mirlo 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +18 -0
- data/Gemfile +8 -0
- data/LICENSE.txt +22 -0
- data/README.md +39 -0
- data/Rakefile +1 -0
- data/lib/mirlo.rb +33 -0
- data/lib/mirlo/ann/ann.rb +44 -0
- data/lib/mirlo/ann/hidden_layer.rb +11 -0
- data/lib/mirlo/ann/input_layer.rb +23 -0
- data/lib/mirlo/ann/multilayer_perceptron.rb +44 -0
- data/lib/mirlo/ann/neuron_layer.rb +53 -0
- data/lib/mirlo/ann/output_layer.rb +17 -0
- data/lib/mirlo/classifier.rb +37 -0
- data/lib/mirlo/classifiers/perceptron.rb +33 -0
- data/lib/mirlo/dataset.rb +103 -0
- data/lib/mirlo/datasets/and_dataset.rb +13 -0
- data/lib/mirlo/datasets/double_moon_dataset.rb +43 -0
- data/lib/mirlo/datasets/or_dataset.rb +13 -0
- data/lib/mirlo/datasets/xor_dataset.rb +13 -0
- data/lib/mirlo/extensions/matrix.rb +27 -0
- data/lib/mirlo/plotting.rb +30 -0
- data/lib/mirlo/sample.rb +34 -0
- data/lib/mirlo/sample_with_bias.rb +19 -0
- data/lib/mirlo/test_result.rb +49 -0
- data/lib/mirlo/version.rb +3 -0
- data/mirlo.gemspec +26 -0
- data/spec/ann/ann_spec.rb +60 -0
- data/spec/ann/multilayer_percetron_spec.rb +55 -0
- data/spec/ann/neuron_layer_spec.rb +45 -0
- data/spec/classifiers/perceptron_spec.rb +77 -0
- data/spec/dataset_spec.rb +52 -0
- data/spec/datasets/and_dataset_spec.rb +21 -0
- data/spec/datasets/double_moon_dataset_spec.rb +17 -0
- data/spec/extensions/matrix_spec.rb +18 -0
- data/spec/plots/double_moon.dat +100 -0
- data/spec/plotting_spec.rb +9 -0
- data/spec/spec_helper.rb +6 -0
- data/spec/test_result_spec.rb +30 -0
- metadata +150 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: d99924e52d6896e3346c45a30fb2c6d202ab2e63
|
4
|
+
data.tar.gz: 7e455ce32eb67d8ac4b1c239b5f87e0302ee4608
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: c1c3e145df40a265b77e28b4f466dff0b7f53d16efb432dc28c7b1184051a43be8cc6437c1019bc54606eddc99f8d46072ba11509073f82cd41a0b92f3f8dfdf
|
7
|
+
data.tar.gz: 6e6805bd9b68c22fe8b48b85dc19b671e19db0522a5359968424f7dc7a887daa5fa40fe0f7514306011a921b2dd8f1ba7b5e7aaac87ea65ac657f4b11726f89a
|
data/.gitignore
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2013 Alberto F. Capel
|
2
|
+
|
3
|
+
MIT License
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
6
|
+
a copy of this software and associated documentation files (the
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
11
|
+
the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be
|
14
|
+
included in all copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,39 @@
|
|
1
|
+
# Mirlo
|
2
|
+
|
3
|
+
Some Machine Learning algorithms implemented in Ruby.
|
4
|
+
|
5
|
+
Currently implemented:
|
6
|
+
|
7
|
+
* Perceptron
|
8
|
+
* Multilayer Perceptron. Batch update of neuron weights with momentum.
|
9
|
+
|
10
|
+
|
11
|
+
## Example
|
12
|
+
|
13
|
+
```ruby
|
14
|
+
|
15
|
+
mlp = Mirlo::ANN.build do
|
16
|
+
input_layer 2
|
17
|
+
hidden_layer 3
|
18
|
+
output_layer 1
|
19
|
+
end
|
20
|
+
# => #<Mirlo::MultilayerPerceptron:0x007fa0e997eff0 ...>
|
21
|
+
|
22
|
+
data_set = Mirlo::XorDataSet.new
|
23
|
+
# => #<Mirlo::XorDataSet:0x007fa0e9995430 ...>
|
24
|
+
|
25
|
+
mlp.train_until(data_set, max_error: 0.0)
|
26
|
+
|
27
|
+
mlp.classify([0,0])
|
28
|
+
# => [0]
|
29
|
+
|
30
|
+
mlp.classify([1,0])
|
31
|
+
# => [1]
|
32
|
+
|
33
|
+
mlp.classify([0,1])
|
34
|
+
# => [1]
|
35
|
+
|
36
|
+
mlp.classify([1,1])
|
37
|
+
# => [0]
|
38
|
+
|
39
|
+
```
|
data/Rakefile
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
require "bundler/gem_tasks"
|
data/lib/mirlo.rb
ADDED
@@ -0,0 +1,33 @@
|
|
1
|
+
module Mirlo
|
2
|
+
ZERO = [0]
|
3
|
+
ONE = [1]
|
4
|
+
POSITIVE = ONE
|
5
|
+
NEGATIVE = [-1]
|
6
|
+
|
7
|
+
DEFAULT_LEARNING_RATE = 0.05
|
8
|
+
DEFAULT_N_ITERATIONS = 1000
|
9
|
+
|
10
|
+
require "gnuplot"
|
11
|
+
require_relative "mirlo/version"
|
12
|
+
require_relative "mirlo/plotting"
|
13
|
+
require_relative "mirlo/extensions/matrix"
|
14
|
+
require_relative "mirlo/sample"
|
15
|
+
require_relative "mirlo/sample_with_bias"
|
16
|
+
require_relative "mirlo/dataset"
|
17
|
+
require_relative "mirlo/test_result"
|
18
|
+
require_relative "mirlo/classifier"
|
19
|
+
require_relative "mirlo/ann/input_layer"
|
20
|
+
require_relative "mirlo/ann/neuron_layer"
|
21
|
+
require_relative "mirlo/ann/hidden_layer"
|
22
|
+
require_relative "mirlo/ann/output_layer"
|
23
|
+
require_relative "mirlo/ann/multilayer_perceptron"
|
24
|
+
require_relative "mirlo/ann/ann"
|
25
|
+
|
26
|
+
Dir.glob(File.expand_path('./mirlo/classifiers/*.rb', File.dirname(__FILE__))).each do |f|
|
27
|
+
require f
|
28
|
+
end
|
29
|
+
|
30
|
+
Dir.glob(File.expand_path('./mirlo/datasets/*.rb', File.dirname(__FILE__))).each do |f|
|
31
|
+
require f
|
32
|
+
end
|
33
|
+
end
|
@@ -0,0 +1,44 @@
|
|
1
|
+
class Mirlo::ANN
|
2
|
+
attr_reader :ann
|
3
|
+
|
4
|
+
def self.build(*args, &block)
|
5
|
+
instance = new(*args)
|
6
|
+
instance.instance_eval(&block)
|
7
|
+
instance.ann
|
8
|
+
end
|
9
|
+
|
10
|
+
def initialize(*args)
|
11
|
+
@ann = Mirlo::MultilayerPerceptron.new(*args)
|
12
|
+
end
|
13
|
+
|
14
|
+
def learning_rate(l_rate)
|
15
|
+
@ann.learning_rate = l_rate
|
16
|
+
end
|
17
|
+
|
18
|
+
def input_layer(n_inputs)
|
19
|
+
@ann.input_layer = Mirlo::InputLayer.new(n_inputs)
|
20
|
+
end
|
21
|
+
|
22
|
+
def hidden_layer(n_neurons)
|
23
|
+
hidden_layer = Mirlo::HiddenLayer.new(n_neurons)
|
24
|
+
|
25
|
+
connect_with_last_layer(hidden_layer)
|
26
|
+
|
27
|
+
@ann.hidden_layers << hidden_layer
|
28
|
+
end
|
29
|
+
|
30
|
+
def output_layer(n_outputs)
|
31
|
+
output_layer = Mirlo::OutputLayer.new(n_outputs)
|
32
|
+
|
33
|
+
connect_with_last_layer(output_layer)
|
34
|
+
|
35
|
+
@ann.output_layer = output_layer
|
36
|
+
end
|
37
|
+
|
38
|
+
def connect_with_last_layer(layer)
|
39
|
+
previous_layer = @ann.layers.last
|
40
|
+
|
41
|
+
previous_layer.next_layer = layer
|
42
|
+
layer.previous_layer = previous_layer
|
43
|
+
end
|
44
|
+
end
|
@@ -0,0 +1,11 @@
|
|
1
|
+
class Mirlo::HiddenLayer < Mirlo::NeuronLayer
|
2
|
+
attr_accessor :next_layer, :errors
|
3
|
+
|
4
|
+
def calculate_errors
|
5
|
+
error_signal = next_layer.errors * next_layer.weights.transpose
|
6
|
+
|
7
|
+
@errors = @activations.apply_elementwise error_signal do |activation, delta|
|
8
|
+
activation * (1.0 - activation) * delta
|
9
|
+
end
|
10
|
+
end
|
11
|
+
end
|
@@ -0,0 +1,23 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class InputLayer
|
3
|
+
attr_accessor :next_layer, :inputs
|
4
|
+
|
5
|
+
def initialize(input_size)
|
6
|
+
@input_size = input_size
|
7
|
+
@inputs = Matrix.zero(1, input_size)
|
8
|
+
end
|
9
|
+
|
10
|
+
def size
|
11
|
+
@input_size + 1
|
12
|
+
end
|
13
|
+
|
14
|
+
def input=(input)
|
15
|
+
sample = input.is_a?(Mirlo::Sample) ? input : Mirlo::SampleWithBias.new(features: input)
|
16
|
+
@inputs = Matrix.row_vector(sample.features)
|
17
|
+
end
|
18
|
+
|
19
|
+
def activation_matrix
|
20
|
+
@inputs
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
@@ -0,0 +1,44 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class MultilayerPerceptron < Classifier
|
3
|
+
|
4
|
+
attr_accessor :learning_rate, :momentum, :input_layer, :hidden_layers, :output_layer
|
5
|
+
|
6
|
+
def initialize(learning_rate: DEFAULT_LEARNING_RATE, momentum: 0.9)
|
7
|
+
@learning_rate, @momentum = learning_rate, momentum
|
8
|
+
@hidden_layers = []
|
9
|
+
end
|
10
|
+
|
11
|
+
def iterate
|
12
|
+
# train_set.shuffle!
|
13
|
+
|
14
|
+
input_layer.inputs = train_set.input_matrix
|
15
|
+
output_layer.expected_targets = train_set.target_matrix
|
16
|
+
|
17
|
+
move_forward
|
18
|
+
move_backward
|
19
|
+
end
|
20
|
+
|
21
|
+
def move_forward(inputs = nil)
|
22
|
+
hidden_layers.each(&:calculate_activations)
|
23
|
+
output_layer.calculate_activations
|
24
|
+
end
|
25
|
+
|
26
|
+
def move_backward
|
27
|
+
output_layer.calculate_errors
|
28
|
+
hidden_layers.reverse.each { |layer| layer.calculate_errors }
|
29
|
+
|
30
|
+
output_layer.update_weights(learning_rate, momentum)
|
31
|
+
hidden_layers.reverse.each { |layer| layer.update_weights(learning_rate, momentum) }
|
32
|
+
end
|
33
|
+
|
34
|
+
def classify(input)
|
35
|
+
input_layer.input = input
|
36
|
+
move_forward
|
37
|
+
output_layer.outputs.first.collect(&:round)
|
38
|
+
end
|
39
|
+
|
40
|
+
def layers
|
41
|
+
[input_layer, hidden_layers, output_layer].flatten.compact
|
42
|
+
end
|
43
|
+
end
|
44
|
+
end
|
@@ -0,0 +1,53 @@
|
|
1
|
+
class Mirlo::NeuronLayer
|
2
|
+
attr_accessor :previous_layer, :size, :activations, :errors, :build_weight_function
|
3
|
+
|
4
|
+
def initialize(size)
|
5
|
+
@size = size
|
6
|
+
@errors = Array.new(size, 0)
|
7
|
+
end
|
8
|
+
|
9
|
+
def inputs_matrix
|
10
|
+
# debugger
|
11
|
+
previous_layer.activation_matrix * weights
|
12
|
+
end
|
13
|
+
|
14
|
+
def calculate_activations
|
15
|
+
@activations = activation_matrix
|
16
|
+
end
|
17
|
+
|
18
|
+
def activation_matrix
|
19
|
+
inputs_matrix.collect { |i| activation_function(i) }
|
20
|
+
end
|
21
|
+
|
22
|
+
def error_matrix
|
23
|
+
Matrix.row_vector(@errors)
|
24
|
+
end
|
25
|
+
|
26
|
+
def activation_function(input)
|
27
|
+
1.0/(1 + Math.exp(-input))
|
28
|
+
end
|
29
|
+
|
30
|
+
def weights
|
31
|
+
@weights ||= Matrix.build(previous_layer.size, size) { build_weight }
|
32
|
+
end
|
33
|
+
|
34
|
+
def update_weights(learning_rate, momentum = 0)
|
35
|
+
has_momentum = @weights_update && momentum > 0
|
36
|
+
|
37
|
+
if has_momentum
|
38
|
+
momentum_matrix = @weights_update.collect { |u| u * momentum }
|
39
|
+
end
|
40
|
+
|
41
|
+
@weights_update = learning_rate * (previous_layer.activation_matrix.transpose * errors)
|
42
|
+
|
43
|
+
if has_momentum
|
44
|
+
@weights_update = @weights_update + momentum_matrix
|
45
|
+
end
|
46
|
+
|
47
|
+
@weights = @weights + @weights_update
|
48
|
+
end
|
49
|
+
|
50
|
+
def build_weight
|
51
|
+
@build_weight_function ? @build_weight_function.call : rand(-0.5..0.5)
|
52
|
+
end
|
53
|
+
end
|
@@ -0,0 +1,17 @@
|
|
1
|
+
class Mirlo::OutputLayer < Mirlo::NeuronLayer
|
2
|
+
attr_accessor :errors, :previous_layer
|
3
|
+
|
4
|
+
def expected_targets=(target_matrix)
|
5
|
+
@expected_targets = target_matrix
|
6
|
+
end
|
7
|
+
|
8
|
+
def outputs
|
9
|
+
@activations.row_vectors.collect(&:to_a)
|
10
|
+
end
|
11
|
+
|
12
|
+
def calculate_errors
|
13
|
+
num_samples = @expected_targets.row_count
|
14
|
+
|
15
|
+
@errors = (@expected_targets - @activations).collect { |elm| elm/num_samples }
|
16
|
+
end
|
17
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class ClassifyError < StandardError; end
|
3
|
+
|
4
|
+
class Classifier
|
5
|
+
attr_accessor :train_set
|
6
|
+
|
7
|
+
def train(train_set, n_iterations = Mirlo::DEFAULT_N_ITERATIONS)
|
8
|
+
@train_set = train_set
|
9
|
+
|
10
|
+
n_iterations.times { |i| iterate }
|
11
|
+
end
|
12
|
+
|
13
|
+
def train_until(train_set, max_error: 0.01, max_iterations: Mirlo::DEFAULT_N_ITERATIONS)
|
14
|
+
@train_set = train_set
|
15
|
+
|
16
|
+
max_iterations.times do |i|
|
17
|
+
iterate
|
18
|
+
test_result = test_with(train_set)
|
19
|
+
|
20
|
+
break if test_result.mean_squared_error <= max_error
|
21
|
+
|
22
|
+
if i == max_iterations - 1
|
23
|
+
raise ClassifyError.new("Could not reach a standard error of #{max_error} after #{max_iterations} iterations")
|
24
|
+
end
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
def test_with(test_set)
|
29
|
+
TestResult.new.tap do |tr|
|
30
|
+
test_set.samples.each do |sample|
|
31
|
+
prediction = classify(sample)
|
32
|
+
tr.add(sample, prediction)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,33 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class Perceptron < Classifier
|
3
|
+
attr_accessor :learning_rate
|
4
|
+
|
5
|
+
def initialize(learning_rate = DEFAULT_LEARNING_RATE)
|
6
|
+
@learning_rate = learning_rate
|
7
|
+
end
|
8
|
+
|
9
|
+
def activations(inputs = train_set.input_matrix)
|
10
|
+
(inputs * weights).collect { |v| v > 0 ? 1 : 0 }
|
11
|
+
end
|
12
|
+
|
13
|
+
def classify(input)
|
14
|
+
input = SampleWithBias.new(features: input) unless input.is_a?(Mirlo::Sample)
|
15
|
+
|
16
|
+
input_vector = Matrix[input.features]
|
17
|
+
result = (input_vector * weights).row(0).to_a
|
18
|
+
result.collect { |v| v > 0 ? 1 : 0 }
|
19
|
+
end
|
20
|
+
|
21
|
+
def weight_updates
|
22
|
+
train_set.input_matrix.transpose * (train_set.target_matrix - activations)
|
23
|
+
end
|
24
|
+
|
25
|
+
def iterate
|
26
|
+
@weights = weights + learning_rate * weight_updates
|
27
|
+
end
|
28
|
+
|
29
|
+
def weights
|
30
|
+
@weights ||= Matrix.build(train_set.num_features, train_set.num_outputs) { rand(-0.05..0.05) }
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
@@ -0,0 +1,103 @@
|
|
1
|
+
module Mirlo
|
2
|
+
|
3
|
+
# Public: Dataset class to store a set of samples with their associated targets.
|
4
|
+
#
|
5
|
+
class Dataset
|
6
|
+
include Enumerable
|
7
|
+
include Plotting
|
8
|
+
|
9
|
+
DEFAULT_LABELS = {
|
10
|
+
[0] => 'Zero',
|
11
|
+
[1] => 'Positive',
|
12
|
+
[-1] => 'Negative'
|
13
|
+
}
|
14
|
+
|
15
|
+
attr_reader :title, :samples, :feature_names
|
16
|
+
|
17
|
+
def initialize(samples: [], targets: nil, feature_names: [], title: "Dataset", add_bias: true, labels: DEFAULT_LABELS)
|
18
|
+
@feature_names ||= feature_names
|
19
|
+
@title ||= title
|
20
|
+
@labels ||= labels
|
21
|
+
|
22
|
+
@samples = if targets.nil?
|
23
|
+
samples
|
24
|
+
else
|
25
|
+
build_from_samples_and_targets(samples, targets)
|
26
|
+
end
|
27
|
+
end
|
28
|
+
|
29
|
+
def feature(feature_name_or_index)
|
30
|
+
index = if feature_names.include?(feature_name_or_index)
|
31
|
+
feature_names.index(feature_name_or_index)
|
32
|
+
else
|
33
|
+
feature_name_or_index
|
34
|
+
end
|
35
|
+
|
36
|
+
samples.collect { |sample| sample[index] }
|
37
|
+
end
|
38
|
+
|
39
|
+
def subset_with_target(target)
|
40
|
+
matching_samples = samples.find_all { |s| s.target == target }
|
41
|
+
Dataset.new(samples: matching_samples, feature_names: feature_names, title: target)
|
42
|
+
end
|
43
|
+
|
44
|
+
def targets_for(feature_values)
|
45
|
+
samples.select { |s| s.has_features?(feature_values) }.collect(&:target)
|
46
|
+
end
|
47
|
+
|
48
|
+
def label_for(val)
|
49
|
+
@labels[val] || val
|
50
|
+
end
|
51
|
+
|
52
|
+
def target_set
|
53
|
+
targets.uniq.sort
|
54
|
+
end
|
55
|
+
|
56
|
+
def targets
|
57
|
+
samples.collect(&:target)
|
58
|
+
end
|
59
|
+
|
60
|
+
def size
|
61
|
+
@samples.size
|
62
|
+
end
|
63
|
+
|
64
|
+
def each(*args, &block)
|
65
|
+
@samples.each(*args, &block)
|
66
|
+
end
|
67
|
+
|
68
|
+
def num_features
|
69
|
+
@num_features ||= samples.first.feature_size
|
70
|
+
end
|
71
|
+
|
72
|
+
def num_outputs
|
73
|
+
@num_outputs ||= samples.first.target_size
|
74
|
+
end
|
75
|
+
|
76
|
+
def input_matrix
|
77
|
+
@input_matrix ||= Matrix.rows(samples.collect(&:features), false)
|
78
|
+
end
|
79
|
+
|
80
|
+
def target_matrix
|
81
|
+
@target_matrix ||= Matrix.rows(samples.collect(&:target), false)
|
82
|
+
end
|
83
|
+
|
84
|
+
def shuffle!
|
85
|
+
@input_matrix = @target_matrix = nil
|
86
|
+
|
87
|
+
shuffled_positions = (0..size-1).to_a.shuffle
|
88
|
+
|
89
|
+
shuffled_samples = shuffled_positions.collect { |i| samples[i] }
|
90
|
+
shuffled_targets = shuffled_positions.collect { |i| targets[i] }
|
91
|
+
|
92
|
+
@samples, @targets = shuffled_samples, shuffled_targets
|
93
|
+
end
|
94
|
+
|
95
|
+
private
|
96
|
+
|
97
|
+
def build_from_samples_and_targets(samples, targets)
|
98
|
+
samples.each_with_index.collect do |sample, index|
|
99
|
+
SampleWithBias.new(target: targets[index], features: sample)
|
100
|
+
end
|
101
|
+
end
|
102
|
+
end
|
103
|
+
end
|