|
66
|
+
|
67
|
+
|
68
|
+
Examples
|
69
|
+
--------
|
70
|
+
|
71
|
+
The libndtypes Python bindings are mostly useful in conjunction with other
|
72
|
+
modules like the xnd module. While the underlying libndtypes does most of
|
73
|
+
the heavy-lifting for libraries like libxnd, virtually all of this happens
|
74
|
+
on the C level.
|
75
|
+
|
76
|
+
|
77
|
+
Nevertheless, some selected examples should give a good understanding of
|
78
|
+
what libndtypes and ndtypes actually do:
|
79
|
+
|
80
|
+
|
81
|
+
Create types
|
82
|
+
~~~~~~~~~~~~
|
83
|
+
|
84
|
+
The most fundamental operation is to create a type:
|
85
|
+
|
86
|
+
.. doctest::
|
87
|
+
|
88
|
+
>>> from ndtypes import *
|
89
|
+
>>> t = ndt("2 * 3 * int64")
|
90
|
+
>>> t
|
91
|
+
ndt("2 * 3 * int64")
|
92
|
+
|
93
|
+
|
94
|
+
This type describes a 2 by 3 array with an int64 data type. Types have
|
95
|
+
common and individual properties.
|
96
|
+
|
97
|
+
|
98
|
+
Type properties
|
99
|
+
~~~~~~~~~~~~~~~
|
100
|
+
|
101
|
+
All types have the following properties (continuing the example above):
|
102
|
+
|
103
|
+
.. doctest::
|
104
|
+
|
105
|
+
>>> t.ndim
|
106
|
+
2
|
107
|
+
>>> t.datasize
|
108
|
+
48
|
109
|
+
>>> t.itemsize
|
110
|
+
8
|
111
|
+
>>> t.align
|
112
|
+
8
|
113
|
+
|
114
|
+
Array types have these individual properties:
|
115
|
+
|
116
|
+
.. doctest::
|
117
|
+
|
118
|
+
>>> t.shape
|
119
|
+
(2, 3)
|
120
|
+
|
121
|
+
>>> t.strides
|
122
|
+
(24, 8)
|
123
|
+
|
124
|
+
For NumPy compatibility ndtypes displays *strides* (amount of bytes to skip).
|
125
|
+
Internally, libndtypes uses steps (amount of indices to skip).
|
126
|
+
|
127
|
+
|
128
|
+
Internals
|
129
|
+
~~~~~~~~~
|
130
|
+
|
131
|
+
This is how to display the internal type AST:
|
132
|
+
|
133
|
+
.. doctest::
|
134
|
+
|
135
|
+
>>> print(t.ast_repr())
|
136
|
+
FixedDim(
|
137
|
+
FixedDim(
|
138
|
+
Int64(access=Concrete, ndim=0, datasize=8, align=8, flags=[]),
|
139
|
+
tag=None, shape=3, itemsize=8, step=1,
|
140
|
+
access=Concrete, ndim=1, datasize=24, align=8, flags=[]
|
141
|
+
),
|
142
|
+
tag=None, shape=2, itemsize=8, step=3,
|
143
|
+
access=Concrete, ndim=2, datasize=48, align=8, flags=[]
|
144
|
+
)
|
@@ -0,0 +1,544 @@
|
|
1
|
+
.. meta::
|
2
|
+
:robots: index,follow
|
3
|
+
:description: ndtypes datashape specification
|
4
|
+
:keywords: ndtypes, datashape, specification
|
5
|
+
|
6
|
+
.. sectionauthor:: Stefan Krah <skrah at bytereef.org>
|
7
|
+
|
8
|
+
|
9
|
+
.. _types:
|
10
|
+
|
11
|
+
#####
|
12
|
+
Types
|
13
|
+
#####
|
14
|
+
|
15
|
+
The set of all types comprises :ref:`dtypes <dtypes>` and :ref:`arrays <arrays>`.
|
16
|
+
|
17
|
+
The rest of this document assumes that the :py:mod:`ndtypes` module has been
|
18
|
+
imported:
|
19
|
+
|
20
|
+
.. testcode::
|
21
|
+
|
22
|
+
from ndtypes import ndt
|
23
|
+
|
24
|
+
.. _dtypes:
|
25
|
+
|
26
|
+
******
|
27
|
+
Dtypes
|
28
|
+
******
|
29
|
+
|
30
|
+
An important notion in datashape is the ``dtype``, which roughly translates to
|
31
|
+
the element type of an array. In datashape, the ``dtype`` can be of arbitrary
|
32
|
+
complexity and can contain e.g. tuples, records and functions.
|
33
|
+
|
34
|
+
|
35
|
+
.. _scalars:
|
36
|
+
|
37
|
+
=======
|
38
|
+
Scalars
|
39
|
+
=======
|
40
|
+
|
41
|
+
Scalars are the primitive C/C++ types. Most scalars are fixed-size and platform
|
42
|
+
independent.
|
43
|
+
|
44
|
+
|
45
|
+
Fixed size
|
46
|
+
----------
|
47
|
+
|
48
|
+
Datashape offers a number of fixed-size scalars. Here's how to construct a simple
|
49
|
+
:c:type:`int64_t` type:
|
50
|
+
|
51
|
+
.. doctest::
|
52
|
+
|
53
|
+
>>> ndt('int64')
|
54
|
+
ndt("int64")
|
55
|
+
|
56
|
+
|
57
|
+
All fixed-size scalars:
|
58
|
+
|
59
|
+
+-----------+-----------------+------------+--------------+---------------+-----------------------+
|
60
|
+
| void | boolean | signed int | unsigned int | float [#f2]_ | complex |
|
61
|
+
+===========+=================+============+==============+===============+=======================+
|
62
|
+
| ``void`` | ``bool`` [#f1]_ | ``int8`` | ``uint8`` | ``float16`` | ``complex32`` |
|
63
|
+
+-----------+-----------------+------------+--------------+---------------+-----------------------+
|
64
|
+
| | | ``int16`` | ``uint16`` | ``float32`` | ``complex64`` [#f3]_ |
|
65
|
+
+-----------+-----------------+------------+--------------+---------------+-----------------------+
|
66
|
+
| | | ``int32`` | ``uint32`` | ``float64`` | ``complex128`` [#f4]_ |
|
67
|
+
+-----------+-----------------+------------+--------------+---------------+-----------------------+
|
68
|
+
| | | ``int64`` | ``uint64`` | | |
|
69
|
+
+-----------+-----------------+------------+--------------+---------------+-----------------------+
|
70
|
+
|
71
|
+
.. [#f1] implemented as :c:type:`char`
|
72
|
+
.. [#f2] IEEE 754-2008 binary floating point types
|
73
|
+
.. [#f3] implemented as :c:type:`complex\<float32\>`
|
74
|
+
.. [#f4] implemented as :c:type:`complex\<float64\>`
|
75
|
+
|
76
|
+
|
77
|
+
Aliases
|
78
|
+
-------
|
79
|
+
|
80
|
+
Datashape has a number of aliases for scalars, which are internally mapped
|
81
|
+
to their corresponding platform specific fixed-size types. This is how to
|
82
|
+
construct an :c:type:`intptr_t`:
|
83
|
+
|
84
|
+
.. doctest::
|
85
|
+
|
86
|
+
>>> ndt('intptr')
|
87
|
+
ndt("int64")
|
88
|
+
|
89
|
+
Machine dependent aliases:
|
90
|
+
|
91
|
+
+-----------------+----------+------------------+
|
92
|
+
| ``intptr`` | :c:type:`intptr_t` |
|
93
|
+
+-----------------+----------+------------------+
|
94
|
+
| ``uintptr`` | :c:type:`uintptr_t` |
|
95
|
+
+-----------------+-----------------------------+
|
96
|
+
|
97
|
+
|
98
|
+
=====================
|
99
|
+
Chars, strings, bytes
|
100
|
+
=====================
|
101
|
+
|
102
|
+
Encodings
|
103
|
+
---------
|
104
|
+
|
105
|
+
Datashape defines the following encodings for strings and characters. Each encoding
|
106
|
+
has several aliases:
|
107
|
+
|
108
|
+
+-----------------+----------------------+
|
109
|
+
| canonical form | aliases |
|
110
|
+
+=================+=========+============+
|
111
|
+
| 'ascii' | 'A' | 'us-ascii' |
|
112
|
+
+-----------------+---------+------------+
|
113
|
+
| 'utf8' | 'U8' | 'utf-8' |
|
114
|
+
+-----------------+---------+------------+
|
115
|
+
| 'utf16' | 'U16' | 'utf-16' |
|
116
|
+
+-----------------+---------+------------+
|
117
|
+
| 'utf32' | 'U32' | 'utf-32' |
|
118
|
+
+-----------------+---------+------------+
|
119
|
+
| 'ucs2' | 'ucs_2' | 'ucs2' |
|
120
|
+
+-----------------+---------+------------+
|
121
|
+
|
122
|
+
|
123
|
+
As seen in the table, encodings must be given in string form:
|
124
|
+
|
125
|
+
.. doctest::
|
126
|
+
|
127
|
+
>>> ndt("char('utf16')")
|
128
|
+
ndt("char('utf16')")
|
129
|
+
|
130
|
+
|
131
|
+
Chars
|
132
|
+
-----
|
133
|
+
|
134
|
+
The ``char`` constructor accepts ``'ascii'``, ``'ucs2'`` and ``'utf32'`` encoding
|
135
|
+
arguments. ``char`` without arguments is equivalent to ``char(utf32)``.
|
136
|
+
|
137
|
+
.. doctest::
|
138
|
+
|
139
|
+
>>> ndt("char('ascii')")
|
140
|
+
ndt("char('ascii')")
|
141
|
+
|
142
|
+
>>> ndt("char('utf32')")
|
143
|
+
ndt("char('utf32')")
|
144
|
+
|
145
|
+
>>> ndt("char")
|
146
|
+
ndt("char('utf32')")
|
147
|
+
|
148
|
+
|
149
|
+
UTF-8 strings
|
150
|
+
-------------
|
151
|
+
|
152
|
+
The ``string`` type is a variable length NUL-terminated UTF-8 string:
|
153
|
+
|
154
|
+
.. doctest::
|
155
|
+
|
156
|
+
>>> ndt("string")
|
157
|
+
ndt("string")
|
158
|
+
|
159
|
+
|
160
|
+
.. _fixed-string:
|
161
|
+
|
162
|
+
Fixed size strings
|
163
|
+
------------------
|
164
|
+
|
165
|
+
The ``fixed_string`` type takes a length and an optional encoding argument:
|
166
|
+
|
167
|
+
.. doctest::
|
168
|
+
|
169
|
+
>>> ndt("fixed_string(1729)")
|
170
|
+
ndt("fixed_string(1729)")
|
171
|
+
|
172
|
+
>>> ndt("fixed_string(1729, 'utf16')")
|
173
|
+
ndt("fixed_string(1729, 'utf16')")
|
174
|
+
|
175
|
+
|
176
|
+
Bytes
|
177
|
+
-----
|
178
|
+
|
179
|
+
The `bytes` type is variable length and takes an optional alignment argument.
|
180
|
+
Valid values are powers of two in the range ``[1, 16]``.
|
181
|
+
|
182
|
+
.. doctest::
|
183
|
+
|
184
|
+
>>> ndt("bytes")
|
185
|
+
ndt("bytes")
|
186
|
+
|
187
|
+
>>> ndt("bytes(align=2)")
|
188
|
+
ndt("bytes(align=2)")
|
189
|
+
|
190
|
+
|
191
|
+
.. _fixed-bytes:
|
192
|
+
|
193
|
+
Fixed size bytes
|
194
|
+
----------------
|
195
|
+
|
196
|
+
The ``fixed_bytes`` type takes a length and an optional alignment argument.
|
197
|
+
The latter is a keyword-only argument in order to prevent accidental swapping of
|
198
|
+
the two integer arguments:
|
199
|
+
|
200
|
+
.. doctest::
|
201
|
+
|
202
|
+
>>> ndt("fixed_bytes(size=32)")
|
203
|
+
ndt("fixed_bytes(size=32)")
|
204
|
+
|
205
|
+
>>> ndt("fixed_bytes(size=128, align=8)")
|
206
|
+
ndt("fixed_bytes(size=128, align=8)")
|
207
|
+
|
208
|
+
|
209
|
+
==========
|
210
|
+
References
|
211
|
+
==========
|
212
|
+
|
213
|
+
Datashape references are fully general and can point to types of arbitrary
|
214
|
+
complexity:
|
215
|
+
|
216
|
+
.. doctest::
|
217
|
+
|
218
|
+
>>> ndt("ref(int64)")
|
219
|
+
ndt("ref(int64)")
|
220
|
+
|
221
|
+
>>> ndt("ref(10 * {a: int64, b: 10 * float64})")
|
222
|
+
ndt("ref(10 * {a : int64, b : 10 * float64})")
|
223
|
+
|
224
|
+
|
225
|
+
================
|
226
|
+
Categorical type
|
227
|
+
================
|
228
|
+
|
229
|
+
The categorical type allows to specify subsets of types. This is implemented
|
230
|
+
as a set of typed values. Types are inferred and interpreted as int64, float64
|
231
|
+
or strings. The *NA* keyword creates a category for missing values.
|
232
|
+
|
233
|
+
.. doctest::
|
234
|
+
|
235
|
+
>>> ndt("categorical(1, 10)")
|
236
|
+
ndt("categorical(1, 10)")
|
237
|
+
|
238
|
+
>>> ndt("categorical(1.2, 100.0)")
|
239
|
+
ndt("categorical(1.2, 100)")
|
240
|
+
|
241
|
+
>>> ndt("categorical('January', 'August')")
|
242
|
+
ndt("categorical('January', 'August')")
|
243
|
+
|
244
|
+
>>> ndt("categorical('January', 'August', NA)")
|
245
|
+
ndt("categorical('January', 'August', NA)")
|
246
|
+
|
247
|
+
|
248
|
+
===========
|
249
|
+
Option type
|
250
|
+
===========
|
251
|
+
|
252
|
+
The option type provides safe handling of values that may or may not be present.
|
253
|
+
The concept is well-known from languages like ML or SQL.
|
254
|
+
|
255
|
+
.. doctest::
|
256
|
+
|
257
|
+
>>> ndt("?complex64")
|
258
|
+
ndt("?complex64")
|
259
|
+
|
260
|
+
|
261
|
+
.. _dtype-variables:
|
262
|
+
|
263
|
+
===============
|
264
|
+
Dtype variables
|
265
|
+
===============
|
266
|
+
|
267
|
+
Dtype variables are used in quantifier free type schemes and pattern matching.
|
268
|
+
The range of a variable extends over the entire type term.
|
269
|
+
|
270
|
+
.. doctest::
|
271
|
+
|
272
|
+
>>> ndt("T")
|
273
|
+
ndt("T")
|
274
|
+
|
275
|
+
>>> ndt("10 * 16 * T")
|
276
|
+
ndt("10 * 16 * T")
|
277
|
+
|
278
|
+
|
279
|
+
.. _symbolic-constructors:
|
280
|
+
|
281
|
+
=====================
|
282
|
+
Symbolic constructors
|
283
|
+
=====================
|
284
|
+
|
285
|
+
Symbolic constructors stand for any constructor that takes the given datashape
|
286
|
+
argument. Used in pattern matching.
|
287
|
+
|
288
|
+
.. doctest::
|
289
|
+
|
290
|
+
>>> ndt("Coulomb(float64)")
|
291
|
+
ndt("Coulomb(float64)")
|
292
|
+
|
293
|
+
|
294
|
+
.. _type-kinds:
|
295
|
+
|
296
|
+
==========
|
297
|
+
Type kinds
|
298
|
+
==========
|
299
|
+
|
300
|
+
Type kinds denote specific subsets of :ref:`dtypes <dtypes>`, :ref:`types <types>`
|
301
|
+
or :ref:`dimension types <arrays>`. Type kinds are in the dtype section because
|
302
|
+
of the way the grammar is organized. Currently available are:
|
303
|
+
|
304
|
+
+---------------------+-------------------------------+-------------------------------+
|
305
|
+
| type kind | set | specific subset |
|
306
|
+
+=====================+===============================+===============================+
|
307
|
+
| ``Any`` | ``datashape`` | ``datashape`` |
|
308
|
+
+---------------------+-------------------------------+-------------------------------+
|
309
|
+
| ``Scalar`` | ``dtypes`` | ``scalars`` |
|
310
|
+
+---------------------+-------------------------------+-------------------------------+
|
311
|
+
| ``Categorical`` | ``dtypes`` | ``categoricals`` |
|
312
|
+
+---------------------+-------------------------------+-------------------------------+
|
313
|
+
| ``FixedString`` | ``dtypes`` | ``fixed_strings`` |
|
314
|
+
+---------------------+-------------------------------+-------------------------------+
|
315
|
+
| ``FixedBytes`` | ``dtypes`` | ``fixed_bytes`` |
|
316
|
+
+---------------------+-------------------------------+-------------------------------+
|
317
|
+
| ``Fixed`` | ``dimension kind instances`` | ``fixed dimensions`` |
|
318
|
+
+---------------------+-------------------------------+-------------------------------+
|
319
|
+
|
320
|
+
|
321
|
+
Type kinds are used in :ref:`pattern matching <type-kinds-matching>`.
|
322
|
+
|
323
|
+
|
324
|
+
===============
|
325
|
+
Composite types
|
326
|
+
===============
|
327
|
+
|
328
|
+
Datashape has container and function :ref:`dtypes <dtypes>`.
|
329
|
+
|
330
|
+
Tuples
|
331
|
+
------
|
332
|
+
|
333
|
+
As usual, the tuple type is the product type of a fixed number of types:
|
334
|
+
|
335
|
+
.. doctest::
|
336
|
+
|
337
|
+
>>> ndt("(int64, float32, string)")
|
338
|
+
ndt("(int64, float32, string)")
|
339
|
+
|
340
|
+
|
341
|
+
Tuples can be nested:
|
342
|
+
|
343
|
+
.. doctest::
|
344
|
+
|
345
|
+
>>> ndt("(bytes, (int8, fixed_string(10)))")
|
346
|
+
ndt("(bytes, (int8, fixed_string(10)))")
|
347
|
+
|
348
|
+
|
349
|
+
Records
|
350
|
+
-------
|
351
|
+
|
352
|
+
Records are equivalent to tuples with named fields:
|
353
|
+
|
354
|
+
.. doctest::
|
355
|
+
|
356
|
+
>>> ndt("{a: float32, b: float64}")
|
357
|
+
ndt("{a : float32, b : float64}")
|
358
|
+
|
359
|
+
|
360
|
+
Functions
|
361
|
+
---------
|
362
|
+
|
363
|
+
In datashape, function types can have positional and keyword arguments.
|
364
|
+
Internally, positional arguments are represented by a tuple and keyword
|
365
|
+
arguments by a record. Both kinds of arguments can be variadic.
|
366
|
+
|
367
|
+
|
368
|
+
Positional-only
|
369
|
+
~~~~~~~~~~~~~~~
|
370
|
+
|
371
|
+
This is a function type with a single positional ``int32`` argument, returning
|
372
|
+
an ``int32``:
|
373
|
+
|
374
|
+
.. doctest::
|
375
|
+
|
376
|
+
>>> ndt("(int32) -> int32")
|
377
|
+
ndt("(int32) -> int32")
|
378
|
+
|
379
|
+
|
380
|
+
This is a function type with three positional arguments:
|
381
|
+
|
382
|
+
.. doctest::
|
383
|
+
|
384
|
+
>>> ndt("(int32, complex128, string) -> float64")
|
385
|
+
ndt("(int32, complex128, string) -> float64")
|
386
|
+
|
387
|
+
|
388
|
+
Positional-variadic
|
389
|
+
~~~~~~~~~~~~~~~~~~~
|
390
|
+
|
391
|
+
This is a function type with a single required positional argument,
|
392
|
+
followed by any number of additional positional arguments:
|
393
|
+
|
394
|
+
.. doctest::
|
395
|
+
|
396
|
+
>>> ndt("(int32, ...) -> int32")
|
397
|
+
ndt("(int32, ...) -> int32")
|
398
|
+
|
399
|
+
|
400
|
+
|
401
|
+
.. _arrays:
|
402
|
+
|
403
|
+
******
|
404
|
+
Arrays
|
405
|
+
******
|
406
|
+
|
407
|
+
In datashape dimension kinds [#f6]_ are part of array type declarations. Datashape
|
408
|
+
supports the following dimension kinds:
|
409
|
+
|
410
|
+
|
411
|
+
.. _fixed-dimension:
|
412
|
+
|
413
|
+
===============
|
414
|
+
Fixed Dimension
|
415
|
+
===============
|
416
|
+
|
417
|
+
A fixed dimension denotes an array type with a fixed number of elements of
|
418
|
+
a specific type. The type can be written in two ways:
|
419
|
+
|
420
|
+
.. doctest::
|
421
|
+
|
422
|
+
>>> ndt("fixed(shape=10) * uint64")
|
423
|
+
ndt("10 * uint64")
|
424
|
+
|
425
|
+
>>> ndt("10 * uint64")
|
426
|
+
ndt("10 * uint64")
|
427
|
+
|
428
|
+
Formally, ``fixed(shape=10)`` is a dimension constructor, not a type constructor.
|
429
|
+
The ``*`` is the array type constructor in infix notation, taking as arguments
|
430
|
+
a dimension and an element type.
|
431
|
+
|
432
|
+
The second form is equivalent to the first one. For users of other languages,
|
433
|
+
it may be helpful to view this type as ``array[10] of uint64``.
|
434
|
+
|
435
|
+
|
436
|
+
Multidimensional arrays are constructed in the same manner, the ``*`` is
|
437
|
+
right associative:
|
438
|
+
|
439
|
+
.. doctest::
|
440
|
+
|
441
|
+
>>> ndt("10 * 25 * float64")
|
442
|
+
ndt("10 * 25 * float64")
|
443
|
+
|
444
|
+
|
445
|
+
Again, it may help to view this type as ``array[10] of (array[25] of float64)``.
|
446
|
+
|
447
|
+
In this case, ``float64`` is the :ref:`dtype <dtypes>` of the multidimensional
|
448
|
+
array.
|
449
|
+
|
450
|
+
Dtypes can be arbitrarily complex. Here is an array with a dtype of a record that
|
451
|
+
contains another array:
|
452
|
+
|
453
|
+
.. doctest::
|
454
|
+
|
455
|
+
>>> ndt("120 * {size: int32, items: 10 * int8}")
|
456
|
+
ndt("120 * {size : int32, items : 10 * int8}")
|
457
|
+
|
458
|
+
|
459
|
+
.. _variable-dimension:
|
460
|
+
|
461
|
+
==================
|
462
|
+
Variable Dimension
|
463
|
+
==================
|
464
|
+
|
465
|
+
The variable dimension kind describes an array type with a variable number
|
466
|
+
of elements of a specific type:
|
467
|
+
|
468
|
+
.. doctest::
|
469
|
+
|
470
|
+
>>> ndt("var * float32")
|
471
|
+
ndt("var * float32")
|
472
|
+
|
473
|
+
In this case, ``var`` is the dimension constructor and the ``*`` fulfils the
|
474
|
+
same role as above. Many managed languages have variable sized arrays, so this
|
475
|
+
type could be viewed as ``array of float32``. In a sense, fixed size arrays
|
476
|
+
are just a special case of variable sized arrays.
|
477
|
+
|
478
|
+
|
479
|
+
.. _symbolic-dim:
|
480
|
+
|
481
|
+
==================
|
482
|
+
Symbolic Dimension
|
483
|
+
==================
|
484
|
+
|
485
|
+
Datashape supports symbolic dimensions, which are used in pattern matching. A
|
486
|
+
symbolic dimension is an uppercase variable that stands for a fixed dimension.
|
487
|
+
|
488
|
+
In this manner entire sets of array types can be specified. The following type
|
489
|
+
describes the set of all ``M * N`` matrices with a ``float32`` dtype:
|
490
|
+
|
491
|
+
.. doctest::
|
492
|
+
|
493
|
+
>>> ndt("M * N * float32")
|
494
|
+
ndt("M * N * float32")
|
495
|
+
|
496
|
+
|
497
|
+
The next type describes a function that performs matrix multiplication on any
|
498
|
+
permissible pair of input matrices with dtype ``T``:
|
499
|
+
|
500
|
+
.. doctest::
|
501
|
+
|
502
|
+
>>> ndt("(M * N * T, N * P * T) -> M * P * T")
|
503
|
+
ndt("(M * N * T, N * P * T) -> M * P * T")
|
504
|
+
|
505
|
+
In this case, we have used both symbolic dimensions and the type variable ``T``.
|
506
|
+
|
507
|
+
|
508
|
+
Symbolic dimensions can be mixed fixed dimensions:
|
509
|
+
|
510
|
+
.. doctest::
|
511
|
+
|
512
|
+
>>> ndt("10 * N * float64")
|
513
|
+
ndt("10 * N * float64")
|
514
|
+
|
515
|
+
|
516
|
+
.. _ellipsis-dim:
|
517
|
+
|
518
|
+
==================
|
519
|
+
Ellipsis Dimension
|
520
|
+
==================
|
521
|
+
|
522
|
+
The ellipsis, used in pattern matching, stands for any number of dimensions.
|
523
|
+
Datashape supports both named and unnamed ellipses:
|
524
|
+
|
525
|
+
.. doctest::
|
526
|
+
|
527
|
+
>>> ndt("... * float32")
|
528
|
+
ndt("... * float32")
|
529
|
+
|
530
|
+
|
531
|
+
Named form:
|
532
|
+
|
533
|
+
.. doctest::
|
534
|
+
|
535
|
+
>>> ndt("Dim... * float32")
|
536
|
+
ndt("Dim... * float32")
|
537
|
+
|
538
|
+
Ellipsis dimensions play an important role in broadcasting, more on the topic
|
539
|
+
in the section on pattern matching.
|
540
|
+
|
541
|
+
|
|
542
|
+
|
|
543
|
+
|
544
|
+
.. [#f6] In the whole text *dimension kind* and *dimension* are synonymous.
|