midas-edge 0.2.0 → 0.3.1

Sign up to get free protection for your applications and to get access to all the features.
@@ -11,18 +11,7 @@ module Midas
11
11
  end
12
12
 
13
13
  def fit_predict(x)
14
- threshold = @threshold || Float::NAN
15
- result =
16
- if x.is_a?(String)
17
- _fit_predict_file(x, @rows, @buckets, @alpha, threshold, @relations, @directed, @seed)
18
- else
19
- x = Numo::Int32.cast(x) unless x.is_a?(Numo::NArray)
20
- x = x.cast_to(Numo::Int32) unless x.is_a?(Numo::Int32)
21
- raise ArgumentError, "Bad shape: #{x.shape}" unless x.rank == 2 && x.shape[1] == 3
22
- _fit_predict_str(x.to_binary, @rows, @buckets, @alpha, threshold, @relations, @directed, @seed)
23
- end
24
-
25
- Numo::SFloat.from_binary(result)
14
+ _fit_predict(x, @rows, @buckets, @alpha, @threshold || Float::NAN, @relations, @directed, @seed)
26
15
  end
27
16
  end
28
17
  end
data/lib/midas/version.rb CHANGED
@@ -1,3 +1,3 @@
1
1
  module Midas
2
- VERSION = "0.2.0"
2
+ VERSION = "0.3.1"
3
3
  end
@@ -4,15 +4,15 @@
4
4
  <a href="https://aaai.org/Conferences/AAAI-20/">
5
5
  <img src="http://img.shields.io/badge/AAAI-2020-red.svg">
6
6
  </a>
7
- <a href="https://www.comp.nus.edu.sg/~sbhatia/assets/pdf/midas.pdf"><img src="http://img.shields.io/badge/Paper-PDF-brightgreen.svg"></a>
7
+ <a href="https://arxiv.org/pdf/2009.08452.pdf"><img src="http://img.shields.io/badge/Paper-PDF-brightgreen.svg"></a>
8
8
  <a href="https://www.comp.nus.edu.sg/~sbhatia/assets/pdf/midasslides.pdf">
9
9
  <img src="http://img.shields.io/badge/Slides-PDF-ff9e18.svg">
10
10
  </a>
11
11
  <a href="https://youtu.be/Bd4PyLCHrto">
12
12
  <img src="http://img.shields.io/badge/Talk-Youtube-ff69b4.svg">
13
13
  </a>
14
- <a href="https://www.kdnuggets.com/2020/04/midas-new-baseline-anomaly-detection-graphs.html">
15
- <img src="https://img.shields.io/badge/Press-KDnuggets-orange.svg">
14
+ <a href="https://www.youtube.com/watch?v=DPmN-uPW8qU">
15
+ <img src="https://img.shields.io/badge/Overview-Youtube-orange.svg">
16
16
  </a>
17
17
  <a href="https://github.com/bhatiasiddharth/MIDAS/blob/master/LICENSE">
18
18
  <img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg">
@@ -21,8 +21,8 @@
21
21
 
22
22
  C++ implementation of
23
23
 
24
- - Real-time Streaming Anomaly Detection in Dynamic Graphs. *Siddharth Bhatia, Rui Liu, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos*. (Under Review)
25
- - [MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams](asset/Conference.pdf). *Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos*. AAAI 2020.
24
+ - [Real-time Streaming Anomaly Detection in Dynamic Graphs](https://arxiv.org/pdf/2009.08452.pdf). *Siddharth Bhatia, Rui Liu, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos*. (Under Review)
25
+ - [MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams](https://arxiv.org/pdf/1911.04464.pdf). *Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, Christos Faloutsos*. AAAI 2020.
26
26
 
27
27
  The old implementation is in another branch `OldImplementation`, it should be considered as being archived and will hardly receive feature updates.
28
28
 
@@ -30,13 +30,20 @@ The old implementation is in another branch `OldImplementation`, it should be co
30
30
 
31
31
  ## Table of Contents
32
32
 
33
+ <!-- START doctoc generated TOC please keep comment here to allow auto update -->
34
+ <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
35
+
36
+
33
37
  - [Features](#features)
34
38
  - [Demo](#demo)
35
39
  - [Customization](#customization)
36
- - [Online Articles](#online-articles)
37
- - [MIDAS in other Languages](#midas-in-other-languages)
40
+ - [Other Files](#other-files)
41
+ - [In Other Languages](#in-other-languages)
42
+ - [Online Coverage](#online-coverage)
38
43
  - [Citation](#citation)
39
44
 
45
+ <!-- END doctoc generated TOC please keep comment here to allow auto update -->
46
+
40
47
  ## Features
41
48
 
42
49
  - Finds Anomalies in Dynamic/Time-Evolving Graph: (Intrusion Detection, Fake Ratings, Financial Fraud)
@@ -45,7 +52,7 @@ The old implementation is in another branch `OldImplementation`, it should be co
45
52
  - Constant Memory (independent of graph size)
46
53
  - Constant Update Time (real-time anomaly detection to minimize harm)
47
54
  - Up to 55% more accurate and 929 times faster than the state of the art approaches
48
- - Some experiments are performed on the following datasets:
55
+ - Experiments are performed using the following datasets:
49
56
  - [DARPA](https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset)
50
57
  - [TwitterWorldCup2014](http://odds.cs.stonybrook.edu/twitterworldcup2014-dataset)
51
58
  - [TwitterSecurity](http://odds.cs.stonybrook.edu/twittersecurity-dataset)
@@ -56,31 +63,51 @@ If you use Windows:
56
63
 
57
64
  1. Open a Visual Studio developer command prompt, we want their toolchain
58
65
  1. `cd` to the project root `MIDAS/`
59
- 1. `cmake -DCMAKE_BUILD_TYPE=Release -G "NMake Makefiles" -S . -B build/release`
66
+ 1. `cmake -DCMAKE_BUILD_TYPE=Release -GNinja -S . -B build/release`
60
67
  1. `cmake --build build/release --target Demo`
61
- 1. `cd` to `MIDAS/build/release/src`
68
+ 1. `cd` to `MIDAS/build/release/`
62
69
  1. `.\Demo.exe`
63
70
 
64
- If you use Linux/macOS systems:
71
+ If you use Linux/macOS:
65
72
 
66
73
  1. Open a terminal
67
74
  1. `cd` to the project root `MIDAS/`
68
75
  1. `cmake -DCMAKE_BUILD_TYPE=Release -S . -B build/release`
69
76
  1. `cmake --build build/release --target Demo`
70
- 1. `cd` to `MIDAS/build/release/src`
77
+ 1. `cd` to `MIDAS/build/release/`
71
78
  1. `./Demo`
72
79
 
73
- The demo runs on `MIDAS/data/DARPA/darpa_processed.csv`, which has 4.5M records, with the filtering core.
80
+ The demo runs on `MIDAS/data/DARPA/darpa_processed.csv`, which has 4.5M records, with the filtering core (MIDAS-F).
74
81
 
75
82
  The scores will be exported to `MIDAS/temp/Score.txt`, higher means more anomalous.
76
83
 
77
- All file paths are absolute and "hardcoded" by CMake, but it's suggested NOT to run by double-click on the executable file.
84
+ All file paths are absolute and "hardcoded" by CMake, but it's suggested NOT to run by double clicking on the executable file.
85
+
86
+ ### Requirements
87
+
88
+ Core
89
+ - C++11
90
+ - C++ standard libraries
91
+
92
+ Demo
93
+ - Python 3 (`MIDAS/util/EvaluateScore.py`)
94
+ - `pandas`: I/O
95
+ - `scikit-learn`: Compute ROC-AUC
96
+
97
+ Experiment
98
+ - (Optional) Intel TBB: Parallelization
99
+ - (Optional) OpenMP: Parallelization
100
+
101
+ Other python utility scripts
102
+ - Python 3
103
+ - `pandas`
104
+ - `scikit-learn`
78
105
 
79
106
  ## Customization
80
107
 
81
108
  ### Switch Cores
82
109
 
83
- Cores are instantiated at `MIDAS/example/Demo.cpp:64-66`, uncomment the chosen one.
110
+ Cores are instantiated at `MIDAS/example/Demo.cpp:67-69`, uncomment the chosen one.
84
111
 
85
112
  ### Custom Dataset + `Demo.cpp`
86
113
 
@@ -89,48 +116,96 @@ You need to prepare three files:
89
116
  - Meta file
90
117
  - Only includes an integer `N`, the number of records in the dataset
91
118
  - Use its path for `pathMeta`
119
+ - E.g. `MIDAS/data/DARPA/darpa_shape.txt`
92
120
  - Data file
93
121
  - A header-less csv format file of shape `[N,3]`
94
122
  - Columns are sources, destinations, timestamps
95
123
  - Use its path for `pathData`
124
+ - E.g. `MIDAS/data/DARPA/darpa_processed.csv`
96
125
  - Label file
97
126
  - A header-less csv format file of shape `[N,1]`
98
127
  - The corresponding label for data records
99
128
  - 0 means normal record
100
129
  - 1 means anomalous record
101
- - Use its path for `pathGroundTruth`
130
+ - Use its path for `pathGroundTruth`
131
+ - E.g. `MIDAS/data/DARPA/darpa_ground_truth.csv`
102
132
 
103
133
  ### Custom Dataset + Custom Runner
104
134
 
105
- 1. Include the header `MIDAS/CPU/NormalCore.hpp`, `MIDAS/CPU/RelationalCore.hpp` or `MIDAS/CPU/FilteringCore.hpp`
135
+ 1. Include the header `MIDAS/src/NormalCore.hpp`, `MIDAS/src/RelationalCore.hpp` or `MIDAS/src/FilteringCore.hpp`
106
136
  1. Instantiate cores with required parameters
107
- 1. Call `operator()` on individual data records, it returns the anomaly score for the input record.
137
+ 1. Call `operator()` on individual data records, it returns the anomaly score for the input record
138
+
139
+ ## Other Files
140
+
141
+ ### `example/`
142
+
143
+ #### `Experiment.cpp`
144
+
145
+ The code we used for experiments.
146
+ It will try to use Intel TBB or OpenMP for parallelization.
147
+ You should comment all but only one runner function call in the `main()` as most results are exported to `MIDAS/temp/Experiiment.csv` together with many intermediate files.
148
+
149
+ #### `Reproducible.cpp`
108
150
 
109
- ## Online Articles
151
+ Similar to `Demo.cpp`, but with all random parameters hardcoded and always produce the same result.
152
+ It's for other developers and us to test if the implementation in other languages can produce acceptable results.
110
153
 
111
- 1. KDnuggets: [Introducing MIDAS: A New Baseline for Anomaly Detection in Graphs](https://www.kdnuggets.com/2020/04/midas-new-baseline-anomaly-detection-graphs.html)
112
- 2. Towards Data Science: [Controlling Fake News using Graphs and Statistics](https://towardsdatascience.com/controlling-fake-news-using-graphs-and-statistics-31ed116a986f)
113
- 2. Towards Data Science: [Anomaly detection in dynamic graphs using MIDAS](https://towardsdatascience.com/anomaly-detection-in-dynamic-graphs-using-midas-e4f8d0b1db45)
114
- 4. Towards AI: [Anomaly Detection with MIDAS](https://medium.com/towards-artificial-intelligence/anomaly-detection-with-midas-2735a2e6dce8)
115
- 5. [AIhub Interview](https://aihub.org/2020/05/01/interview-with-siddharth-bhatia-a-new-approach-for-anomaly-detection/)
154
+ ### `util/`
116
155
 
117
- ## MIDAS in Other Languages
156
+ `DeleteTempFile.py`, `EvaluateScore.py` and `ReproduceROC.py` will show their usage and a short description when executed without any argument.
118
157
 
119
- 1. [Golang](https://github.com/steve0hh/midas) by [Steve Tan](https://github.com/steve0hh)
120
- 2. [Ruby](https://github.com/ankane/midas) by [Andrew Kane](https://github.com/ankane)
121
- 3. [Rust](https://github.com/scooter-dangle/midas_rs) by [Scott Steele](https://github.com/scooter-dangle)
122
- 4. [R](https://github.com/pteridin/MIDASwrappeR) by [Tobias Heidler](https://github.com/pteridin)
123
- 5. [Python](https://github.com/ritesh99rakesh/pyMIDAS) by [Ritesh Kumar](https://github.com/ritesh99rakesh)
158
+ #### `PreprocessData.py`
159
+
160
+ The code to process the raw dataset into an easy-to-read format.
161
+ Datasets are always assumed to be in a folder in `MIDAS/data/`.
162
+ It can process the following dataset(s)
163
+
164
+ - `DARPA/darpa_original.csv` -> `DARPA/darpa_processed.csv`, `DARPA/darpa_ground_truth.csv`, `DARPA/darpa_shape.txt`
165
+
166
+ ## In Other Languages
167
+
168
+ 1. Python: [Rui Liu's MIDAS.Python](https://github.com/liurui39660/MIDAS.Python), [Ritesh Kumar's pyMIDAS](https://github.com/ritesh99rakesh/pyMIDAS)
169
+ 1. Golang: [Steve Tan's midas](https://github.com/steve0hh/midas)
170
+ 1. Ruby: [Andrew Kane's midas](https://github.com/ankane/midas)
171
+ 1. Rust: [Scott Steele's midas_rs](https://github.com/scooter-dangle/midas_rs)
172
+ 1. R: [Tobias Heidler's MIDASwrappeR](https://github.com/pteridin/MIDASwrappeR)
173
+ 1. Java: [Joshua Tokle's MIDAS-Java](https://github.com/jotok/MIDAS-Java)
174
+ 1. Julia: [Ashrya Agrawal's MIDAS.jl](https://github.com/ashryaagr/MIDAS.jl)
175
+
176
+ ## Online Coverage
177
+
178
+ 1. [ACM TechNews](https://technews.acm.org/archives.cfm?fo=2020-05-may/may-06-2020.html)
179
+ 1. [AIhub](https://aihub.org/2020/05/01/interview-with-siddharth-bhatia-a-new-approach-for-anomaly-detection/)
180
+ 1. [Hacker News](https://news.ycombinator.com/item?id=22802604)
181
+ 1. [KDnuggets](https://www.kdnuggets.com/2020/04/midas-new-baseline-anomaly-detection-graphs.html)
182
+ 1. [Microsoft](https://techcommunity.microsoft.com/t5/azure-sentinel/announcing-the-azure-sentinel-hackathon-winners/ba-p/1548240)
183
+ 1. [Towards Data Science](https://towardsdatascience.com/controlling-fake-news-using-graphs-and-statistics-31ed116a986f)
124
184
 
125
185
  ## Citation
126
186
 
127
- If you use this code for your research, please consider citing our paper.
187
+ If you use this code for your research, please consider citing our arXiv preprint
188
+
189
+ ```bibtex
190
+ @misc{bhatia2020realtime,
191
+ title={Real-Time Streaming Anomaly Detection in Dynamic Graphs},
192
+ author={Siddharth Bhatia and Rui Liu and Bryan Hooi and Minji Yoon and Kijung Shin and Christos Faloutsos},
193
+ year={2020},
194
+ eprint={2009.08452},
195
+ archivePrefix={arXiv},
196
+ primaryClass={cs.LG}
197
+ }
128
198
 
129
199
  ```
200
+
201
+ or our AAAI paper
202
+
203
+
204
+ ```bibtex
130
205
  @inproceedings{bhatia2020midas,
131
206
  title="MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams",
132
207
  author="Siddharth {Bhatia} and Bryan {Hooi} and Minji {Yoon} and Kijung {Shin} and Christos {Faloutsos}",
133
208
  booktitle="AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence",
134
209
  year="2020"
135
210
  }
136
- ```
211
+ ```
@@ -0,0 +1,105 @@
1
+ // -----------------------------------------------------------------------------
2
+ // Copyright 2020 Rui Liu (liurui39660) and Siddharth Bhatia (bhatiasiddharth)
3
+ //
4
+ // Licensed under the Apache License, Version 2.0 (the "License");
5
+ // you may not use this file except in compliance with the License.
6
+ // You may obtain a copy of the License at
7
+ //
8
+ // http://www.apache.org/licenses/LICENSE-2.0
9
+ //
10
+ // Unless required by applicable law or agreed to in writing, software
11
+ // distributed under the License is distributed on an "AS IS" BASIS,
12
+ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ // See the License for the specific language governing permissions and
14
+ // limitations under the License.
15
+ // -----------------------------------------------------------------------------
16
+
17
+ #pragma once
18
+
19
+ #include <algorithm>
20
+
21
+ namespace MIDAS {
22
+ struct CountMinSketch {
23
+ // Fields
24
+ // --------------------------------------------------------------------------------
25
+
26
+ const int r, c, m = 104729; // Yes, a magic number, I just pick a random prime
27
+ const int lenData;
28
+ int* const param1;
29
+ int* const param2;
30
+ float* const data;
31
+ constexpr static float infinity = std::numeric_limits<float>::infinity();
32
+
33
+ // Methods
34
+ // --------------------------------------------------------------------------------
35
+
36
+ CountMinSketch() = delete;
37
+ CountMinSketch& operator=(const CountMinSketch& b) = delete;
38
+
39
+ CountMinSketch(int numRow, int numColumn):
40
+ r(numRow),
41
+ c(numColumn),
42
+ lenData(r * c),
43
+ param1(new int[r]),
44
+ param2(new int[r]),
45
+ data(new float[lenData]) {
46
+ for (int i = 0; i < r; i++) {
47
+ param1[i] = rand() + 1; // ×0 is not a good idea, see Hash()
48
+ param2[i] = rand();
49
+ }
50
+ std::fill(data, data + lenData, 0);
51
+ }
52
+
53
+ CountMinSketch(const CountMinSketch& b):
54
+ r(b.r),
55
+ c(b.c),
56
+ lenData(b.lenData),
57
+ param1(new int[r]),
58
+ param2(new int[r]),
59
+ data(new float[lenData]) {
60
+ std::copy(b.param1, b.param1 + r, param1);
61
+ std::copy(b.param2, b.param2 + r, param2);
62
+ std::copy(b.data, b.data + lenData, data);
63
+ }
64
+
65
+ ~CountMinSketch() {
66
+ delete[] param1;
67
+ delete[] param2;
68
+ delete[] data;
69
+ }
70
+
71
+ void ClearAll(float with = 0) const {
72
+ std::fill(data, data + lenData, with);
73
+ }
74
+
75
+ void MultiplyAll(float by) const {
76
+ for (int i = 0, I = lenData; i < I; i++) // Vectorization
77
+ data[i] *= by;
78
+ }
79
+
80
+ void Hash(int* indexOut, int a, int b = 0) const {
81
+ for (int i = 0; i < r; i++) {
82
+ indexOut[i] = ((a + m * b) * param1[i] + param2[i]) % c;
83
+ indexOut[i] += i * c + (indexOut[i] < 0 ? c : 0);
84
+ }
85
+ }
86
+
87
+ float operator()(const int* index) const {
88
+ float least = infinity;
89
+ for (int i = 0; i < r; i++)
90
+ least = std::min(least, data[index[i]]);
91
+ return least;
92
+ }
93
+
94
+ float Assign(const int* index, float with) const {
95
+ for (int i = 0; i < r; i++)
96
+ data[index[i]] = with;
97
+ return with;
98
+ }
99
+
100
+ void Add(const int* index, float by = 1) const {
101
+ for (int i = 0; i < r; i++)
102
+ data[index[i]] += by;
103
+ }
104
+ };
105
+ }
@@ -0,0 +1,98 @@
1
+ // -----------------------------------------------------------------------------
2
+ // Copyright 2020 Rui Liu (liurui39660) and Siddharth Bhatia (bhatiasiddharth)
3
+ //
4
+ // Licensed under the Apache License, Version 2.0 (the "License");
5
+ // you may not use this file except in compliance with the License.
6
+ // You may obtain a copy of the License at
7
+ //
8
+ // http://www.apache.org/licenses/LICENSE-2.0
9
+ //
10
+ // Unless required by applicable law or agreed to in writing, software
11
+ // distributed under the License is distributed on an "AS IS" BASIS,
12
+ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ // See the License for the specific language governing permissions and
14
+ // limitations under the License.
15
+ // -----------------------------------------------------------------------------
16
+
17
+ #pragma once
18
+
19
+ #include <cmath>
20
+
21
+ #include "CountMinSketch.hpp"
22
+
23
+ namespace MIDAS {
24
+ struct FilteringCore {
25
+ const float threshold;
26
+ int timestamp = 1;
27
+ const float factor;
28
+ const int lenData;
29
+ int* const indexEdge; // Pre-compute the index to-be-modified, thanks to the Same-Layout Assumption
30
+ int* const indexSource;
31
+ int* const indexDestination;
32
+ CountMinSketch numCurrentEdge, numTotalEdge, scoreEdge;
33
+ CountMinSketch numCurrentSource, numTotalSource, scoreSource;
34
+ CountMinSketch numCurrentDestination, numTotalDestination, scoreDestination;
35
+ float timestampReciprocal = 0;
36
+ bool* const shouldMerge;
37
+
38
+ FilteringCore(int numRow, int numColumn, float threshold, float factor = 0.5):
39
+ threshold(threshold),
40
+ factor(factor),
41
+ lenData(numRow * numColumn), // I assume all CMSs have same size, but Same-Layout Assumption is not that strict
42
+ indexEdge(new int[numRow]),
43
+ indexSource(new int[numRow]),
44
+ indexDestination(new int[numRow]),
45
+ numCurrentEdge(numRow, numColumn),
46
+ numTotalEdge(numCurrentEdge),
47
+ scoreEdge(numCurrentEdge),
48
+ numCurrentSource(numRow, numColumn),
49
+ numTotalSource(numCurrentSource),
50
+ scoreSource(numCurrentSource),
51
+ numCurrentDestination(numRow, numColumn),
52
+ numTotalDestination(numCurrentDestination),
53
+ scoreDestination(numCurrentDestination),
54
+ shouldMerge(new bool[numRow * numColumn]) { }
55
+
56
+ virtual ~FilteringCore() {
57
+ delete[] indexEdge;
58
+ delete[] indexSource;
59
+ delete[] indexDestination;
60
+ delete[] shouldMerge;
61
+ }
62
+
63
+ static float ComputeScore(float a, float s, float t) {
64
+ return s == 0 ? 0 : pow(a + s - a * t, 2) / (s * (t - 1)); // If t == 1, then s == 0, so no need to check twice
65
+ }
66
+
67
+ void ConditionalMerge(const float* current, float* total, const float* score) const {
68
+ for (int i = 0; i < lenData; i++)
69
+ shouldMerge[i] = score[i] < threshold;
70
+ for (int i = 0, I = lenData; i < I; i++) // Vectorization
71
+ total[i] += shouldMerge[i] * current[i] + (true - shouldMerge[i]) * total[i] * timestampReciprocal;
72
+ }
73
+
74
+ float operator()(int source, int destination, int timestamp) {
75
+ if (this->timestamp < timestamp) {
76
+ ConditionalMerge(numCurrentEdge.data, numTotalEdge.data, scoreEdge.data);
77
+ ConditionalMerge(numCurrentSource.data, numTotalSource.data, scoreSource.data);
78
+ ConditionalMerge(numCurrentDestination.data, numTotalDestination.data, scoreDestination.data);
79
+ numCurrentEdge.MultiplyAll(factor);
80
+ numCurrentSource.MultiplyAll(factor);
81
+ numCurrentDestination.MultiplyAll(factor);
82
+ timestampReciprocal = 1.f / (timestamp - 1); // So I can skip an if-statement
83
+ this->timestamp = timestamp;
84
+ }
85
+ numCurrentEdge.Hash(indexEdge, source, destination);
86
+ numCurrentEdge.Add(indexEdge);
87
+ numCurrentSource.Hash(indexSource, source);
88
+ numCurrentSource.Add(indexSource);
89
+ numCurrentDestination.Hash(indexDestination, destination);
90
+ numCurrentDestination.Add(indexDestination);
91
+ return std::max({
92
+ scoreEdge.Assign(indexEdge, ComputeScore(numCurrentEdge(indexEdge), numTotalEdge(indexEdge), timestamp)),
93
+ scoreSource.Assign(indexSource, ComputeScore(numCurrentSource(indexSource), numTotalSource(indexSource), timestamp)),
94
+ scoreDestination.Assign(indexDestination, ComputeScore(numCurrentDestination(indexDestination), numTotalDestination(indexDestination), timestamp)),
95
+ });
96
+ }
97
+ };
98
+ }