midas-edge 0.1.0 → 0.2.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,105 @@
1
+ // -----------------------------------------------------------------------------
2
+ // Copyright 2020 Rui Liu (liurui39660) and Siddharth Bhatia (bhatiasiddharth)
3
+ //
4
+ // Licensed under the Apache License, Version 2.0 (the "License");
5
+ // you may not use this file except in compliance with the License.
6
+ // You may obtain a copy of the License at
7
+ //
8
+ // http://www.apache.org/licenses/LICENSE-2.0
9
+ //
10
+ // Unless required by applicable law or agreed to in writing, software
11
+ // distributed under the License is distributed on an "AS IS" BASIS,
12
+ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ // See the License for the specific language governing permissions and
14
+ // limitations under the License.
15
+ // -----------------------------------------------------------------------------
16
+
17
+ #pragma once
18
+
19
+ #include <algorithm>
20
+
21
+ namespace MIDAS {
22
+ struct CountMinSketch {
23
+ // Fields
24
+ // --------------------------------------------------------------------------------
25
+
26
+ const int r, c, m = 104729; // Yes, a magic number, I just pick a random prime
27
+ const int lenData;
28
+ int* const param1;
29
+ int* const param2;
30
+ float* const data;
31
+ constexpr static float infinity = std::numeric_limits<float>::infinity();
32
+
33
+ // Methods
34
+ // --------------------------------------------------------------------------------
35
+
36
+ CountMinSketch() = delete;
37
+ CountMinSketch& operator=(const CountMinSketch& b) = delete;
38
+
39
+ CountMinSketch(int numRow, int numColumn):
40
+ r(numRow),
41
+ c(numColumn),
42
+ lenData(r * c),
43
+ param1(new int[r]),
44
+ param2(new int[r]),
45
+ data(new float[lenData]) {
46
+ for (int i = 0; i < r; i++) {
47
+ param1[i] = rand() + 1; // ×0 is not a good idea, see Hash()
48
+ param2[i] = rand();
49
+ }
50
+ std::fill(data, data + lenData, 0);
51
+ }
52
+
53
+ CountMinSketch(const CountMinSketch& b):
54
+ r(b.r),
55
+ c(b.c),
56
+ lenData(b.lenData),
57
+ param1(new int[r]),
58
+ param2(new int[r]),
59
+ data(new float[lenData]) {
60
+ std::copy(b.param1, b.param1 + r, param1);
61
+ std::copy(b.param2, b.param2 + r, param2);
62
+ std::copy(b.data, b.data + lenData, data);
63
+ }
64
+
65
+ ~CountMinSketch() {
66
+ delete[] param1;
67
+ delete[] param2;
68
+ delete[] data;
69
+ }
70
+
71
+ void ClearAll(float with = 0) const {
72
+ std::fill(data, data + lenData, with);
73
+ }
74
+
75
+ void MultiplyAll(float by) const {
76
+ for (int i = 0, I = lenData; i < I; i++) // Vectorization
77
+ data[i] *= by;
78
+ }
79
+
80
+ void Hash(int* indexOut, int a, int b = 0) const {
81
+ for (int i = 0; i < r; i++) {
82
+ indexOut[i] = ((a + m * b) * param1[i] + param2[i]) % c;
83
+ indexOut[i] += i * c + (indexOut[i] < 0 ? c : 0);
84
+ }
85
+ }
86
+
87
+ float operator()(const int* index) const {
88
+ float least = infinity;
89
+ for (int i = 0; i < r; i++)
90
+ least = std::min(least, data[index[i]]);
91
+ return least;
92
+ }
93
+
94
+ float Assign(const int* index, float with) const {
95
+ for (int i = 0; i < r; i++)
96
+ data[index[i]] = with;
97
+ return with;
98
+ }
99
+
100
+ void Add(const int* index, float by = 1) const {
101
+ for (int i = 0; i < r; i++)
102
+ data[index[i]] += by;
103
+ }
104
+ };
105
+ }
@@ -0,0 +1,98 @@
1
+ // -----------------------------------------------------------------------------
2
+ // Copyright 2020 Rui Liu (liurui39660) and Siddharth Bhatia (bhatiasiddharth)
3
+ //
4
+ // Licensed under the Apache License, Version 2.0 (the "License");
5
+ // you may not use this file except in compliance with the License.
6
+ // You may obtain a copy of the License at
7
+ //
8
+ // http://www.apache.org/licenses/LICENSE-2.0
9
+ //
10
+ // Unless required by applicable law or agreed to in writing, software
11
+ // distributed under the License is distributed on an "AS IS" BASIS,
12
+ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ // See the License for the specific language governing permissions and
14
+ // limitations under the License.
15
+ // -----------------------------------------------------------------------------
16
+
17
+ #pragma once
18
+
19
+ #include <cmath>
20
+
21
+ #include "CountMinSketch.hpp"
22
+
23
+ namespace MIDAS {
24
+ struct FilteringCore {
25
+ const float threshold;
26
+ int timestamp = 1;
27
+ const float factor;
28
+ const int lenData;
29
+ int* const indexEdge; // Pre-compute the index to-be-modified, thanks to the Same-Layout Assumption
30
+ int* const indexSource;
31
+ int* const indexDestination;
32
+ CountMinSketch numCurrentEdge, numTotalEdge, scoreEdge;
33
+ CountMinSketch numCurrentSource, numTotalSource, scoreSource;
34
+ CountMinSketch numCurrentDestination, numTotalDestination, scoreDestination;
35
+ float timestampReciprocal = 0;
36
+ bool* const shouldMerge;
37
+
38
+ FilteringCore(int numRow, int numColumn, float threshold, float factor = 0.5):
39
+ threshold(threshold),
40
+ factor(factor),
41
+ lenData(numRow * numColumn), // I assume all CMSs have same size, but Same-Layout Assumption is not that strict
42
+ indexEdge(new int[numRow]),
43
+ indexSource(new int[numRow]),
44
+ indexDestination(new int[numRow]),
45
+ numCurrentEdge(numRow, numColumn),
46
+ numTotalEdge(numCurrentEdge),
47
+ scoreEdge(numCurrentEdge),
48
+ numCurrentSource(numRow, numColumn),
49
+ numTotalSource(numCurrentSource),
50
+ scoreSource(numCurrentSource),
51
+ numCurrentDestination(numRow, numColumn),
52
+ numTotalDestination(numCurrentDestination),
53
+ scoreDestination(numCurrentDestination),
54
+ shouldMerge(new bool[numRow * numColumn]) { }
55
+
56
+ virtual ~FilteringCore() {
57
+ delete[] indexEdge;
58
+ delete[] indexSource;
59
+ delete[] indexDestination;
60
+ delete[] shouldMerge;
61
+ }
62
+
63
+ static float ComputeScore(float a, float s, float t) {
64
+ return s == 0 ? 0 : pow(a + s - a * t, 2) / (s * (t - 1)); // If t == 1, then s == 0, so no need to check twice
65
+ }
66
+
67
+ void ConditionalMerge(const float* current, float* total, const float* score) const {
68
+ for (int i = 0; i < lenData; i++)
69
+ shouldMerge[i] = score[i] < threshold;
70
+ for (int i = 0, I = lenData; i < I; i++) // Vectorization
71
+ total[i] += shouldMerge[i] * current[i] + (true - shouldMerge[i]) * total[i] * timestampReciprocal;
72
+ }
73
+
74
+ float operator()(int source, int destination, int timestamp) {
75
+ if (this->timestamp < timestamp) {
76
+ ConditionalMerge(numCurrentEdge.data, numTotalEdge.data, scoreEdge.data);
77
+ ConditionalMerge(numCurrentSource.data, numTotalSource.data, scoreSource.data);
78
+ ConditionalMerge(numCurrentDestination.data, numTotalDestination.data, scoreDestination.data);
79
+ numCurrentEdge.MultiplyAll(factor);
80
+ numCurrentSource.MultiplyAll(factor);
81
+ numCurrentDestination.MultiplyAll(factor);
82
+ timestampReciprocal = 1.f / (timestamp - 1); // So I can skip an if-statement
83
+ this->timestamp = timestamp;
84
+ }
85
+ numCurrentEdge.Hash(indexEdge, source, destination);
86
+ numCurrentEdge.Add(indexEdge);
87
+ numCurrentSource.Hash(indexSource, source);
88
+ numCurrentSource.Add(indexSource);
89
+ numCurrentDestination.Hash(indexDestination, destination);
90
+ numCurrentDestination.Add(indexDestination);
91
+ return std::max({
92
+ scoreEdge.Assign(indexEdge, ComputeScore(numCurrentEdge(indexEdge), numTotalEdge(indexEdge), timestamp)),
93
+ scoreSource.Assign(indexSource, ComputeScore(numCurrentSource(indexSource), numTotalSource(indexSource), timestamp)),
94
+ scoreDestination.Assign(indexDestination, ComputeScore(numCurrentDestination(indexDestination), numTotalDestination(indexDestination), timestamp)),
95
+ });
96
+ }
97
+ };
98
+ }
@@ -0,0 +1,53 @@
1
+ // -----------------------------------------------------------------------------
2
+ // Copyright 2020 Rui Liu (liurui39660) and Siddharth Bhatia (bhatiasiddharth)
3
+ //
4
+ // Licensed under the Apache License, Version 2.0 (the "License");
5
+ // you may not use this file except in compliance with the License.
6
+ // You may obtain a copy of the License at
7
+ //
8
+ // http://www.apache.org/licenses/LICENSE-2.0
9
+ //
10
+ // Unless required by applicable law or agreed to in writing, software
11
+ // distributed under the License is distributed on an "AS IS" BASIS,
12
+ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ // See the License for the specific language governing permissions and
14
+ // limitations under the License.
15
+ // -----------------------------------------------------------------------------
16
+
17
+ #pragma once
18
+
19
+ #include <cmath>
20
+
21
+ #include "CountMinSketch.hpp"
22
+
23
+ namespace MIDAS {
24
+ struct NormalCore {
25
+ int timestamp = 1;
26
+ int* const index; // Pre-compute the index to-be-modified, thanks to the same structure of CMSs
27
+ CountMinSketch numCurrent, numTotal;
28
+
29
+ NormalCore(int numRow, int numColumn):
30
+ index(new int[numRow]),
31
+ numCurrent(numRow, numColumn),
32
+ numTotal(numCurrent) { }
33
+
34
+ virtual ~NormalCore() {
35
+ delete[] index;
36
+ }
37
+
38
+ static float ComputeScore(float a, float s, float t) {
39
+ return s == 0 || t - 1 == 0 ? 0 : pow((a - s / t) * t, 2) / (s * (t - 1));
40
+ }
41
+
42
+ float operator()(int source, int destination, int timestamp) {
43
+ if (this->timestamp < timestamp) {
44
+ numCurrent.ClearAll();
45
+ this->timestamp = timestamp;
46
+ }
47
+ numCurrent.Hash(index, source, destination);
48
+ numCurrent.Add(index);
49
+ numTotal.Add(index);
50
+ return ComputeScore(numCurrent(index), numTotal(index), timestamp);
51
+ }
52
+ };
53
+ }
@@ -0,0 +1,79 @@
1
+ // -----------------------------------------------------------------------------
2
+ // Copyright 2020 Rui Liu (liurui39660) and Siddharth Bhatia (bhatiasiddharth)
3
+ //
4
+ // Licensed under the Apache License, Version 2.0 (the "License");
5
+ // you may not use this file except in compliance with the License.
6
+ // You may obtain a copy of the License at
7
+ //
8
+ // http://www.apache.org/licenses/LICENSE-2.0
9
+ //
10
+ // Unless required by applicable law or agreed to in writing, software
11
+ // distributed under the License is distributed on an "AS IS" BASIS,
12
+ // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ // See the License for the specific language governing permissions and
14
+ // limitations under the License.
15
+ // -----------------------------------------------------------------------------
16
+
17
+ #pragma once
18
+
19
+ #include <cmath>
20
+
21
+ #include "CountMinSketch.hpp"
22
+
23
+ namespace MIDAS {
24
+ struct RelationalCore {
25
+ int timestamp = 1;
26
+ const float factor;
27
+ int* const indexEdge; // Pre-compute the index to-be-modified, thanks to the same structure of CMSs
28
+ int* const indexSource;
29
+ int* const indexDestination;
30
+ CountMinSketch numCurrentEdge, numTotalEdge;
31
+ CountMinSketch numCurrentSource, numTotalSource;
32
+ CountMinSketch numCurrentDestination, numTotalDestination;
33
+
34
+ RelationalCore(int numRow, int numColumn, float factor = 0.5):
35
+ factor(factor),
36
+ indexEdge(new int[numRow]),
37
+ indexSource(new int[numRow]),
38
+ indexDestination(new int[numRow]),
39
+ numCurrentEdge(numRow, numColumn),
40
+ numTotalEdge(numCurrentEdge),
41
+ numCurrentSource(numRow, numColumn),
42
+ numTotalSource(numCurrentSource),
43
+ numCurrentDestination(numRow, numColumn),
44
+ numTotalDestination(numCurrentDestination) { }
45
+
46
+ virtual ~RelationalCore() {
47
+ delete[] indexEdge;
48
+ delete[] indexSource;
49
+ delete[] indexDestination;
50
+ }
51
+
52
+ static float ComputeScore(float a, float s, float t) {
53
+ return s == 0 || t - 1 == 0 ? 0 : pow((a - s / t) * t, 2) / (s * (t - 1));
54
+ }
55
+
56
+ float operator()(int source, int destination, int timestamp) {
57
+ if (this->timestamp < timestamp) {
58
+ numCurrentEdge.MultiplyAll(factor);
59
+ numCurrentSource.MultiplyAll(factor);
60
+ numCurrentDestination.MultiplyAll(factor);
61
+ this->timestamp = timestamp;
62
+ }
63
+ numCurrentEdge.Hash(indexEdge, source, destination);
64
+ numCurrentEdge.Add(indexEdge);
65
+ numTotalEdge.Add(indexEdge);
66
+ numCurrentSource.Hash(indexSource, source);
67
+ numCurrentSource.Add(indexSource);
68
+ numTotalSource.Add(indexSource);
69
+ numCurrentDestination.Hash(indexDestination, destination);
70
+ numCurrentDestination.Add(indexDestination);
71
+ numTotalDestination.Add(indexDestination);
72
+ return std::max({
73
+ ComputeScore(numCurrentEdge(indexEdge), numTotalEdge(indexEdge), timestamp),
74
+ ComputeScore(numCurrentSource(indexSource), numTotalSource(indexSource), timestamp),
75
+ ComputeScore(numCurrentDestination(indexDestination), numTotalDestination(indexDestination), timestamp),
76
+ });
77
+ }
78
+ };
79
+ }
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: midas-edge
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.2.3
5
5
  platform: ruby
6
6
  authors:
7
7
  - Andrew Kane
8
- autorequire:
8
+ autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-02-18 00:00:00.000000000 Z
11
+ date: 2020-11-17 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rice
@@ -94,7 +94,7 @@ dependencies:
94
94
  - - ">="
95
95
  - !ruby/object:Gem::Version
96
96
  version: '5'
97
- description:
97
+ description:
98
98
  email: andrew@chartkick.com
99
99
  executables: []
100
100
  extensions:
@@ -109,23 +109,18 @@ files:
109
109
  - ext/midas/extconf.rb
110
110
  - lib/midas-edge.rb
111
111
  - lib/midas/detector.rb
112
- - lib/midas/ext.bundle
113
112
  - lib/midas/version.rb
114
113
  - vendor/MIDAS/LICENSE
115
114
  - vendor/MIDAS/README.md
116
- - vendor/MIDAS/anom.cpp
117
- - vendor/MIDAS/anom.hpp
118
- - vendor/MIDAS/argparse.hpp
119
- - vendor/MIDAS/edgehash.cpp
120
- - vendor/MIDAS/edgehash.hpp
121
- - vendor/MIDAS/main.cpp
122
- - vendor/MIDAS/nodehash.cpp
123
- - vendor/MIDAS/nodehash.hpp
115
+ - vendor/MIDAS/src/CountMinSketch.hpp
116
+ - vendor/MIDAS/src/FilteringCore.hpp
117
+ - vendor/MIDAS/src/NormalCore.hpp
118
+ - vendor/MIDAS/src/RelationalCore.hpp
124
119
  homepage: https://github.com/ankane/midas
125
120
  licenses:
126
121
  - MIT
127
122
  metadata: {}
128
- post_install_message:
123
+ post_install_message:
129
124
  rdoc_options: []
130
125
  require_paths:
131
126
  - lib
@@ -140,8 +135,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
140
135
  - !ruby/object:Gem::Version
141
136
  version: '0'
142
137
  requirements: []
143
- rubygems_version: 3.1.2
144
- signing_key:
138
+ rubygems_version: 3.1.4
139
+ signing_key:
145
140
  specification_version: 4
146
141
  summary: Edge stream anomaly detection for Ruby
147
142
  test_files: []
Binary file
@@ -1,88 +0,0 @@
1
- #define MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
2
- #define MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
3
-
4
- #include <iostream>
5
- #include <math.h>
6
- #include <algorithm>
7
- #include <vector>
8
- #include "anom.hpp"
9
- #include "edgehash.hpp"
10
- #include "nodehash.hpp"
11
-
12
- vector<double>* midas(vector<int>& src, vector<int>& dst, vector<int>& times, int num_rows, int num_buckets)
13
- {
14
- int m = *max_element(src.begin(), src.end());
15
- Edgehash cur_count(num_rows, num_buckets, m);
16
- Edgehash total_count(num_rows, num_buckets, m);
17
- vector<double>* anom_score = new vector<double>(src.size());
18
- int cur_t = 1, size = src.size(), cur_src, cur_dst;
19
- double cur_mean, sqerr, cur_score;
20
- for (int i = 0; i < size; i++) {
21
-
22
- if (i == 0 || times[i] > cur_t) {
23
- cur_count.clear();
24
- cur_t = times[i];
25
- }
26
-
27
- cur_src = src[i];
28
- cur_dst = dst[i];
29
- cur_count.insert(cur_src, cur_dst, 1);
30
- total_count.insert(cur_src, cur_dst, 1);
31
- cur_mean = total_count.get_count(cur_src, cur_dst) / cur_t;
32
- sqerr = pow(cur_count.get_count(cur_src, cur_dst) - cur_mean, 2);
33
- if (cur_t == 1) cur_score = 0;
34
- else cur_score = sqerr / cur_mean + sqerr / (cur_mean * (cur_t - 1));
35
- (*anom_score)[i] = cur_score;
36
- }
37
-
38
- return anom_score;
39
- }
40
-
41
- double counts_to_anom(double tot, double cur, int cur_t)
42
- {
43
- double cur_mean = tot / cur_t;
44
- double sqerr = pow(MAX(0, cur - cur_mean), 2);
45
- return sqerr / cur_mean + sqerr / (cur_mean * MAX(1, cur_t - 1));
46
- }
47
-
48
- vector<double>* midasR(vector<int>& src, vector<int>& dst, vector<int>& times, int num_rows, int num_buckets, double factor)
49
- {
50
- int m = *max_element(src.begin(), src.end());
51
- Edgehash cur_count(num_rows, num_buckets, m);
52
- Edgehash total_count(num_rows, num_buckets, m);
53
- Nodehash src_score(num_rows, num_buckets);
54
- Nodehash dst_score(num_rows, num_buckets);
55
- Nodehash src_total(num_rows, num_buckets);
56
- Nodehash dst_total(num_rows, num_buckets);
57
- vector<double>* anom_score = new vector<double>(src.size());
58
- int cur_t = 1, size = src.size(), cur_src, cur_dst;
59
- double cur_score, cur_score_src, cur_score_dst, combined_score;
60
-
61
- for (int i = 0; i < size; i++) {
62
-
63
- if (i == 0 || times[i] > cur_t) {
64
- cur_count.lower(factor);
65
- src_score.lower(factor);
66
- dst_score.lower(factor);
67
- cur_t = times[i];
68
- }
69
-
70
- cur_src = src[i];
71
- cur_dst = dst[i];
72
- cur_count.insert(cur_src, cur_dst, 1);
73
- total_count.insert(cur_src, cur_dst, 1);
74
- src_score.insert(cur_src, 1);
75
- dst_score.insert(cur_dst, 1);
76
- src_total.insert(cur_src, 1);
77
- dst_total.insert(cur_dst, 1);
78
- cur_score = counts_to_anom(total_count.get_count(cur_src, cur_dst), cur_count.get_count(cur_src, cur_dst), cur_t);
79
- cur_score_src = counts_to_anom(src_total.get_count(cur_src), src_score.get_count(cur_src), cur_t);
80
- cur_score_dst = counts_to_anom(dst_total.get_count(cur_dst), dst_score.get_count(cur_dst), cur_t);
81
- //combined_score = MAX(cur_score_src, cur_score_dst) + cur_score;
82
- //combined_score = cur_score_src + cur_score_dst + cur_score;
83
- combined_score = MAX(MAX(cur_score_src, cur_score_dst), cur_score);
84
- (*anom_score)[i] = log(1 + combined_score);
85
- }
86
-
87
- return anom_score;
88
- }