miga-base 0.3.1.7 → 0.3.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/actions/ncbi_get.rb +8 -0
- data/lib/miga/common.rb +9 -215
- data/lib/miga/common/base.rb +49 -0
- data/lib/miga/common/format.rb +135 -0
- data/lib/miga/common/path.rb +49 -0
- data/lib/miga/daemon.rb +3 -60
- data/lib/miga/daemon/base.rb +69 -0
- data/lib/miga/dataset.rb +3 -3
- data/lib/miga/dataset/result.rb +5 -5
- data/lib/miga/result.rb +5 -0
- data/lib/miga/version.rb +7 -5
- data/scripts/distances.bash +2 -19
- data/scripts/taxonomy.bash +2 -21
- data/test/common_test.rb +9 -0
- data/utils/distance/base.rb +6 -0
- data/utils/distance/commands.rb +82 -0
- data/utils/distance/database.rb +86 -0
- data/utils/distance/pipeline.rb +98 -0
- data/utils/distance/runner.rb +104 -0
- data/utils/distance/temporal.rb +37 -0
- data/utils/distances.rb +9 -0
- data/utils/enveomics/Docs/recplot2.md +233 -0
- data/utils/enveomics/Makefile +1 -1
- data/utils/enveomics/Manifest/Tasks/blasttab.json +66 -0
- data/utils/enveomics/Manifest/Tasks/fasta.json +10 -3
- data/utils/enveomics/Manifest/Tasks/fastq.json +4 -4
- data/utils/enveomics/Manifest/Tasks/mapping.json +38 -1
- data/utils/enveomics/Manifest/categories.json +11 -1
- data/utils/enveomics/Manifest/examples.json +2 -2
- data/utils/enveomics/README.md +2 -0
- data/utils/enveomics/Scripts/Aln.cat.rb +1 -0
- data/utils/enveomics/Scripts/BedGraph.tad.rb +52 -30
- data/utils/enveomics/Scripts/BedGraph.window.rb +71 -0
- data/utils/enveomics/Scripts/BlastTab.recplot2.R +7 -2
- data/utils/enveomics/Scripts/FastA.interpose.pl +26 -20
- data/utils/enveomics/Scripts/FastQ.interpose.pl +20 -20
- data/utils/enveomics/Scripts/RecPlot2.compareIdentities.R +32 -0
- data/utils/enveomics/Scripts/SRA.download.bash +28 -21
- data/utils/enveomics/Scripts/Table.barplot.R +1 -0
- data/utils/enveomics/Scripts/aai.rb +4 -2
- data/utils/enveomics/build_enveomics_r.bash +5 -5
- data/utils/enveomics/enveomics.R/DESCRIPTION +1 -1
- data/utils/enveomics/enveomics.R/NAMESPACE +6 -2
- data/utils/enveomics/enveomics.R/R/recplot2.R +471 -71
- data/utils/enveomics/enveomics.R/README.md +26 -17
- data/utils/enveomics/enveomics.R/man/enve.recplot2-class.Rd +1 -1
- data/utils/enveomics/enveomics.R/man/enve.recplot2.ANIr.Rd +23 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.Rd +6 -3
- data/utils/enveomics/enveomics.R/man/enve.recplot2.compareIdentities.Rd +32 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.coordinates.Rd +24 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.extractWindows.Rd +12 -7
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.Rd +8 -37
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_e.Rd +20 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__em_m.Rd +20 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__emauto_one.Rd +29 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mow_one.Rd +42 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.__mower.Rd +18 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.em.Rd +33 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.emauto.Rd +28 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.findPeaks.mower.Rd +56 -0
- data/utils/enveomics/enveomics.R/man/enve.recplot2.peak-class.Rd +3 -1
- data/utils/enveomics/enveomics.R/man/enve.recplot2.seqdepth.Rd +22 -0
- data/utils/enveomics/enveomics.R/man/plot.enve.recplot2.Rd +20 -14
- data/utils/requirements.txt +1 -1
- metadata +28 -4
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__findPeak.Rd +0 -40
- data/utils/enveomics/enveomics.R/man/enve.recplot2.__findPeaks.Rd +0 -18
@@ -4,45 +4,53 @@
|
|
4
4
|
To install the latest version of `enveomics.R` uploaded to CRAN, execute in R:
|
5
5
|
|
6
6
|
```R
|
7
|
-
|
7
|
+
install.packages('enveomics.R')
|
8
8
|
```
|
9
9
|
|
10
10
|
To install the current developer version of `enveomics.R`, execute in R:
|
11
11
|
|
12
12
|
```R
|
13
|
-
|
14
|
-
|
15
|
-
|
13
|
+
install.packages('devtools')
|
14
|
+
library('devtools')
|
15
|
+
install_github('lmrodriguezr/enveomics', subdir='enveomics.R')
|
16
16
|
```
|
17
17
|
|
18
18
|
## Using `enveomics.R`
|
19
19
|
To load enveomics.R, simply execute:
|
20
20
|
|
21
21
|
```R
|
22
|
-
|
22
|
+
library(enveomics.R);
|
23
23
|
```
|
24
24
|
|
25
25
|
And open help messages using any of the following commands:
|
26
26
|
|
27
27
|
```R
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
28
|
+
?enveomics.R
|
29
|
+
?enve.barplot
|
30
|
+
?enve.recplot2
|
31
|
+
?enve.recplot2.compareIdentities
|
32
|
+
?enve.recplot2.changeCutoff
|
33
|
+
?enve.recplot2.findPeaks
|
34
|
+
?enve.recplot2.corePeak
|
35
|
+
?enve.recplot2.extractWindows
|
36
|
+
?enve.recplot2.coordinates
|
37
|
+
?enve.recplot2.seqdepth
|
38
|
+
?enve.recplot2.ANIr
|
39
|
+
?enve.prune.dist
|
40
|
+
?enve.tribs
|
41
|
+
?enve.tribs.test
|
42
|
+
?enve.growthcurve
|
43
|
+
?enve.col.alpha
|
40
44
|
```
|
41
45
|
|
42
46
|
You can run some examples using these libraries in the
|
43
47
|
[enveomics-GUI](https://github.com/lmrodriguezr/enveomics-gui).
|
44
48
|
|
49
|
+
For additional information on recruitment plots, see the
|
50
|
+
[Recruitment plots working document](https://github.com/lmrodriguezr/enveomics/blob/master/Docs/recplot2.md).
|
51
|
+
|
45
52
|
## Changelog
|
53
|
+
* 1.3: Several bug fixes and new utilities for recruitment plots (recplot2).
|
46
54
|
* 1.1.0: New function enve.growthcurve and related class enve.GrowthCurve
|
47
55
|
with S3 methods plot and summary.
|
48
56
|
* 1.0.2: Fine-tuned default parameters in enve.recplot2.findPeaks and
|
@@ -50,3 +58,4 @@ You can run some examples using these libraries in the
|
|
50
58
|
datasets when using too many threads.
|
51
59
|
* 1.0.1: enve.recplot2 now supports pos.breaks=0 to define a
|
52
60
|
bin per subject sequence.
|
61
|
+
|
@@ -17,7 +17,7 @@ be produced by `enve.recplot2` and supports S4 method plot.}
|
|
17
17
|
\item{\code{id.counts}:}{(\code{numeric}) Counts per ID bin.}
|
18
18
|
\item{\code{id.breaks}:}{(\code{numeric}) Breaks of identity bins.}
|
19
19
|
\item{\code{pos.breaks}:}{(\code{numeric}) Breaks of position bins.}
|
20
|
-
\item{\code{seq.breaks}:}{
|
20
|
+
\item{\code{seq.breaks}:}{(\code{numeric}) Breaks of input sequences.}
|
21
21
|
\item{\code{peaks}:}{(\code{list}) Peaks identified in the recplot.
|
22
22
|
Limits of the subject sequences after concatenation.}
|
23
23
|
\item{\code{seq.names}:}{(\code{character}) Names of the subject sequences.}
|
@@ -0,0 +1,23 @@
|
|
1
|
+
\name{enve.recplot2.ANIr}
|
2
|
+
\alias{enve.recplot2.ANIr}
|
3
|
+
\title{enve recplot2 ANIr}
|
4
|
+
\description{Estimate the Average Nucleotide Identity from reads (ANIr) from a
|
5
|
+
recruitment plot}
|
6
|
+
\usage{enve.recplot2.ANIr(x, range = c(0, Inf))}
|
7
|
+
\arguments{
|
8
|
+
\item{x}{`enve.RecPlot2` object.}
|
9
|
+
\item{range}{Range of identities to be considered. By default, the full range
|
10
|
+
is used (note that the upper boundary is `Inf` and not 100 because
|
11
|
+
recruitment plots can also be built with bit-scores). To use only
|
12
|
+
intra-population matches (with identities), use c(95,100). To use only
|
13
|
+
inter-population values, use c(0,95).}
|
14
|
+
}
|
15
|
+
|
16
|
+
|
17
|
+
|
18
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
19
|
+
|
20
|
+
|
21
|
+
|
22
|
+
|
23
|
+
|
@@ -4,9 +4,9 @@
|
|
4
4
|
\description{Produces recruitment plots provided that BlastTab.catsbj.pl has
|
5
5
|
been previously executed.}
|
6
6
|
\usage{enve.recplot2(prefix, plot = TRUE, pos.breaks = 1000, id.breaks = 300,
|
7
|
-
id.metric = c("identity", "corrected identity",
|
8
|
-
|
9
|
-
...)}
|
7
|
+
id.free.range = FALSE, id.metric = c("identity", "corrected identity",
|
8
|
+
"bit score"), id.summary = sum, id.cutoff = 95, threads = 2,
|
9
|
+
verbose = TRUE, ...)}
|
10
10
|
\arguments{
|
11
11
|
\item{prefix}{Path to the prefix of the BlastTab.catsbj.pl output files. At
|
12
12
|
least the files .rec and .lim must exist with this prefix.}
|
@@ -17,6 +17,9 @@ uses the sequence breaks as defined in the .lim file, which means
|
|
17
17
|
one bin per contig (or gene, if the mapping is agains genes).}
|
18
18
|
\item{id.breaks}{Breaks in the identity histogram. It can also be a vector of break
|
19
19
|
points, and values outside the range are ignored.}
|
20
|
+
\item{id.free.range}{Indicates that the range should be freely set from the observed
|
21
|
+
values. Otherwise, 70-100\% is included in the identity histogram
|
22
|
+
(default).}
|
20
23
|
\item{id.metric}{Metric of identity to be used (Y-axis). Corrected identity is only
|
21
24
|
supported if the original BLAST file included sequence lengths.}
|
22
25
|
\item{id.summary}{Function summarizing the identity bins. Other recommended options
|
@@ -0,0 +1,32 @@
|
|
1
|
+
\name{enve.recplot2.compareIdentities}
|
2
|
+
\alias{enve.recplot2.compareIdentities}
|
3
|
+
\title{enve recplot2 compareIdentities}
|
4
|
+
\description{Compare the distribution of identities between two enve.RecPlot2 objects.}
|
5
|
+
\usage{enve.recplot2.compareIdentities(x, y, method = "hellinger", smooth.par = NULL,
|
6
|
+
pseudocounts = 0, max.deviation = 0.75)}
|
7
|
+
\arguments{
|
8
|
+
\item{x}{First enve.RecPlot2 object.}
|
9
|
+
\item{y}{Second enve.RecPlot2 object.}
|
10
|
+
\item{method}{Distance method to use. This should be (an unambiguous abbreviation of)
|
11
|
+
one of:
|
12
|
+
"hellinger" (Hellinger, 1090, doi:10.1515/crll.1909.136.210),
|
13
|
+
"bhattacharyya" (Bhattacharyya, 1943, Bull. Calcutta Math. Soc. 35),
|
14
|
+
"kl" or "kullback-leibler" (Kullback & Leibler, 1951,
|
15
|
+
doi:10.1214/aoms/1177729694), or "euclidean".}
|
16
|
+
\item{smooth.par}{Smoothing parameter for cubic spline smoothing. Use 0 for no smoothing.
|
17
|
+
Use NULL to automatically determine this value using leave-one-out
|
18
|
+
cross-validation (see `smooth.spline` parameter `spar`).}
|
19
|
+
\item{pseudocounts}{Smoothing parameter for Laplace smoothing. Use 0 for no smoothing, or
|
20
|
+
1 for add-one smoothing.}
|
21
|
+
\item{max.deviation}{Maximum mean deviation between identity breaks tolerated (as percent
|
22
|
+
identity). Difference in number of id.breaks is never tolerated.}
|
23
|
+
}
|
24
|
+
|
25
|
+
|
26
|
+
|
27
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
28
|
+
|
29
|
+
|
30
|
+
|
31
|
+
|
32
|
+
|
@@ -0,0 +1,24 @@
|
|
1
|
+
\name{enve.recplot2.coordinates}
|
2
|
+
\alias{enve.recplot2.coordinates}
|
3
|
+
\title{enve recplot2 coordinates}
|
4
|
+
\description{Returns the sequence name and coordinates of the requested position bins.}
|
5
|
+
\usage{enve.recplot2.coordinates(x, bins)}
|
6
|
+
\arguments{
|
7
|
+
\item{x}{`enve.RecPlot2` object.}
|
8
|
+
\item{bins}{Vector of selected bins to return. It can be a vector of logical values
|
9
|
+
with the same length as `x$pos.breaks`-1 or a vector of integers. If
|
10
|
+
missing, returns the coordinates of all windows.}
|
11
|
+
}
|
12
|
+
|
13
|
+
\value{Returns a data.frame with four columns: name.from (character), pos.from
|
14
|
+
(numeric) name.to (character), and pos.to (numeric). The first two
|
15
|
+
correspond to sequence and position of the start point of the bin, the
|
16
|
+
last two correspond to the sequence and position of the end point of the
|
17
|
+
bin.}
|
18
|
+
|
19
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
20
|
+
|
21
|
+
|
22
|
+
|
23
|
+
|
24
|
+
|
@@ -6,18 +6,23 @@ depth.}
|
|
6
6
|
\usage{enve.recplot2.extractWindows(rp, peak, lower.tail = TRUE, significance = 0.05,
|
7
7
|
seq.names = FALSE)}
|
8
8
|
\arguments{
|
9
|
-
\item{rp}{Recruitment plot, a enve.
|
10
|
-
\item{peak}{Peak,
|
11
|
-
of enve.RecPlot2.Peak objects, in which case the core peak is
|
12
|
-
(see enve.recplot2.corePeak).}
|
9
|
+
\item{rp}{Recruitment plot, a enve.RecPlot2 object.}
|
10
|
+
\item{peak}{Peak, an `enve.RecPlot2.Peak` object. If list, it is assumed to be a
|
11
|
+
list of enve.RecPlot2.Peak objects, in which case the core peak is
|
12
|
+
used (see `enve.recplot2.corePeak`).}
|
13
13
|
\item{lower.tail}{If FALSE, it returns windows significantly above the peak in
|
14
14
|
sequencing depth.}
|
15
15
|
\item{significance}{Significance threshold (alpha) to select windows.}
|
16
|
-
\item{seq.names}{Returns subject sequence names instead of a vector of Booleans.
|
17
|
-
|
16
|
+
\item{seq.names}{Returns subject sequence names instead of a vector of Booleans. If
|
17
|
+
the recruitment plot was generated with pos.breaks=0 it returns a
|
18
|
+
vector of characters (the sequence identifiers), otherwise it returns
|
19
|
+
a data.frame with a name column and two columns of coordinates.}
|
18
20
|
}
|
19
21
|
|
20
|
-
|
22
|
+
\value{Returns a vector of logicals if `seq.names=FALSE`. If `seq.names=TRUE`,
|
23
|
+
it returns a vector of characters if the object was built with
|
24
|
+
`pos.breaks=0` or a data.frame with four columns otherwise: name.from,
|
25
|
+
name.to, pos.from, and pos.to (see `enve.recplot2.coordinates`).}
|
21
26
|
|
22
27
|
\author{Luis M. Rodriguez-R [aut, cre]}
|
23
28
|
|
@@ -2,45 +2,16 @@
|
|
2
2
|
\alias{enve.recplot2.findPeaks}
|
3
3
|
\title{enve recplot2 findPeaks}
|
4
4
|
\description{Identifies peaks in the population histogram potentially indicating
|
5
|
-
sub-population mixtures
|
6
|
-
\usage{enve.recplot2.findPeaks(x,
|
7
|
-
0.998), mlv.opts = list(method = "parzen"), fitdist.opts.sn = list(distr = "sn",
|
8
|
-
method = "qme", probs = c(0.1, 0.5, 0.8), start = list(omega = 1,
|
9
|
-
alpha = -1), lower = c(1e-06, -Inf, 0), upper = c(Inf,
|
10
|
-
0, Inf)), fitdist.opts.norm = list(distr = "norm", method = "qme",
|
11
|
-
probs = c(0.4, 0.6), start = list(sd = 1), lower = c(1e-08,
|
12
|
-
0)), rm.top = 0.05, with.skewness = TRUE, optim.rounds = 200,
|
13
|
-
optim.epsilon = 1e-08, merge.logdist = log(1.75), verbose = FALSE)}
|
5
|
+
sub-population mixtures}
|
6
|
+
\usage{enve.recplot2.findPeaks(x, method = "emauto", ...)}
|
14
7
|
\arguments{
|
15
8
|
\item{x}{An `enve.RecPlot2` object.}
|
16
|
-
\item{
|
17
|
-
(
|
18
|
-
|
19
|
-
|
20
|
-
\item{
|
21
|
-
|
22
|
-
}
|
23
|
-
\item{fitdist.opts.norm}{
|
24
|
-
}
|
25
|
-
\item{rm.top}{Top-values to remove before finding peaks, as a quantile probability.
|
26
|
-
This step is useful to remove highly conserved regions, but can be
|
27
|
-
turned off by setting rm.top=0. The quantile is determined *after*
|
28
|
-
removing zero-coverage windows.}
|
29
|
-
\item{with.skewness}{Allow skewness correction of the peaks. Typically, the
|
30
|
-
sequencing-depth distribution for a single peak is left-skewed, due
|
31
|
-
partly (but not exclusively) to fragmentation and mapping sensitivity.
|
32
|
-
See Lindner et al 2013, Bioinformatics 29(10):1260-7 for an
|
33
|
-
alternative solution for the first problem (fragmentation) called
|
34
|
-
"tail distribution".}
|
35
|
-
\item{optim.rounds}{Maximum rounds of peak optimization.}
|
36
|
-
\item{optim.epsilon}{Trace change at which optimization stops (unless `optim.rounds` is
|
37
|
-
reached first). The trace change is estimated as the sum of square
|
38
|
-
differences between parameters in one round and those from two rounds
|
39
|
-
earlier (to avoid infinite loops from approximation).}
|
40
|
-
\item{merge.logdist}{Maximum value of |log-ratio| between centrality parameters in peaks to
|
41
|
-
attempt merging. The default of ~0.22 corresponds to a maximum
|
42
|
-
difference of 25\%.}
|
43
|
-
\item{verbose}{Display (mostly debugging) information.}
|
9
|
+
\item{method}{Peak-finder method. This should be one of:
|
10
|
+
"emauto" (Expectation-Maximization with auto-selection of components),
|
11
|
+
"em" (Expectation-Maximization),
|
12
|
+
"mower" (Custom distribution-mowing method).}
|
13
|
+
\item{\dots}{Any additional parameters supported by
|
14
|
+
`enve.recplot2.findPeaks.<method>`.}
|
44
15
|
}
|
45
16
|
|
46
17
|
\value{Returns a list of `enve.RecPlot2.Peak` objects.}
|
@@ -0,0 +1,20 @@
|
|
1
|
+
\name{enve.recplot2.findPeaks.__em_e}
|
2
|
+
\alias{enve.recplot2.findPeaks.__em_e}
|
3
|
+
\title{enve recplot2 findPeaks em e}
|
4
|
+
\description{Internal ancilliary function (see `enve.recplot2.findPeaks.em`).}
|
5
|
+
\usage{enve.recplot2.findPeaks.__em_e(x, theta)}
|
6
|
+
\arguments{
|
7
|
+
\item{x}{
|
8
|
+
}
|
9
|
+
\item{theta}{
|
10
|
+
}
|
11
|
+
}
|
12
|
+
|
13
|
+
|
14
|
+
|
15
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
16
|
+
|
17
|
+
|
18
|
+
|
19
|
+
|
20
|
+
|
@@ -0,0 +1,20 @@
|
|
1
|
+
\name{enve.recplot2.findPeaks.__em_m}
|
2
|
+
\alias{enve.recplot2.findPeaks.__em_m}
|
3
|
+
\title{enve recplot2 findPeaks em m}
|
4
|
+
\description{Internal ancilliary function (see `enve.recplot2.findPeaks.em`}
|
5
|
+
\usage{enve.recplot2.findPeaks.__em_m(x, posterior)}
|
6
|
+
\arguments{
|
7
|
+
\item{x}{
|
8
|
+
}
|
9
|
+
\item{posterior}{
|
10
|
+
}
|
11
|
+
}
|
12
|
+
|
13
|
+
|
14
|
+
|
15
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
16
|
+
|
17
|
+
|
18
|
+
|
19
|
+
|
20
|
+
|
@@ -0,0 +1,29 @@
|
|
1
|
+
\name{enve.recplot2.findPeaks.__emauto_one}
|
2
|
+
\alias{enve.recplot2.findPeaks.__emauto_one}
|
3
|
+
\title{enve recplot2 findPeaks emauto one}
|
4
|
+
\description{Internal ancilliary function (see `enve.recplot2.findPeaks.emauto).}
|
5
|
+
\usage{enve.recplot2.findPeaks.__emauto_one(x, comp, do_crit, best,
|
6
|
+
verbose, ...)}
|
7
|
+
\arguments{
|
8
|
+
\item{x}{
|
9
|
+
}
|
10
|
+
\item{comp}{
|
11
|
+
}
|
12
|
+
\item{do_crit}{
|
13
|
+
}
|
14
|
+
\item{best}{
|
15
|
+
}
|
16
|
+
\item{verbose}{
|
17
|
+
}
|
18
|
+
\item{\dots}{
|
19
|
+
}
|
20
|
+
}
|
21
|
+
|
22
|
+
|
23
|
+
|
24
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
25
|
+
|
26
|
+
|
27
|
+
|
28
|
+
|
29
|
+
|
@@ -0,0 +1,42 @@
|
|
1
|
+
\name{enve.recplot2.findPeaks.__mow_one}
|
2
|
+
\alias{enve.recplot2.findPeaks.__mow_one}
|
3
|
+
\title{enve recplot2 findPeaks mow one}
|
4
|
+
\description{Internall ancilliary function (see `enve.recplot2.findPeaks.mower`).}
|
5
|
+
\usage{enve.recplot2.findPeaks.__mow_one(lsd1, min.points, quant.est,
|
6
|
+
mlv.opts, fitdist.opts, with.skewness, optim.rounds, optim.epsilon,
|
7
|
+
n.total, merge.logdist, verbose, log)}
|
8
|
+
\arguments{
|
9
|
+
\item{lsd1}{
|
10
|
+
}
|
11
|
+
\item{min.points}{
|
12
|
+
}
|
13
|
+
\item{quant.est}{
|
14
|
+
}
|
15
|
+
\item{mlv.opts}{
|
16
|
+
}
|
17
|
+
\item{fitdist.opts}{
|
18
|
+
}
|
19
|
+
\item{with.skewness}{
|
20
|
+
}
|
21
|
+
\item{optim.rounds}{
|
22
|
+
}
|
23
|
+
\item{optim.epsilon}{
|
24
|
+
}
|
25
|
+
\item{n.total}{
|
26
|
+
}
|
27
|
+
\item{merge.logdist}{
|
28
|
+
}
|
29
|
+
\item{verbose}{
|
30
|
+
}
|
31
|
+
\item{log}{
|
32
|
+
}
|
33
|
+
}
|
34
|
+
|
35
|
+
|
36
|
+
|
37
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
38
|
+
|
39
|
+
|
40
|
+
|
41
|
+
|
42
|
+
|
@@ -0,0 +1,18 @@
|
|
1
|
+
\name{enve.recplot2.findPeaks.__mower}
|
2
|
+
\alias{enve.recplot2.findPeaks.__mower}
|
3
|
+
\title{enve recplot2 findPeaks mower}
|
4
|
+
\description{Internal ancilliary function (see `enve.recplot2.findPeaks.mower`).}
|
5
|
+
\usage{enve.recplot2.findPeaks.__mower(peaks.opts)}
|
6
|
+
\arguments{
|
7
|
+
\item{peaks.opts}{
|
8
|
+
}
|
9
|
+
}
|
10
|
+
|
11
|
+
|
12
|
+
|
13
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
14
|
+
|
15
|
+
|
16
|
+
|
17
|
+
|
18
|
+
|
@@ -0,0 +1,33 @@
|
|
1
|
+
\name{enve.recplot2.findPeaks.em}
|
2
|
+
\alias{enve.recplot2.findPeaks.em}
|
3
|
+
\title{enve recplot2 findPeaks em}
|
4
|
+
\description{Identifies peaks in the population histogram using a Gaussian Mixture
|
5
|
+
Model Expectation Maximization (GMM-EM) method.}
|
6
|
+
\usage{enve.recplot2.findPeaks.em(x, max.iter = 1000, ll.diff.res = 1e-08,
|
7
|
+
components = 2, rm.top = 0.05, verbose = FALSE, init, log = TRUE)}
|
8
|
+
\arguments{
|
9
|
+
\item{x}{An `enve.RecPlot2` object.}
|
10
|
+
\item{max.iter}{Maximum number of EM iterations.}
|
11
|
+
\item{ll.diff.res}{Maximum Log-Likelihood difference to be considered as convergent.}
|
12
|
+
\item{components}{Number of distributions assumed in the mixture.}
|
13
|
+
\item{rm.top}{Top-values to remove before finding peaks, as a quantile probability.
|
14
|
+
This step is useful to remove highly conserved regions, but can be
|
15
|
+
turned off by setting rm.top=0. The quantile is determined *after*
|
16
|
+
removing zero-coverage windows.}
|
17
|
+
\item{verbose}{Display (mostly debugging) information.}
|
18
|
+
\item{init}{Initialization parameters. By default, these are derived from k-means
|
19
|
+
clustering. A named list with vectors for 'mu', 'sd', and 'alpha', each
|
20
|
+
of length `components`.}
|
21
|
+
\item{log}{Logical value indicating if the estimations should be performed in
|
22
|
+
natural logarithm units. Do not change unless you know what you're
|
23
|
+
doing.}
|
24
|
+
}
|
25
|
+
|
26
|
+
\value{Returns a list of `enve.RecPlot2.Peak` objects.}
|
27
|
+
|
28
|
+
\author{Luis M. Rodriguez-R [aut, cre]}
|
29
|
+
|
30
|
+
|
31
|
+
|
32
|
+
|
33
|
+
|