moo_fann 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,100 @@
1
+ /*
2
+ Fast Artificial Neural Network Library (fann)
3
+ Copyright (C) 2003-2012 Steffen Nissen (sn@leenissen.dk)
4
+
5
+ This library is free software; you can redistribute it and/or
6
+ modify it under the terms of the GNU Lesser General Public
7
+ License as published by the Free Software Foundation; either
8
+ version 2.1 of the License, or (at your option) any later version.
9
+
10
+ This library is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13
+ Lesser General Public License for more details.
14
+
15
+ You should have received a copy of the GNU Lesser General Public
16
+ License along with this library; if not, write to the Free Software
17
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
+ */
19
+
20
+ #ifndef __fann_io_h__
21
+ #define __fann_io_h__
22
+
23
+ /* Section: FANN File Input/Output
24
+
25
+ It is possible to save an entire ann to a file with <fann_save> for future loading with <fann_create_from_file>.
26
+ */
27
+
28
+ /* Group: File Input and Output */
29
+
30
+ /* Function: fann_create_from_file
31
+
32
+ Constructs a backpropagation neural network from a configuration file, which have been saved by <fann_save>.
33
+
34
+ See also:
35
+ <fann_save>, <fann_save_to_fixed>
36
+
37
+ This function appears in FANN >= 1.0.0.
38
+ */
39
+ FANN_EXTERNAL struct fann *FANN_API fann_create_from_file(const char *configuration_file);
40
+
41
+
42
+ /* Function: fann_save
43
+
44
+ Save the entire network to a configuration file.
45
+
46
+ The configuration file contains all information about the neural network and enables
47
+ <fann_create_from_file> to create an exact copy of the neural network and all of the
48
+ parameters associated with the neural network.
49
+
50
+ These three parameters (<fann_set_callback>, <fann_set_error_log>,
51
+ <fann_set_user_data>) are *NOT* saved to the file because they cannot safely be
52
+ ported to a different location. Also temporary parameters generated during training
53
+ like <fann_get_MSE> is not saved.
54
+
55
+ Return:
56
+ The function returns 0 on success and -1 on failure.
57
+
58
+ See also:
59
+ <fann_create_from_file>, <fann_save_to_fixed>
60
+
61
+ This function appears in FANN >= 1.0.0.
62
+ */
63
+ FANN_EXTERNAL int FANN_API fann_save(struct fann *ann, const char *configuration_file);
64
+
65
+
66
+ /* Function: fann_save_to_fixed
67
+
68
+ Saves the entire network to a configuration file.
69
+ But it is saved in fixed point format no matter which
70
+ format it is currently in.
71
+
72
+ This is usefull for training a network in floating points,
73
+ and then later executing it in fixed point.
74
+
75
+ The function returns the bit position of the fix point, which
76
+ can be used to find out how accurate the fixed point network will be.
77
+ A high value indicates high precision, and a low value indicates low
78
+ precision.
79
+
80
+ A negative value indicates very low precision, and a very
81
+ strong possibility for overflow.
82
+ (the actual fix point will be set to 0, since a negative
83
+ fix point does not make sence).
84
+
85
+ Generally, a fix point lower than 6 is bad, and should be avoided.
86
+ The best way to avoid this, is to have less connections to each neuron,
87
+ or just less neurons in each layer.
88
+
89
+ The fixed point use of this network is only intended for use on machines that
90
+ have no floating point processor, like an iPAQ. On normal computers the floating
91
+ point version is actually faster.
92
+
93
+ See also:
94
+ <fann_create_from_file>, <fann_save>
95
+
96
+ This function appears in FANN >= 1.0.0.
97
+ */
98
+ FANN_EXTERNAL int FANN_API fann_save_to_fixed(struct fann *ann, const char *configuration_file);
99
+
100
+ #endif
@@ -0,0 +1,1047 @@
1
+ /*
2
+ Fast Artificial Neural Network Library (fann)
3
+ Copyright (C) 2003-2012 Steffen Nissen (sn@leenissen.dk)
4
+
5
+ This library is free software; you can redistribute it and/or
6
+ modify it under the terms of the GNU Lesser General Public
7
+ License as published by the Free Software Foundation; either
8
+ version 2.1 of the License, or (at your option) any later version.
9
+
10
+ This library is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13
+ Lesser General Public License for more details.
14
+
15
+ You should have received a copy of the GNU Lesser General Public
16
+ License along with this library; if not, write to the Free Software
17
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
+ */
19
+
20
+ #include <stdio.h>
21
+ #include <stdlib.h>
22
+ #include <stdarg.h>
23
+ #include <string.h>
24
+ #include <math.h>
25
+
26
+ #include "config.h"
27
+ #include "fann.h"
28
+
29
+ /*#define DEBUGTRAIN*/
30
+
31
+ #ifndef FIXEDFANN
32
+ /* INTERNAL FUNCTION
33
+ Calculates the derived of a value, given an activation function
34
+ and a steepness
35
+ */
36
+ fann_type fann_activation_derived(unsigned int activation_function,
37
+ fann_type steepness, fann_type value, fann_type sum)
38
+ {
39
+ switch (activation_function)
40
+ {
41
+ case FANN_LINEAR:
42
+ case FANN_LINEAR_PIECE:
43
+ case FANN_LINEAR_PIECE_SYMMETRIC:
44
+ return (fann_type) fann_linear_derive(steepness, value);
45
+ case FANN_SIGMOID:
46
+ case FANN_SIGMOID_STEPWISE:
47
+ value = fann_clip(value, 0.01f, 0.99f);
48
+ return (fann_type) fann_sigmoid_derive(steepness, value);
49
+ case FANN_SIGMOID_SYMMETRIC:
50
+ case FANN_SIGMOID_SYMMETRIC_STEPWISE:
51
+ value = fann_clip(value, -0.98f, 0.98f);
52
+ return (fann_type) fann_sigmoid_symmetric_derive(steepness, value);
53
+ case FANN_GAUSSIAN:
54
+ /* value = fann_clip(value, 0.01f, 0.99f); */
55
+ return (fann_type) fann_gaussian_derive(steepness, value, sum);
56
+ case FANN_GAUSSIAN_SYMMETRIC:
57
+ /* value = fann_clip(value, -0.98f, 0.98f); */
58
+ return (fann_type) fann_gaussian_symmetric_derive(steepness, value, sum);
59
+ case FANN_ELLIOT:
60
+ value = fann_clip(value, 0.01f, 0.99f);
61
+ return (fann_type) fann_elliot_derive(steepness, value, sum);
62
+ case FANN_ELLIOT_SYMMETRIC:
63
+ value = fann_clip(value, -0.98f, 0.98f);
64
+ return (fann_type) fann_elliot_symmetric_derive(steepness, value, sum);
65
+ case FANN_SIN_SYMMETRIC:
66
+ return (fann_type) fann_sin_symmetric_derive(steepness, sum);
67
+ case FANN_COS_SYMMETRIC:
68
+ return (fann_type) fann_cos_symmetric_derive(steepness, sum);
69
+ case FANN_SIN:
70
+ return (fann_type) fann_sin_derive(steepness, sum);
71
+ case FANN_COS:
72
+ return (fann_type) fann_cos_derive(steepness, sum);
73
+ case FANN_THRESHOLD:
74
+ fann_error(NULL, FANN_E_CANT_TRAIN_ACTIVATION);
75
+ }
76
+ return 0;
77
+ }
78
+
79
+ /* INTERNAL FUNCTION
80
+ Calculates the activation of a value, given an activation function
81
+ and a steepness
82
+ */
83
+ fann_type fann_activation(struct fann * ann, unsigned int activation_function, fann_type steepness,
84
+ fann_type value)
85
+ {
86
+ value = fann_mult(steepness, value);
87
+ fann_activation_switch(activation_function, value, value);
88
+ return value;
89
+ }
90
+
91
+ /* Trains the network with the backpropagation algorithm.
92
+ */
93
+ FANN_EXTERNAL void FANN_API fann_train(struct fann *ann, fann_type * input,
94
+ fann_type * desired_output)
95
+ {
96
+ fann_run(ann, input);
97
+
98
+ fann_compute_MSE(ann, desired_output);
99
+
100
+ fann_backpropagate_MSE(ann);
101
+
102
+ fann_update_weights(ann);
103
+ }
104
+ #endif
105
+
106
+
107
+ /* INTERNAL FUNCTION
108
+ Helper function to update the MSE value and return a diff which takes symmetric functions into account
109
+ */
110
+ fann_type fann_update_MSE(struct fann *ann, struct fann_neuron* neuron, fann_type neuron_diff)
111
+ {
112
+ float neuron_diff2;
113
+
114
+ switch (neuron->activation_function)
115
+ {
116
+ case FANN_LINEAR_PIECE_SYMMETRIC:
117
+ case FANN_THRESHOLD_SYMMETRIC:
118
+ case FANN_SIGMOID_SYMMETRIC:
119
+ case FANN_SIGMOID_SYMMETRIC_STEPWISE:
120
+ case FANN_ELLIOT_SYMMETRIC:
121
+ case FANN_GAUSSIAN_SYMMETRIC:
122
+ case FANN_SIN_SYMMETRIC:
123
+ case FANN_COS_SYMMETRIC:
124
+ neuron_diff /= (fann_type)2.0;
125
+ break;
126
+ case FANN_THRESHOLD:
127
+ case FANN_LINEAR:
128
+ case FANN_SIGMOID:
129
+ case FANN_SIGMOID_STEPWISE:
130
+ case FANN_GAUSSIAN:
131
+ case FANN_GAUSSIAN_STEPWISE:
132
+ case FANN_ELLIOT:
133
+ case FANN_LINEAR_PIECE:
134
+ case FANN_SIN:
135
+ case FANN_COS:
136
+ break;
137
+ }
138
+
139
+ #ifdef FIXEDFANN
140
+ neuron_diff2 =
141
+ (neuron_diff / (float) ann->multiplier) * (neuron_diff / (float) ann->multiplier);
142
+ #else
143
+ neuron_diff2 = (float) (neuron_diff * neuron_diff);
144
+ #endif
145
+
146
+ ann->MSE_value += neuron_diff2;
147
+
148
+ /*printf("neuron_diff %f = (%f - %f)[/2], neuron_diff2=%f, sum=%f, MSE_value=%f, num_MSE=%d\n", neuron_diff, *desired_output, neuron_value, neuron_diff2, last_layer_begin->sum, ann->MSE_value, ann->num_MSE); */
149
+ if(fann_abs(neuron_diff) >= ann->bit_fail_limit)
150
+ {
151
+ ann->num_bit_fail++;
152
+ }
153
+
154
+ return neuron_diff;
155
+ }
156
+
157
+ /* Tests the network.
158
+ */
159
+ FANN_EXTERNAL fann_type *FANN_API fann_test(struct fann *ann, fann_type * input,
160
+ fann_type * desired_output)
161
+ {
162
+ fann_type neuron_value;
163
+ fann_type *output_begin = fann_run(ann, input);
164
+ fann_type *output_it;
165
+ const fann_type *output_end = output_begin + ann->num_output;
166
+ fann_type neuron_diff;
167
+ struct fann_neuron *output_neuron = (ann->last_layer - 1)->first_neuron;
168
+
169
+ /* calculate the error */
170
+ for(output_it = output_begin; output_it != output_end; output_it++)
171
+ {
172
+ neuron_value = *output_it;
173
+
174
+ neuron_diff = (*desired_output - neuron_value);
175
+
176
+ neuron_diff = fann_update_MSE(ann, output_neuron, neuron_diff);
177
+
178
+ desired_output++;
179
+ output_neuron++;
180
+
181
+ ann->num_MSE++;
182
+ }
183
+
184
+ return output_begin;
185
+ }
186
+
187
+ /* get the mean square error.
188
+ */
189
+ FANN_EXTERNAL float FANN_API fann_get_MSE(struct fann *ann)
190
+ {
191
+ if(ann->num_MSE)
192
+ {
193
+ return ann->MSE_value / (float) ann->num_MSE;
194
+ }
195
+ else
196
+ {
197
+ return 0;
198
+ }
199
+ }
200
+
201
+ FANN_EXTERNAL unsigned int FANN_API fann_get_bit_fail(struct fann *ann)
202
+ {
203
+ return ann->num_bit_fail;
204
+ }
205
+
206
+ /* reset the mean square error.
207
+ */
208
+ FANN_EXTERNAL void FANN_API fann_reset_MSE(struct fann *ann)
209
+ {
210
+ /*printf("resetMSE %d %f\n", ann->num_MSE, ann->MSE_value);*/
211
+ ann->num_MSE = 0;
212
+ ann->MSE_value = 0;
213
+ ann->num_bit_fail = 0;
214
+ }
215
+
216
+ #ifndef FIXEDFANN
217
+
218
+ /* INTERNAL FUNCTION
219
+ compute the error at the network output
220
+ (usually, after forward propagation of a certain input vector, fann_run)
221
+ the error is a sum of squares for all the output units
222
+ also increments a counter because MSE is an average of such errors
223
+
224
+ After this train_errors in the output layer will be set to:
225
+ neuron_value_derived * (desired_output - neuron_value)
226
+ */
227
+ void fann_compute_MSE(struct fann *ann, fann_type * desired_output)
228
+ {
229
+ fann_type neuron_value, neuron_diff, *error_it = 0, *error_begin = 0;
230
+ struct fann_neuron *last_layer_begin = (ann->last_layer - 1)->first_neuron;
231
+ const struct fann_neuron *last_layer_end = last_layer_begin + ann->num_output;
232
+ const struct fann_neuron *first_neuron = ann->first_layer->first_neuron;
233
+
234
+ /* if no room allocated for the error variabels, allocate it now */
235
+ if(ann->train_errors == NULL)
236
+ {
237
+ ann->train_errors = (fann_type *) calloc(ann->total_neurons, sizeof(fann_type));
238
+ if(ann->train_errors == NULL)
239
+ {
240
+ fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
241
+ return;
242
+ }
243
+ }
244
+ else
245
+ {
246
+ /* clear the error variabels */
247
+ memset(ann->train_errors, 0, (ann->total_neurons) * sizeof(fann_type));
248
+ }
249
+ error_begin = ann->train_errors;
250
+
251
+ #ifdef DEBUGTRAIN
252
+ printf("\ncalculate errors\n");
253
+ #endif
254
+ /* calculate the error and place it in the output layer */
255
+ error_it = error_begin + (last_layer_begin - first_neuron);
256
+
257
+ for(; last_layer_begin != last_layer_end; last_layer_begin++)
258
+ {
259
+ neuron_value = last_layer_begin->value;
260
+ neuron_diff = *desired_output - neuron_value;
261
+
262
+ neuron_diff = fann_update_MSE(ann, last_layer_begin, neuron_diff);
263
+
264
+ if(ann->train_error_function)
265
+ { /* TODO make switch when more functions */
266
+ if(neuron_diff < -.9999999)
267
+ neuron_diff = -17.0;
268
+ else if(neuron_diff > .9999999)
269
+ neuron_diff = 17.0;
270
+ else
271
+ neuron_diff = (fann_type) log((1.0 + neuron_diff) / (1.0 - neuron_diff));
272
+ }
273
+
274
+ *error_it = fann_activation_derived(last_layer_begin->activation_function,
275
+ last_layer_begin->activation_steepness, neuron_value,
276
+ last_layer_begin->sum) * neuron_diff;
277
+
278
+ desired_output++;
279
+ error_it++;
280
+
281
+ ann->num_MSE++;
282
+ }
283
+ }
284
+
285
+ /* INTERNAL FUNCTION
286
+ Propagate the error backwards from the output layer.
287
+
288
+ After this the train_errors in the hidden layers will be:
289
+ neuron_value_derived * sum(outgoing_weights * connected_neuron)
290
+ */
291
+ void fann_backpropagate_MSE(struct fann *ann)
292
+ {
293
+ fann_type tmp_error;
294
+ unsigned int i;
295
+ struct fann_layer *layer_it;
296
+ struct fann_neuron *neuron_it, *last_neuron;
297
+ struct fann_neuron **connections;
298
+
299
+ fann_type *error_begin = ann->train_errors;
300
+ fann_type *error_prev_layer;
301
+ fann_type *weights;
302
+ const struct fann_neuron *first_neuron = ann->first_layer->first_neuron;
303
+ const struct fann_layer *second_layer = ann->first_layer + 1;
304
+ struct fann_layer *last_layer = ann->last_layer;
305
+
306
+ /* go through all the layers, from last to first.
307
+ * And propagate the error backwards */
308
+ for(layer_it = last_layer - 1; layer_it > second_layer; --layer_it)
309
+ {
310
+ last_neuron = layer_it->last_neuron;
311
+
312
+ /* for each connection in this layer, propagate the error backwards */
313
+ if(ann->connection_rate >= 1)
314
+ {
315
+ if(ann->network_type == FANN_NETTYPE_LAYER)
316
+ {
317
+ error_prev_layer = error_begin + ((layer_it - 1)->first_neuron - first_neuron);
318
+ }
319
+ else
320
+ {
321
+ error_prev_layer = error_begin;
322
+ }
323
+
324
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
325
+ {
326
+
327
+ tmp_error = error_begin[neuron_it - first_neuron];
328
+ weights = ann->weights + neuron_it->first_con;
329
+ for(i = neuron_it->last_con - neuron_it->first_con; i--;)
330
+ {
331
+ /*printf("i = %d\n", i);
332
+ * printf("error_prev_layer[%d] = %f\n", i, error_prev_layer[i]);
333
+ * printf("weights[%d] = %f\n", i, weights[i]); */
334
+ error_prev_layer[i] += tmp_error * weights[i];
335
+ }
336
+ }
337
+ }
338
+ else
339
+ {
340
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
341
+ {
342
+
343
+ tmp_error = error_begin[neuron_it - first_neuron];
344
+ weights = ann->weights + neuron_it->first_con;
345
+ connections = ann->connections + neuron_it->first_con;
346
+ for(i = neuron_it->last_con - neuron_it->first_con; i--;)
347
+ {
348
+ error_begin[connections[i] - first_neuron] += tmp_error * weights[i];
349
+ }
350
+ }
351
+ }
352
+
353
+ /* then calculate the actual errors in the previous layer */
354
+ error_prev_layer = error_begin + ((layer_it - 1)->first_neuron - first_neuron);
355
+ last_neuron = (layer_it - 1)->last_neuron;
356
+
357
+ for(neuron_it = (layer_it - 1)->first_neuron; neuron_it != last_neuron; neuron_it++)
358
+ {
359
+ *error_prev_layer *= fann_activation_derived(neuron_it->activation_function,
360
+ neuron_it->activation_steepness, neuron_it->value, neuron_it->sum);
361
+ error_prev_layer++;
362
+ }
363
+
364
+ }
365
+ }
366
+
367
+ /* INTERNAL FUNCTION
368
+ Update weights for incremental training
369
+ */
370
+ void fann_update_weights(struct fann *ann)
371
+ {
372
+ struct fann_neuron *neuron_it, *last_neuron, *prev_neurons;
373
+ fann_type tmp_error, delta_w, *weights;
374
+ struct fann_layer *layer_it;
375
+ unsigned int i;
376
+ unsigned int num_connections;
377
+
378
+ /* store some variabels local for fast access */
379
+ const float learning_rate = ann->learning_rate;
380
+ const float learning_momentum = ann->learning_momentum;
381
+ struct fann_neuron *first_neuron = ann->first_layer->first_neuron;
382
+ struct fann_layer *first_layer = ann->first_layer;
383
+ const struct fann_layer *last_layer = ann->last_layer;
384
+ fann_type *error_begin = ann->train_errors;
385
+ fann_type *deltas_begin, *weights_deltas;
386
+
387
+ /* if no room allocated for the deltas, allocate it now */
388
+ if(ann->prev_weights_deltas == NULL)
389
+ {
390
+ ann->prev_weights_deltas =
391
+ (fann_type *) calloc(ann->total_connections_allocated, sizeof(fann_type));
392
+ if(ann->prev_weights_deltas == NULL)
393
+ {
394
+ fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
395
+ return;
396
+ }
397
+ }
398
+
399
+ #ifdef DEBUGTRAIN
400
+ printf("\nupdate weights\n");
401
+ #endif
402
+ deltas_begin = ann->prev_weights_deltas;
403
+ prev_neurons = first_neuron;
404
+ for(layer_it = (first_layer + 1); layer_it != last_layer; layer_it++)
405
+ {
406
+ #ifdef DEBUGTRAIN
407
+ printf("layer[%d]\n", layer_it - first_layer);
408
+ #endif
409
+ last_neuron = layer_it->last_neuron;
410
+ if(ann->connection_rate >= 1)
411
+ {
412
+ if(ann->network_type == FANN_NETTYPE_LAYER)
413
+ {
414
+ prev_neurons = (layer_it - 1)->first_neuron;
415
+ }
416
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
417
+ {
418
+ tmp_error = error_begin[neuron_it - first_neuron] * learning_rate;
419
+ num_connections = neuron_it->last_con - neuron_it->first_con;
420
+ weights = ann->weights + neuron_it->first_con;
421
+ weights_deltas = deltas_begin + neuron_it->first_con;
422
+ for(i = 0; i != num_connections; i++)
423
+ {
424
+ delta_w = tmp_error * prev_neurons[i].value + learning_momentum * weights_deltas[i];
425
+ weights[i] += delta_w ;
426
+ weights_deltas[i] = delta_w;
427
+ }
428
+ }
429
+ }
430
+ else
431
+ {
432
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
433
+ {
434
+ tmp_error = error_begin[neuron_it - first_neuron] * learning_rate;
435
+ num_connections = neuron_it->last_con - neuron_it->first_con;
436
+ weights = ann->weights + neuron_it->first_con;
437
+ weights_deltas = deltas_begin + neuron_it->first_con;
438
+ for(i = 0; i != num_connections; i++)
439
+ {
440
+ delta_w = tmp_error * prev_neurons[i].value + learning_momentum * weights_deltas[i];
441
+ weights[i] += delta_w;
442
+ weights_deltas[i] = delta_w;
443
+ }
444
+ }
445
+ }
446
+ }
447
+ }
448
+
449
+ /* INTERNAL FUNCTION
450
+ Update slopes for batch training
451
+ layer_begin = ann->first_layer+1 and layer_end = ann->last_layer-1
452
+ will update all slopes.
453
+
454
+ */
455
+ void fann_update_slopes_batch(struct fann *ann, struct fann_layer *layer_begin,
456
+ struct fann_layer *layer_end)
457
+ {
458
+ struct fann_neuron *neuron_it, *last_neuron, *prev_neurons, **connections;
459
+ fann_type tmp_error;
460
+ unsigned int i, num_connections;
461
+
462
+ /* store some variabels local for fast access */
463
+ struct fann_neuron *first_neuron = ann->first_layer->first_neuron;
464
+ fann_type *error_begin = ann->train_errors;
465
+ fann_type *slope_begin, *neuron_slope;
466
+
467
+ /* if no room allocated for the slope variabels, allocate it now */
468
+ if(ann->train_slopes == NULL)
469
+ {
470
+ ann->train_slopes =
471
+ (fann_type *) calloc(ann->total_connections_allocated, sizeof(fann_type));
472
+ if(ann->train_slopes == NULL)
473
+ {
474
+ fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
475
+ return;
476
+ }
477
+ }
478
+
479
+ if(layer_begin == NULL)
480
+ {
481
+ layer_begin = ann->first_layer + 1;
482
+ }
483
+
484
+ if(layer_end == NULL)
485
+ {
486
+ layer_end = ann->last_layer - 1;
487
+ }
488
+
489
+ slope_begin = ann->train_slopes;
490
+
491
+ #ifdef DEBUGTRAIN
492
+ printf("\nupdate slopes\n");
493
+ #endif
494
+
495
+ prev_neurons = first_neuron;
496
+
497
+ for(; layer_begin <= layer_end; layer_begin++)
498
+ {
499
+ #ifdef DEBUGTRAIN
500
+ printf("layer[%d]\n", layer_begin - ann->first_layer);
501
+ #endif
502
+ last_neuron = layer_begin->last_neuron;
503
+ if(ann->connection_rate >= 1)
504
+ {
505
+ if(ann->network_type == FANN_NETTYPE_LAYER)
506
+ {
507
+ prev_neurons = (layer_begin - 1)->first_neuron;
508
+ }
509
+
510
+ for(neuron_it = layer_begin->first_neuron; neuron_it != last_neuron; neuron_it++)
511
+ {
512
+ tmp_error = error_begin[neuron_it - first_neuron];
513
+ neuron_slope = slope_begin + neuron_it->first_con;
514
+ num_connections = neuron_it->last_con - neuron_it->first_con;
515
+ for(i = 0; i != num_connections; i++)
516
+ {
517
+ neuron_slope[i] += tmp_error * prev_neurons[i].value;
518
+ }
519
+ }
520
+ }
521
+ else
522
+ {
523
+ for(neuron_it = layer_begin->first_neuron; neuron_it != last_neuron; neuron_it++)
524
+ {
525
+ tmp_error = error_begin[neuron_it - first_neuron];
526
+ neuron_slope = slope_begin + neuron_it->first_con;
527
+ num_connections = neuron_it->last_con - neuron_it->first_con;
528
+ connections = ann->connections + neuron_it->first_con;
529
+ for(i = 0; i != num_connections; i++)
530
+ {
531
+ neuron_slope[i] += tmp_error * connections[i]->value;
532
+ }
533
+ }
534
+ }
535
+ }
536
+ }
537
+
538
+ /* INTERNAL FUNCTION
539
+ Clears arrays used for training before a new training session.
540
+ Also creates the arrays that do not exist yet.
541
+ */
542
+ void fann_clear_train_arrays(struct fann *ann)
543
+ {
544
+ unsigned int i;
545
+ fann_type delta_zero;
546
+
547
+ /* if no room allocated for the slope variabels, allocate it now
548
+ * (calloc clears mem) */
549
+ if(ann->train_slopes == NULL)
550
+ {
551
+ ann->train_slopes =
552
+ (fann_type *) calloc(ann->total_connections_allocated, sizeof(fann_type));
553
+ if(ann->train_slopes == NULL)
554
+ {
555
+ fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
556
+ return;
557
+ }
558
+ }
559
+ else
560
+ {
561
+ memset(ann->train_slopes, 0, (ann->total_connections_allocated) * sizeof(fann_type));
562
+ }
563
+
564
+ /* if no room allocated for the variabels, allocate it now */
565
+ if(ann->prev_steps == NULL)
566
+ {
567
+ ann->prev_steps = (fann_type *) malloc(ann->total_connections_allocated * sizeof(fann_type));
568
+ if(ann->prev_steps == NULL)
569
+ {
570
+ fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
571
+ return;
572
+ }
573
+ }
574
+
575
+ if(ann->training_algorithm == FANN_TRAIN_RPROP)
576
+ {
577
+ delta_zero = ann->rprop_delta_zero;
578
+
579
+ for(i = 0; i < ann->total_connections_allocated; i++)
580
+ ann->prev_steps[i] = delta_zero;
581
+ }
582
+ else
583
+ {
584
+ memset(ann->prev_steps, 0, (ann->total_connections_allocated) * sizeof(fann_type));
585
+ }
586
+
587
+ /* if no room allocated for the variabels, allocate it now */
588
+ if(ann->prev_train_slopes == NULL)
589
+ {
590
+ ann->prev_train_slopes =
591
+ (fann_type *) calloc(ann->total_connections_allocated, sizeof(fann_type));
592
+ if(ann->prev_train_slopes == NULL)
593
+ {
594
+ fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
595
+ return;
596
+ }
597
+ }
598
+ else
599
+ {
600
+ memset(ann->prev_train_slopes, 0, (ann->total_connections_allocated) * sizeof(fann_type));
601
+ }
602
+ }
603
+
604
+ /* INTERNAL FUNCTION
605
+ Update weights for batch training
606
+ */
607
+ void fann_update_weights_batch(struct fann *ann, unsigned int num_data, unsigned int first_weight,
608
+ unsigned int past_end)
609
+ {
610
+ fann_type *train_slopes = ann->train_slopes;
611
+ fann_type *weights = ann->weights;
612
+ const float epsilon = ann->learning_rate / num_data;
613
+ unsigned int i = first_weight;
614
+
615
+ for(; i != past_end; i++)
616
+ {
617
+ weights[i] += train_slopes[i] * epsilon;
618
+ train_slopes[i] = 0.0;
619
+ }
620
+ }
621
+
622
+ /* INTERNAL FUNCTION
623
+ The quickprop training algorithm
624
+ */
625
+ void fann_update_weights_quickprop(struct fann *ann, unsigned int num_data,
626
+ unsigned int first_weight, unsigned int past_end)
627
+ {
628
+ fann_type *train_slopes = ann->train_slopes;
629
+ fann_type *weights = ann->weights;
630
+ fann_type *prev_steps = ann->prev_steps;
631
+ fann_type *prev_train_slopes = ann->prev_train_slopes;
632
+
633
+ fann_type w, prev_step, slope, prev_slope, next_step;
634
+
635
+ float epsilon = ann->learning_rate / num_data;
636
+ float decay = ann->quickprop_decay; /*-0.0001;*/
637
+ float mu = ann->quickprop_mu; /*1.75; */
638
+ float shrink_factor = (float) (mu / (1.0 + mu));
639
+
640
+ unsigned int i = first_weight;
641
+
642
+ for(; i != past_end; i++)
643
+ {
644
+ w = weights[i];
645
+ prev_step = prev_steps[i];
646
+ slope = train_slopes[i] + decay * w;
647
+ prev_slope = prev_train_slopes[i];
648
+ next_step = 0.0;
649
+
650
+ /* The step must always be in direction opposite to the slope. */
651
+ if(prev_step > 0.001)
652
+ {
653
+ /* If last step was positive... */
654
+ if(slope > 0.0) /* Add in linear term if current slope is still positive. */
655
+ next_step += epsilon * slope;
656
+
657
+ /*If current slope is close to or larger than prev slope... */
658
+ if(slope > (shrink_factor * prev_slope))
659
+ next_step += mu * prev_step; /* Take maximum size negative step. */
660
+ else
661
+ next_step += prev_step * slope / (prev_slope - slope); /* Else, use quadratic estimate. */
662
+ }
663
+ else if(prev_step < -0.001)
664
+ {
665
+ /* If last step was negative... */
666
+ if(slope < 0.0) /* Add in linear term if current slope is still negative. */
667
+ next_step += epsilon * slope;
668
+
669
+ /* If current slope is close to or more neg than prev slope... */
670
+ if(slope < (shrink_factor * prev_slope))
671
+ next_step += mu * prev_step; /* Take maximum size negative step. */
672
+ else
673
+ next_step += prev_step * slope / (prev_slope - slope); /* Else, use quadratic estimate. */
674
+ }
675
+ else /* Last step was zero, so use only linear term. */
676
+ next_step += epsilon * slope;
677
+
678
+ /*
679
+ if(next_step > 1000 || next_step < -1000)
680
+ {
681
+ printf("quickprop[%d] weight=%f, slope=%f, prev_slope=%f, next_step=%f, prev_step=%f\n",
682
+ i, weights[i], slope, prev_slope, next_step, prev_step);
683
+
684
+ if(next_step > 1000)
685
+ next_step = 1000;
686
+ else
687
+ next_step = -1000;
688
+ }
689
+ */
690
+
691
+ /* update global data arrays */
692
+ prev_steps[i] = next_step;
693
+
694
+ w += next_step;
695
+
696
+ if(w > 1500)
697
+ weights[i] = 1500;
698
+ else if(w < -1500)
699
+ weights[i] = -1500;
700
+ else
701
+ weights[i] = w;
702
+
703
+ /*weights[i] = w;*/
704
+
705
+ prev_train_slopes[i] = slope;
706
+ train_slopes[i] = 0.0;
707
+ }
708
+ }
709
+
710
+ /* INTERNAL FUNCTION
711
+ The iRprop- algorithm
712
+ */
713
+ void fann_update_weights_irpropm(struct fann *ann, unsigned int first_weight, unsigned int past_end)
714
+ {
715
+ fann_type *train_slopes = ann->train_slopes;
716
+ fann_type *weights = ann->weights;
717
+ fann_type *prev_steps = ann->prev_steps;
718
+ fann_type *prev_train_slopes = ann->prev_train_slopes;
719
+
720
+ fann_type prev_step, slope, prev_slope, next_step, same_sign;
721
+
722
+ float increase_factor = ann->rprop_increase_factor; /*1.2; */
723
+ float decrease_factor = ann->rprop_decrease_factor; /*0.5; */
724
+ float delta_min = ann->rprop_delta_min; /*0.0; */
725
+ float delta_max = ann->rprop_delta_max; /*50.0; */
726
+
727
+ unsigned int i = first_weight;
728
+
729
+ for(; i != past_end; i++)
730
+ {
731
+ prev_step = fann_max(prev_steps[i], (fann_type) 0.0001); /* prev_step may not be zero because then the training will stop */
732
+ slope = train_slopes[i];
733
+ prev_slope = prev_train_slopes[i];
734
+
735
+ same_sign = prev_slope * slope;
736
+
737
+ if(same_sign >= 0.0)
738
+ next_step = fann_min(prev_step * increase_factor, delta_max);
739
+ else
740
+ {
741
+ next_step = fann_max(prev_step * decrease_factor, delta_min);
742
+ slope = 0;
743
+ }
744
+
745
+ if(slope < 0)
746
+ {
747
+ weights[i] -= next_step;
748
+ if(weights[i] < -1500)
749
+ weights[i] = -1500;
750
+ }
751
+ else
752
+ {
753
+ weights[i] += next_step;
754
+ if(weights[i] > 1500)
755
+ weights[i] = 1500;
756
+ }
757
+
758
+ /*if(i == 2){
759
+ * printf("weight=%f, slope=%f, next_step=%f, prev_step=%f\n", weights[i], slope, next_step, prev_step);
760
+ * } */
761
+
762
+ /* update global data arrays */
763
+ prev_steps[i] = next_step;
764
+ prev_train_slopes[i] = slope;
765
+ train_slopes[i] = 0.0;
766
+ }
767
+ }
768
+
769
+ /* INTERNAL FUNCTION
770
+ The SARprop- algorithm
771
+ */
772
+ void fann_update_weights_sarprop(struct fann *ann, unsigned int epoch, unsigned int first_weight, unsigned int past_end)
773
+ {
774
+ fann_type *train_slopes = ann->train_slopes;
775
+ fann_type *weights = ann->weights;
776
+ fann_type *prev_steps = ann->prev_steps;
777
+ fann_type *prev_train_slopes = ann->prev_train_slopes;
778
+
779
+ fann_type prev_step, slope, prev_slope, next_step = 0, same_sign;
780
+
781
+ /* These should be set from variables */
782
+ float increase_factor = ann->rprop_increase_factor; /*1.2; */
783
+ float decrease_factor = ann->rprop_decrease_factor; /*0.5; */
784
+ /* TODO: why is delta_min 0.0 in iRprop? SARPROP uses 1x10^-6 (Braun and Riedmiller, 1993) */
785
+ float delta_min = 0.000001f;
786
+ float delta_max = ann->rprop_delta_max; /*50.0; */
787
+ float weight_decay_shift = ann->sarprop_weight_decay_shift; /* ld 0.01 = -6.644 */
788
+ float step_error_threshold_factor = ann->sarprop_step_error_threshold_factor; /* 0.1 */
789
+ float step_error_shift = ann->sarprop_step_error_shift; /* ld 3 = 1.585 */
790
+ float T = ann->sarprop_temperature;
791
+ float MSE = fann_get_MSE(ann);
792
+ float RMSE = (float)sqrt(MSE);
793
+
794
+ unsigned int i = first_weight;
795
+
796
+
797
+ /* for all weights; TODO: are biases included? */
798
+ for(; i != past_end; i++)
799
+ {
800
+ /* TODO: confirm whether 1x10^-6 == delta_min is really better */
801
+ prev_step = fann_max(prev_steps[i], (fann_type) 0.000001); /* prev_step may not be zero because then the training will stop */
802
+ /* calculate SARPROP slope; TODO: better as new error function? (see SARPROP paper)*/
803
+ slope = -train_slopes[i] - weights[i] * (fann_type)fann_exp2(-T * epoch + weight_decay_shift);
804
+
805
+ /* TODO: is prev_train_slopes[i] 0.0 in the beginning? */
806
+ prev_slope = prev_train_slopes[i];
807
+
808
+ same_sign = prev_slope * slope;
809
+
810
+ if(same_sign > 0.0)
811
+ {
812
+ next_step = fann_min(prev_step * increase_factor, delta_max);
813
+ /* TODO: are the signs inverted? see differences between SARPROP paper and iRprop */
814
+ if (slope < 0.0)
815
+ weights[i] += next_step;
816
+ else
817
+ weights[i] -= next_step;
818
+ }
819
+ else if(same_sign < 0.0)
820
+ {
821
+ if(prev_step < step_error_threshold_factor * MSE)
822
+ next_step = prev_step * decrease_factor + (float)rand() / RAND_MAX * RMSE * (fann_type)fann_exp2(-T * epoch + step_error_shift);
823
+ else
824
+ next_step = fann_max(prev_step * decrease_factor, delta_min);
825
+
826
+ slope = 0.0;
827
+ }
828
+ else
829
+ {
830
+ if(slope < 0.0)
831
+ weights[i] += prev_step;
832
+ else
833
+ weights[i] -= prev_step;
834
+ }
835
+
836
+
837
+ /*if(i == 2){
838
+ * printf("weight=%f, slope=%f, next_step=%f, prev_step=%f\n", weights[i], slope, next_step, prev_step);
839
+ * } */
840
+
841
+ /* update global data arrays */
842
+ prev_steps[i] = next_step;
843
+ prev_train_slopes[i] = slope;
844
+ train_slopes[i] = 0.0;
845
+ }
846
+ }
847
+
848
+ #endif
849
+
850
+ FANN_GET_SET(enum fann_train_enum, training_algorithm)
851
+ FANN_GET_SET(float, learning_rate)
852
+
853
+ FANN_EXTERNAL void FANN_API fann_set_activation_function_hidden(struct fann *ann,
854
+ enum fann_activationfunc_enum activation_function)
855
+ {
856
+ struct fann_neuron *last_neuron, *neuron_it;
857
+ struct fann_layer *layer_it;
858
+ struct fann_layer *last_layer = ann->last_layer - 1; /* -1 to not update the output layer */
859
+
860
+ for(layer_it = ann->first_layer + 1; layer_it != last_layer; layer_it++)
861
+ {
862
+ last_neuron = layer_it->last_neuron;
863
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
864
+ {
865
+ neuron_it->activation_function = activation_function;
866
+ }
867
+ }
868
+ }
869
+
870
+ FANN_EXTERNAL struct fann_layer* FANN_API fann_get_layer(struct fann *ann, int layer)
871
+ {
872
+ if(layer <= 0 || layer >= (ann->last_layer - ann->first_layer))
873
+ {
874
+ fann_error((struct fann_error *) ann, FANN_E_INDEX_OUT_OF_BOUND, layer);
875
+ return NULL;
876
+ }
877
+
878
+ return ann->first_layer + layer;
879
+ }
880
+
881
+ FANN_EXTERNAL struct fann_neuron* FANN_API fann_get_neuron_layer(struct fann *ann, struct fann_layer* layer, int neuron)
882
+ {
883
+ if(neuron >= (layer->last_neuron - layer->first_neuron))
884
+ {
885
+ fann_error((struct fann_error *) ann, FANN_E_INDEX_OUT_OF_BOUND, neuron);
886
+ return NULL;
887
+ }
888
+
889
+ return layer->first_neuron + neuron;
890
+ }
891
+
892
+ FANN_EXTERNAL struct fann_neuron* FANN_API fann_get_neuron(struct fann *ann, unsigned int layer, int neuron)
893
+ {
894
+ struct fann_layer *layer_it = fann_get_layer(ann, layer);
895
+ if(layer_it == NULL)
896
+ return NULL;
897
+ return fann_get_neuron_layer(ann, layer_it, neuron);
898
+ }
899
+
900
+ FANN_EXTERNAL enum fann_activationfunc_enum FANN_API
901
+ fann_get_activation_function(struct fann *ann, int layer, int neuron)
902
+ {
903
+ struct fann_neuron* neuron_it = fann_get_neuron(ann, layer, neuron);
904
+ if (neuron_it == NULL)
905
+ {
906
+ return (enum fann_activationfunc_enum)-1; /* layer or neuron out of bounds */
907
+ }
908
+ else
909
+ {
910
+ return neuron_it->activation_function;
911
+ }
912
+ }
913
+
914
+ FANN_EXTERNAL void FANN_API fann_set_activation_function(struct fann *ann,
915
+ enum fann_activationfunc_enum
916
+ activation_function,
917
+ int layer,
918
+ int neuron)
919
+ {
920
+ struct fann_neuron* neuron_it = fann_get_neuron(ann, layer, neuron);
921
+ if(neuron_it == NULL)
922
+ return;
923
+
924
+ neuron_it->activation_function = activation_function;
925
+ }
926
+
927
+ FANN_EXTERNAL void FANN_API fann_set_activation_function_layer(struct fann *ann,
928
+ enum fann_activationfunc_enum
929
+ activation_function,
930
+ int layer)
931
+ {
932
+ struct fann_neuron *last_neuron, *neuron_it;
933
+ struct fann_layer *layer_it = fann_get_layer(ann, layer);
934
+
935
+ if(layer_it == NULL)
936
+ return;
937
+
938
+ last_neuron = layer_it->last_neuron;
939
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
940
+ {
941
+ neuron_it->activation_function = activation_function;
942
+ }
943
+ }
944
+
945
+
946
+ FANN_EXTERNAL void FANN_API fann_set_activation_function_output(struct fann *ann,
947
+ enum fann_activationfunc_enum activation_function)
948
+ {
949
+ struct fann_neuron *last_neuron, *neuron_it;
950
+ struct fann_layer *last_layer = ann->last_layer - 1;
951
+
952
+ last_neuron = last_layer->last_neuron;
953
+ for(neuron_it = last_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
954
+ {
955
+ neuron_it->activation_function = activation_function;
956
+ }
957
+ }
958
+
959
+ FANN_EXTERNAL void FANN_API fann_set_activation_steepness_hidden(struct fann *ann,
960
+ fann_type steepness)
961
+ {
962
+ struct fann_neuron *last_neuron, *neuron_it;
963
+ struct fann_layer *layer_it;
964
+ struct fann_layer *last_layer = ann->last_layer - 1; /* -1 to not update the output layer */
965
+
966
+ for(layer_it = ann->first_layer + 1; layer_it != last_layer; layer_it++)
967
+ {
968
+ last_neuron = layer_it->last_neuron;
969
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
970
+ {
971
+ neuron_it->activation_steepness = steepness;
972
+ }
973
+ }
974
+ }
975
+
976
+ FANN_EXTERNAL fann_type FANN_API
977
+ fann_get_activation_steepness(struct fann *ann, int layer, int neuron)
978
+ {
979
+ struct fann_neuron* neuron_it = fann_get_neuron(ann, layer, neuron);
980
+ if(neuron_it == NULL)
981
+ {
982
+ return -1; /* layer or neuron out of bounds */
983
+ }
984
+ else
985
+ {
986
+ return neuron_it->activation_steepness;
987
+ }
988
+ }
989
+
990
+ FANN_EXTERNAL void FANN_API fann_set_activation_steepness(struct fann *ann,
991
+ fann_type steepness,
992
+ int layer,
993
+ int neuron)
994
+ {
995
+ struct fann_neuron* neuron_it = fann_get_neuron(ann, layer, neuron);
996
+ if(neuron_it == NULL)
997
+ return;
998
+
999
+ neuron_it->activation_steepness = steepness;
1000
+ }
1001
+
1002
+ FANN_EXTERNAL void FANN_API fann_set_activation_steepness_layer(struct fann *ann,
1003
+ fann_type steepness,
1004
+ int layer)
1005
+ {
1006
+ struct fann_neuron *last_neuron, *neuron_it;
1007
+ struct fann_layer *layer_it = fann_get_layer(ann, layer);
1008
+
1009
+ if(layer_it == NULL)
1010
+ return;
1011
+
1012
+ last_neuron = layer_it->last_neuron;
1013
+ for(neuron_it = layer_it->first_neuron; neuron_it != last_neuron; neuron_it++)
1014
+ {
1015
+ neuron_it->activation_steepness = steepness;
1016
+ }
1017
+ }
1018
+
1019
+ FANN_EXTERNAL void FANN_API fann_set_activation_steepness_output(struct fann *ann,
1020
+ fann_type steepness)
1021
+ {
1022
+ struct fann_neuron *last_neuron, *neuron_it;
1023
+ struct fann_layer *last_layer = ann->last_layer - 1;
1024
+
1025
+ last_neuron = last_layer->last_neuron;
1026
+ for(neuron_it = last_layer->first_neuron; neuron_it != last_neuron; neuron_it++)
1027
+ {
1028
+ neuron_it->activation_steepness = steepness;
1029
+ }
1030
+ }
1031
+
1032
+ FANN_GET_SET(enum fann_errorfunc_enum, train_error_function)
1033
+ FANN_GET_SET(fann_callback_type, callback)
1034
+ FANN_GET_SET(float, quickprop_decay)
1035
+ FANN_GET_SET(float, quickprop_mu)
1036
+ FANN_GET_SET(float, rprop_increase_factor)
1037
+ FANN_GET_SET(float, rprop_decrease_factor)
1038
+ FANN_GET_SET(float, rprop_delta_min)
1039
+ FANN_GET_SET(float, rprop_delta_max)
1040
+ FANN_GET_SET(float, rprop_delta_zero)
1041
+ FANN_GET_SET(float, sarprop_weight_decay_shift)
1042
+ FANN_GET_SET(float, sarprop_step_error_threshold_factor)
1043
+ FANN_GET_SET(float, sarprop_step_error_shift)
1044
+ FANN_GET_SET(float, sarprop_temperature)
1045
+ FANN_GET_SET(enum fann_stopfunc_enum, train_stop_function)
1046
+ FANN_GET_SET(fann_type, bit_fail_limit)
1047
+ FANN_GET_SET(float, learning_momentum)