ml4r 0.1.5 → 0.1.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -18,18 +18,6 @@ using std::vector;
|
|
18
18
|
using ublas::prod;
|
19
19
|
using ublas::matrix;
|
20
20
|
|
21
|
-
|
22
|
-
void LinearRegression::setWeights(vector<double> weights)
|
23
|
-
{
|
24
|
-
m_ws = weights;
|
25
|
-
}
|
26
|
-
|
27
|
-
void LinearRegression::setFixedConstant(double val)
|
28
|
-
{
|
29
|
-
m_constant = val;
|
30
|
-
m_constantIsFixed = true;
|
31
|
-
}
|
32
|
-
|
33
21
|
pair<vector<double>,double> LinearRegression::getParameterEstimates()
|
34
22
|
{
|
35
23
|
return make_pair(m_bs,m_constant);
|
@@ -28,10 +28,6 @@ public:
|
|
28
28
|
: m_xs(xs), m_ys(ys), m_ws(weights), m_constantIsFixed(true), m_constant(fixedConstant), m_paramsAreValid(false) {}
|
29
29
|
~LinearRegression() {}
|
30
30
|
|
31
|
-
|
32
|
-
void setFixedConstant(double val);
|
33
|
-
|
34
|
-
|
35
31
|
pair<std::vector<double>,double> getParameterEstimates();
|
36
32
|
std::vector<double>& getFittedYs();
|
37
33
|
std::vector<double>& getPredictedYs();
|
data/ext/ml4r/ml4r_wrap.cpp
CHANGED
@@ -13945,35 +13945,6 @@ free_LinearRegression(LinearRegression *arg1) {
|
|
13945
13945
|
delete arg1;
|
13946
13946
|
}
|
13947
13947
|
|
13948
|
-
SWIGINTERN VALUE
|
13949
|
-
_wrap_LinearRegression_setFixedConstant(int argc, VALUE *argv, VALUE self) {
|
13950
|
-
LinearRegression *arg1 = (LinearRegression *) 0 ;
|
13951
|
-
double arg2 ;
|
13952
|
-
void *argp1 = 0 ;
|
13953
|
-
int res1 = 0 ;
|
13954
|
-
double val2 ;
|
13955
|
-
int ecode2 = 0 ;
|
13956
|
-
|
13957
|
-
if ((argc < 1) || (argc > 1)) {
|
13958
|
-
rb_raise(rb_eArgError, "wrong # of arguments(%d for 1)",argc); SWIG_fail;
|
13959
|
-
}
|
13960
|
-
res1 = SWIG_ConvertPtr(self, &argp1,SWIGTYPE_p_LinearRegression, 0 | 0 );
|
13961
|
-
if (!SWIG_IsOK(res1)) {
|
13962
|
-
SWIG_exception_fail(SWIG_ArgError(res1), Ruby_Format_TypeError( "", "LinearRegression *","setFixedConstant", 1, self ));
|
13963
|
-
}
|
13964
|
-
arg1 = reinterpret_cast< LinearRegression * >(argp1);
|
13965
|
-
ecode2 = SWIG_AsVal_double(argv[0], &val2);
|
13966
|
-
if (!SWIG_IsOK(ecode2)) {
|
13967
|
-
SWIG_exception_fail(SWIG_ArgError(ecode2), Ruby_Format_TypeError( "", "double","setFixedConstant", 2, argv[0] ));
|
13968
|
-
}
|
13969
|
-
arg2 = static_cast< double >(val2);
|
13970
|
-
(arg1)->setFixedConstant(arg2);
|
13971
|
-
return Qnil;
|
13972
|
-
fail:
|
13973
|
-
return Qnil;
|
13974
|
-
}
|
13975
|
-
|
13976
|
-
|
13977
13948
|
SWIGINTERN VALUE
|
13978
13949
|
_wrap_LinearRegression_getParameterEstimates(int argc, VALUE *argv, VALUE self) {
|
13979
13950
|
LinearRegression *arg1 = (LinearRegression *) 0 ;
|
@@ -15692,7 +15663,6 @@ SWIGEXPORT void Init_ml4r(void) {
|
|
15692
15663
|
SWIG_TypeClientData(SWIGTYPE_p_LinearRegression, (void *) &SwigClassLinearRegression);
|
15693
15664
|
rb_define_alloc_func(SwigClassLinearRegression.klass, _wrap_LinearRegression_allocate);
|
15694
15665
|
rb_define_method(SwigClassLinearRegression.klass, "initialize", VALUEFUNC(_wrap_new_LinearRegression), -1);
|
15695
|
-
rb_define_method(SwigClassLinearRegression.klass, "setFixedConstant", VALUEFUNC(_wrap_LinearRegression_setFixedConstant), -1);
|
15696
15666
|
rb_define_method(SwigClassLinearRegression.klass, "getParameterEstimates", VALUEFUNC(_wrap_LinearRegression_getParameterEstimates), -1);
|
15697
15667
|
rb_define_method(SwigClassLinearRegression.klass, "getFittedYs", VALUEFUNC(_wrap_LinearRegression_getFittedYs), -1);
|
15698
15668
|
rb_define_method(SwigClassLinearRegression.klass, "getPredictedYs", VALUEFUNC(_wrap_LinearRegression_getPredictedYs), -1);
|