mirlo 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +18 -0
- data/Gemfile +8 -0
- data/LICENSE.txt +22 -0
- data/README.md +39 -0
- data/Rakefile +1 -0
- data/lib/mirlo.rb +33 -0
- data/lib/mirlo/ann/ann.rb +44 -0
- data/lib/mirlo/ann/hidden_layer.rb +11 -0
- data/lib/mirlo/ann/input_layer.rb +23 -0
- data/lib/mirlo/ann/multilayer_perceptron.rb +44 -0
- data/lib/mirlo/ann/neuron_layer.rb +53 -0
- data/lib/mirlo/ann/output_layer.rb +17 -0
- data/lib/mirlo/classifier.rb +37 -0
- data/lib/mirlo/classifiers/perceptron.rb +33 -0
- data/lib/mirlo/dataset.rb +103 -0
- data/lib/mirlo/datasets/and_dataset.rb +13 -0
- data/lib/mirlo/datasets/double_moon_dataset.rb +43 -0
- data/lib/mirlo/datasets/or_dataset.rb +13 -0
- data/lib/mirlo/datasets/xor_dataset.rb +13 -0
- data/lib/mirlo/extensions/matrix.rb +27 -0
- data/lib/mirlo/plotting.rb +30 -0
- data/lib/mirlo/sample.rb +34 -0
- data/lib/mirlo/sample_with_bias.rb +19 -0
- data/lib/mirlo/test_result.rb +49 -0
- data/lib/mirlo/version.rb +3 -0
- data/mirlo.gemspec +26 -0
- data/spec/ann/ann_spec.rb +60 -0
- data/spec/ann/multilayer_percetron_spec.rb +55 -0
- data/spec/ann/neuron_layer_spec.rb +45 -0
- data/spec/classifiers/perceptron_spec.rb +77 -0
- data/spec/dataset_spec.rb +52 -0
- data/spec/datasets/and_dataset_spec.rb +21 -0
- data/spec/datasets/double_moon_dataset_spec.rb +17 -0
- data/spec/extensions/matrix_spec.rb +18 -0
- data/spec/plots/double_moon.dat +100 -0
- data/spec/plotting_spec.rb +9 -0
- data/spec/spec_helper.rb +6 -0
- data/spec/test_result_spec.rb +30 -0
- metadata +150 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: d99924e52d6896e3346c45a30fb2c6d202ab2e63
|
4
|
+
data.tar.gz: 7e455ce32eb67d8ac4b1c239b5f87e0302ee4608
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: c1c3e145df40a265b77e28b4f466dff0b7f53d16efb432dc28c7b1184051a43be8cc6437c1019bc54606eddc99f8d46072ba11509073f82cd41a0b92f3f8dfdf
|
7
|
+
data.tar.gz: 6e6805bd9b68c22fe8b48b85dc19b671e19db0522a5359968424f7dc7a887daa5fa40fe0f7514306011a921b2dd8f1ba7b5e7aaac87ea65ac657f4b11726f89a
|
data/.gitignore
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2013 Alberto F. Capel
|
2
|
+
|
3
|
+
MIT License
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
6
|
+
a copy of this software and associated documentation files (the
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
11
|
+
the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be
|
14
|
+
included in all copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,39 @@
|
|
1
|
+
# Mirlo
|
2
|
+
|
3
|
+
Some Machine Learning algorithms implemented in Ruby.
|
4
|
+
|
5
|
+
Currently implemented:
|
6
|
+
|
7
|
+
* Perceptron
|
8
|
+
* Multilayer Perceptron. Batch update of neuron weights with momentum.
|
9
|
+
|
10
|
+
|
11
|
+
## Example
|
12
|
+
|
13
|
+
```ruby
|
14
|
+
|
15
|
+
mlp = Mirlo::ANN.build do
|
16
|
+
input_layer 2
|
17
|
+
hidden_layer 3
|
18
|
+
output_layer 1
|
19
|
+
end
|
20
|
+
# => #<Mirlo::MultilayerPerceptron:0x007fa0e997eff0 ...>
|
21
|
+
|
22
|
+
data_set = Mirlo::XorDataSet.new
|
23
|
+
# => #<Mirlo::XorDataSet:0x007fa0e9995430 ...>
|
24
|
+
|
25
|
+
mlp.train_until(data_set, max_error: 0.0)
|
26
|
+
|
27
|
+
mlp.classify([0,0])
|
28
|
+
# => [0]
|
29
|
+
|
30
|
+
mlp.classify([1,0])
|
31
|
+
# => [1]
|
32
|
+
|
33
|
+
mlp.classify([0,1])
|
34
|
+
# => [1]
|
35
|
+
|
36
|
+
mlp.classify([1,1])
|
37
|
+
# => [0]
|
38
|
+
|
39
|
+
```
|
data/Rakefile
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
require "bundler/gem_tasks"
|
data/lib/mirlo.rb
ADDED
@@ -0,0 +1,33 @@
|
|
1
|
+
module Mirlo
|
2
|
+
ZERO = [0]
|
3
|
+
ONE = [1]
|
4
|
+
POSITIVE = ONE
|
5
|
+
NEGATIVE = [-1]
|
6
|
+
|
7
|
+
DEFAULT_LEARNING_RATE = 0.05
|
8
|
+
DEFAULT_N_ITERATIONS = 1000
|
9
|
+
|
10
|
+
require "gnuplot"
|
11
|
+
require_relative "mirlo/version"
|
12
|
+
require_relative "mirlo/plotting"
|
13
|
+
require_relative "mirlo/extensions/matrix"
|
14
|
+
require_relative "mirlo/sample"
|
15
|
+
require_relative "mirlo/sample_with_bias"
|
16
|
+
require_relative "mirlo/dataset"
|
17
|
+
require_relative "mirlo/test_result"
|
18
|
+
require_relative "mirlo/classifier"
|
19
|
+
require_relative "mirlo/ann/input_layer"
|
20
|
+
require_relative "mirlo/ann/neuron_layer"
|
21
|
+
require_relative "mirlo/ann/hidden_layer"
|
22
|
+
require_relative "mirlo/ann/output_layer"
|
23
|
+
require_relative "mirlo/ann/multilayer_perceptron"
|
24
|
+
require_relative "mirlo/ann/ann"
|
25
|
+
|
26
|
+
Dir.glob(File.expand_path('./mirlo/classifiers/*.rb', File.dirname(__FILE__))).each do |f|
|
27
|
+
require f
|
28
|
+
end
|
29
|
+
|
30
|
+
Dir.glob(File.expand_path('./mirlo/datasets/*.rb', File.dirname(__FILE__))).each do |f|
|
31
|
+
require f
|
32
|
+
end
|
33
|
+
end
|
@@ -0,0 +1,44 @@
|
|
1
|
+
class Mirlo::ANN
|
2
|
+
attr_reader :ann
|
3
|
+
|
4
|
+
def self.build(*args, &block)
|
5
|
+
instance = new(*args)
|
6
|
+
instance.instance_eval(&block)
|
7
|
+
instance.ann
|
8
|
+
end
|
9
|
+
|
10
|
+
def initialize(*args)
|
11
|
+
@ann = Mirlo::MultilayerPerceptron.new(*args)
|
12
|
+
end
|
13
|
+
|
14
|
+
def learning_rate(l_rate)
|
15
|
+
@ann.learning_rate = l_rate
|
16
|
+
end
|
17
|
+
|
18
|
+
def input_layer(n_inputs)
|
19
|
+
@ann.input_layer = Mirlo::InputLayer.new(n_inputs)
|
20
|
+
end
|
21
|
+
|
22
|
+
def hidden_layer(n_neurons)
|
23
|
+
hidden_layer = Mirlo::HiddenLayer.new(n_neurons)
|
24
|
+
|
25
|
+
connect_with_last_layer(hidden_layer)
|
26
|
+
|
27
|
+
@ann.hidden_layers << hidden_layer
|
28
|
+
end
|
29
|
+
|
30
|
+
def output_layer(n_outputs)
|
31
|
+
output_layer = Mirlo::OutputLayer.new(n_outputs)
|
32
|
+
|
33
|
+
connect_with_last_layer(output_layer)
|
34
|
+
|
35
|
+
@ann.output_layer = output_layer
|
36
|
+
end
|
37
|
+
|
38
|
+
def connect_with_last_layer(layer)
|
39
|
+
previous_layer = @ann.layers.last
|
40
|
+
|
41
|
+
previous_layer.next_layer = layer
|
42
|
+
layer.previous_layer = previous_layer
|
43
|
+
end
|
44
|
+
end
|
@@ -0,0 +1,11 @@
|
|
1
|
+
class Mirlo::HiddenLayer < Mirlo::NeuronLayer
|
2
|
+
attr_accessor :next_layer, :errors
|
3
|
+
|
4
|
+
def calculate_errors
|
5
|
+
error_signal = next_layer.errors * next_layer.weights.transpose
|
6
|
+
|
7
|
+
@errors = @activations.apply_elementwise error_signal do |activation, delta|
|
8
|
+
activation * (1.0 - activation) * delta
|
9
|
+
end
|
10
|
+
end
|
11
|
+
end
|
@@ -0,0 +1,23 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class InputLayer
|
3
|
+
attr_accessor :next_layer, :inputs
|
4
|
+
|
5
|
+
def initialize(input_size)
|
6
|
+
@input_size = input_size
|
7
|
+
@inputs = Matrix.zero(1, input_size)
|
8
|
+
end
|
9
|
+
|
10
|
+
def size
|
11
|
+
@input_size + 1
|
12
|
+
end
|
13
|
+
|
14
|
+
def input=(input)
|
15
|
+
sample = input.is_a?(Mirlo::Sample) ? input : Mirlo::SampleWithBias.new(features: input)
|
16
|
+
@inputs = Matrix.row_vector(sample.features)
|
17
|
+
end
|
18
|
+
|
19
|
+
def activation_matrix
|
20
|
+
@inputs
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
@@ -0,0 +1,44 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class MultilayerPerceptron < Classifier
|
3
|
+
|
4
|
+
attr_accessor :learning_rate, :momentum, :input_layer, :hidden_layers, :output_layer
|
5
|
+
|
6
|
+
def initialize(learning_rate: DEFAULT_LEARNING_RATE, momentum: 0.9)
|
7
|
+
@learning_rate, @momentum = learning_rate, momentum
|
8
|
+
@hidden_layers = []
|
9
|
+
end
|
10
|
+
|
11
|
+
def iterate
|
12
|
+
# train_set.shuffle!
|
13
|
+
|
14
|
+
input_layer.inputs = train_set.input_matrix
|
15
|
+
output_layer.expected_targets = train_set.target_matrix
|
16
|
+
|
17
|
+
move_forward
|
18
|
+
move_backward
|
19
|
+
end
|
20
|
+
|
21
|
+
def move_forward(inputs = nil)
|
22
|
+
hidden_layers.each(&:calculate_activations)
|
23
|
+
output_layer.calculate_activations
|
24
|
+
end
|
25
|
+
|
26
|
+
def move_backward
|
27
|
+
output_layer.calculate_errors
|
28
|
+
hidden_layers.reverse.each { |layer| layer.calculate_errors }
|
29
|
+
|
30
|
+
output_layer.update_weights(learning_rate, momentum)
|
31
|
+
hidden_layers.reverse.each { |layer| layer.update_weights(learning_rate, momentum) }
|
32
|
+
end
|
33
|
+
|
34
|
+
def classify(input)
|
35
|
+
input_layer.input = input
|
36
|
+
move_forward
|
37
|
+
output_layer.outputs.first.collect(&:round)
|
38
|
+
end
|
39
|
+
|
40
|
+
def layers
|
41
|
+
[input_layer, hidden_layers, output_layer].flatten.compact
|
42
|
+
end
|
43
|
+
end
|
44
|
+
end
|
@@ -0,0 +1,53 @@
|
|
1
|
+
class Mirlo::NeuronLayer
|
2
|
+
attr_accessor :previous_layer, :size, :activations, :errors, :build_weight_function
|
3
|
+
|
4
|
+
def initialize(size)
|
5
|
+
@size = size
|
6
|
+
@errors = Array.new(size, 0)
|
7
|
+
end
|
8
|
+
|
9
|
+
def inputs_matrix
|
10
|
+
# debugger
|
11
|
+
previous_layer.activation_matrix * weights
|
12
|
+
end
|
13
|
+
|
14
|
+
def calculate_activations
|
15
|
+
@activations = activation_matrix
|
16
|
+
end
|
17
|
+
|
18
|
+
def activation_matrix
|
19
|
+
inputs_matrix.collect { |i| activation_function(i) }
|
20
|
+
end
|
21
|
+
|
22
|
+
def error_matrix
|
23
|
+
Matrix.row_vector(@errors)
|
24
|
+
end
|
25
|
+
|
26
|
+
def activation_function(input)
|
27
|
+
1.0/(1 + Math.exp(-input))
|
28
|
+
end
|
29
|
+
|
30
|
+
def weights
|
31
|
+
@weights ||= Matrix.build(previous_layer.size, size) { build_weight }
|
32
|
+
end
|
33
|
+
|
34
|
+
def update_weights(learning_rate, momentum = 0)
|
35
|
+
has_momentum = @weights_update && momentum > 0
|
36
|
+
|
37
|
+
if has_momentum
|
38
|
+
momentum_matrix = @weights_update.collect { |u| u * momentum }
|
39
|
+
end
|
40
|
+
|
41
|
+
@weights_update = learning_rate * (previous_layer.activation_matrix.transpose * errors)
|
42
|
+
|
43
|
+
if has_momentum
|
44
|
+
@weights_update = @weights_update + momentum_matrix
|
45
|
+
end
|
46
|
+
|
47
|
+
@weights = @weights + @weights_update
|
48
|
+
end
|
49
|
+
|
50
|
+
def build_weight
|
51
|
+
@build_weight_function ? @build_weight_function.call : rand(-0.5..0.5)
|
52
|
+
end
|
53
|
+
end
|
@@ -0,0 +1,17 @@
|
|
1
|
+
class Mirlo::OutputLayer < Mirlo::NeuronLayer
|
2
|
+
attr_accessor :errors, :previous_layer
|
3
|
+
|
4
|
+
def expected_targets=(target_matrix)
|
5
|
+
@expected_targets = target_matrix
|
6
|
+
end
|
7
|
+
|
8
|
+
def outputs
|
9
|
+
@activations.row_vectors.collect(&:to_a)
|
10
|
+
end
|
11
|
+
|
12
|
+
def calculate_errors
|
13
|
+
num_samples = @expected_targets.row_count
|
14
|
+
|
15
|
+
@errors = (@expected_targets - @activations).collect { |elm| elm/num_samples }
|
16
|
+
end
|
17
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class ClassifyError < StandardError; end
|
3
|
+
|
4
|
+
class Classifier
|
5
|
+
attr_accessor :train_set
|
6
|
+
|
7
|
+
def train(train_set, n_iterations = Mirlo::DEFAULT_N_ITERATIONS)
|
8
|
+
@train_set = train_set
|
9
|
+
|
10
|
+
n_iterations.times { |i| iterate }
|
11
|
+
end
|
12
|
+
|
13
|
+
def train_until(train_set, max_error: 0.01, max_iterations: Mirlo::DEFAULT_N_ITERATIONS)
|
14
|
+
@train_set = train_set
|
15
|
+
|
16
|
+
max_iterations.times do |i|
|
17
|
+
iterate
|
18
|
+
test_result = test_with(train_set)
|
19
|
+
|
20
|
+
break if test_result.mean_squared_error <= max_error
|
21
|
+
|
22
|
+
if i == max_iterations - 1
|
23
|
+
raise ClassifyError.new("Could not reach a standard error of #{max_error} after #{max_iterations} iterations")
|
24
|
+
end
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
def test_with(test_set)
|
29
|
+
TestResult.new.tap do |tr|
|
30
|
+
test_set.samples.each do |sample|
|
31
|
+
prediction = classify(sample)
|
32
|
+
tr.add(sample, prediction)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,33 @@
|
|
1
|
+
module Mirlo
|
2
|
+
class Perceptron < Classifier
|
3
|
+
attr_accessor :learning_rate
|
4
|
+
|
5
|
+
def initialize(learning_rate = DEFAULT_LEARNING_RATE)
|
6
|
+
@learning_rate = learning_rate
|
7
|
+
end
|
8
|
+
|
9
|
+
def activations(inputs = train_set.input_matrix)
|
10
|
+
(inputs * weights).collect { |v| v > 0 ? 1 : 0 }
|
11
|
+
end
|
12
|
+
|
13
|
+
def classify(input)
|
14
|
+
input = SampleWithBias.new(features: input) unless input.is_a?(Mirlo::Sample)
|
15
|
+
|
16
|
+
input_vector = Matrix[input.features]
|
17
|
+
result = (input_vector * weights).row(0).to_a
|
18
|
+
result.collect { |v| v > 0 ? 1 : 0 }
|
19
|
+
end
|
20
|
+
|
21
|
+
def weight_updates
|
22
|
+
train_set.input_matrix.transpose * (train_set.target_matrix - activations)
|
23
|
+
end
|
24
|
+
|
25
|
+
def iterate
|
26
|
+
@weights = weights + learning_rate * weight_updates
|
27
|
+
end
|
28
|
+
|
29
|
+
def weights
|
30
|
+
@weights ||= Matrix.build(train_set.num_features, train_set.num_outputs) { rand(-0.05..0.05) }
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
@@ -0,0 +1,103 @@
|
|
1
|
+
module Mirlo
|
2
|
+
|
3
|
+
# Public: Dataset class to store a set of samples with their associated targets.
|
4
|
+
#
|
5
|
+
class Dataset
|
6
|
+
include Enumerable
|
7
|
+
include Plotting
|
8
|
+
|
9
|
+
DEFAULT_LABELS = {
|
10
|
+
[0] => 'Zero',
|
11
|
+
[1] => 'Positive',
|
12
|
+
[-1] => 'Negative'
|
13
|
+
}
|
14
|
+
|
15
|
+
attr_reader :title, :samples, :feature_names
|
16
|
+
|
17
|
+
def initialize(samples: [], targets: nil, feature_names: [], title: "Dataset", add_bias: true, labels: DEFAULT_LABELS)
|
18
|
+
@feature_names ||= feature_names
|
19
|
+
@title ||= title
|
20
|
+
@labels ||= labels
|
21
|
+
|
22
|
+
@samples = if targets.nil?
|
23
|
+
samples
|
24
|
+
else
|
25
|
+
build_from_samples_and_targets(samples, targets)
|
26
|
+
end
|
27
|
+
end
|
28
|
+
|
29
|
+
def feature(feature_name_or_index)
|
30
|
+
index = if feature_names.include?(feature_name_or_index)
|
31
|
+
feature_names.index(feature_name_or_index)
|
32
|
+
else
|
33
|
+
feature_name_or_index
|
34
|
+
end
|
35
|
+
|
36
|
+
samples.collect { |sample| sample[index] }
|
37
|
+
end
|
38
|
+
|
39
|
+
def subset_with_target(target)
|
40
|
+
matching_samples = samples.find_all { |s| s.target == target }
|
41
|
+
Dataset.new(samples: matching_samples, feature_names: feature_names, title: target)
|
42
|
+
end
|
43
|
+
|
44
|
+
def targets_for(feature_values)
|
45
|
+
samples.select { |s| s.has_features?(feature_values) }.collect(&:target)
|
46
|
+
end
|
47
|
+
|
48
|
+
def label_for(val)
|
49
|
+
@labels[val] || val
|
50
|
+
end
|
51
|
+
|
52
|
+
def target_set
|
53
|
+
targets.uniq.sort
|
54
|
+
end
|
55
|
+
|
56
|
+
def targets
|
57
|
+
samples.collect(&:target)
|
58
|
+
end
|
59
|
+
|
60
|
+
def size
|
61
|
+
@samples.size
|
62
|
+
end
|
63
|
+
|
64
|
+
def each(*args, &block)
|
65
|
+
@samples.each(*args, &block)
|
66
|
+
end
|
67
|
+
|
68
|
+
def num_features
|
69
|
+
@num_features ||= samples.first.feature_size
|
70
|
+
end
|
71
|
+
|
72
|
+
def num_outputs
|
73
|
+
@num_outputs ||= samples.first.target_size
|
74
|
+
end
|
75
|
+
|
76
|
+
def input_matrix
|
77
|
+
@input_matrix ||= Matrix.rows(samples.collect(&:features), false)
|
78
|
+
end
|
79
|
+
|
80
|
+
def target_matrix
|
81
|
+
@target_matrix ||= Matrix.rows(samples.collect(&:target), false)
|
82
|
+
end
|
83
|
+
|
84
|
+
def shuffle!
|
85
|
+
@input_matrix = @target_matrix = nil
|
86
|
+
|
87
|
+
shuffled_positions = (0..size-1).to_a.shuffle
|
88
|
+
|
89
|
+
shuffled_samples = shuffled_positions.collect { |i| samples[i] }
|
90
|
+
shuffled_targets = shuffled_positions.collect { |i| targets[i] }
|
91
|
+
|
92
|
+
@samples, @targets = shuffled_samples, shuffled_targets
|
93
|
+
end
|
94
|
+
|
95
|
+
private
|
96
|
+
|
97
|
+
def build_from_samples_and_targets(samples, targets)
|
98
|
+
samples.each_with_index.collect do |sample, index|
|
99
|
+
SampleWithBias.new(target: targets[index], features: sample)
|
100
|
+
end
|
101
|
+
end
|
102
|
+
end
|
103
|
+
end
|