mhl 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: fd67377b3670dfd8f235044614d2f4b9965ead18
4
+ data.tar.gz: a3a98c4c0a8ead65030715cbf0e0f9f24f1d0a3c
5
+ SHA512:
6
+ metadata.gz: a7dfe8e770e05c0bae580e3e0f21cb9da2accc690b05d19d6e1ce330dcae0e6a54ee3c95630809aabec34c9cc0af8a9befeb7ee1faabbbb87356e809522f2f46
7
+ data.tar.gz: cd3bb8ce03f86c22250d549251908d7ff2c7eb88b70a9108fe258213686afa7b9024eb0888607feb24031f912769e2073b6436c53ad7af059b90e78b462c8137
data/Gemfile ADDED
@@ -0,0 +1,4 @@
1
+ source 'https://rubygems.org'
2
+
3
+ # Specify your gem's dependencies in mhl.gemspec
4
+ gemspec
data/LICENSE ADDED
@@ -0,0 +1,20 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2014 Mauro Tortonesi
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy of
6
+ this software and associated documentation files (the "Software"), to deal in
7
+ the Software without restriction, including without limitation the rights to
8
+ use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9
+ the Software, and to permit persons to whom the Software is furnished to do so,
10
+ subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17
+ FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18
+ COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19
+ IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20
+ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
@@ -0,0 +1,71 @@
1
+ #ruby-mhl
2
+
3
+ A Ruby metaheuristics library
4
+
5
+
6
+ ## Installation
7
+
8
+ ### Stable version
9
+
10
+ You can get the stable version of ruby-mhl by installing the mhl gem from
11
+ RubyGems:
12
+
13
+ gem install mhl
14
+
15
+ ### Development version
16
+
17
+ If you want to try the development version of ruby-mhl, instead, just place
18
+ this line:
19
+
20
+ ```ruby
21
+ gem 'mhl', git: 'https://github.com/mtortonesi/ruby-mhl.git'
22
+ ```
23
+
24
+ in your Gemfile and run:
25
+
26
+ bundle install
27
+
28
+
29
+ ## Examples
30
+
31
+ Here is an example demonstrating how to find the argument that minimizes the
32
+ 2-dimension parabola x_1 ^ 2 + x_2 ^ 2 equation with a genetic algorithm:
33
+
34
+ ```ruby
35
+ require 'mhl'
36
+
37
+ solver = MHL::GeneticAlgorithmSolver.new(
38
+ :population_size => 40,
39
+ :genotype_space_type => :integer,
40
+ :mutation_probability => 0.5,
41
+ :recombination_probability => 0.5,
42
+ :genotype_space_conf => {
43
+ :dimensions => 2,
44
+ :recombination_type => :intermediate,
45
+ :random_func => lambda { Array.new(2) { rand(20) } }
46
+ },
47
+ :exit_condition => lambda {|generation,best| best[:fitness] == 0}
48
+ )
49
+ solver.solve(Proc.new{|x| -(x[0] ** 2 + x[1] ** 2) })
50
+ ```
51
+
52
+ and with particle swarm optimization:
53
+
54
+ ```ruby
55
+ require 'mhl'
56
+
57
+ solver = MHL::ParticleSwarmOptimizationSolver.new(
58
+ :swarm_size => 40,
59
+ :random_position_func => lambda { Array.new(2) { rand(20) } },
60
+ :random_velocity_func => lambda { Array.new(2) { rand(10) } },
61
+ :exit_condition => lambda {|generation,best| best[:height].abs < 0.001 },
62
+ )
63
+ solver.solve(Proc.new{|x| -(x[0] ** 2 + x[1] ** 2) })
64
+ ```
65
+
66
+ Other examples and a full documentation will be publised as ruby-mhl matures.
67
+
68
+
69
+ ## License
70
+
71
+ MIT
@@ -0,0 +1 @@
1
+ require 'bundler/gem_tasks'
@@ -0,0 +1,3 @@
1
+ require 'mhl/version'
2
+ require 'mhl/genetic_algorithm_solver'
3
+ require 'mhl/particle_swarm_optimization_solver'
@@ -0,0 +1,84 @@
1
+ require 'bitstring'
2
+
3
+ module MHL
4
+
5
+ # This class implements a genotype with bitstring representation
6
+ class BitstringGenotypeSpace
7
+ def initialize(opts)
8
+ @bitstring_length = opts[:bitstring_length].to_i
9
+ unless @bitstring_length and @bitstring_length > 0
10
+ raise ArgumentError, 'Must have positive integer bitstring_length'
11
+ end
12
+
13
+ @random_func = opts[:random_func] || default_random_func(opts[:random_one_to_zero_ratio] || 1.0)
14
+ end
15
+
16
+ def get_random
17
+ @random_func.call
18
+ end
19
+
20
+ # reproduction with bitflip mutation and one-point crossover
21
+ def reproduce_from(p1, p2, mutation_rv, recombination_rv)
22
+ # make copies of p1 and p2
23
+ # (we're only interested in the :genotype key)
24
+ c1 = { :genotype => p1[:genotype].dup }
25
+ c2 = { :genotype => p2[:genotype].dup }
26
+
27
+ # mutation comes first
28
+ bitflip_mutation(c1[:genotype], mutation_rv)
29
+ bitflip_mutation(c2[:genotype], mutation_rv)
30
+
31
+ # and then recombination
32
+ c1[:genotype], c2[:genotype] =
33
+ onepoint_crossover(c1[:genotype], c2[:genotype], recombination_rv)
34
+
35
+ return c1, c2
36
+ end
37
+
38
+ private
39
+
40
+ def bitflip_mutation(bitstring, mutation_rv)
41
+ # TODO: disable this check in non-debugging mode
42
+ unless bitstring.length == @bitstring_length
43
+ raise 'Error! Different bit string sizes!'
44
+ end
45
+
46
+ @bitstring_length.times do |i|
47
+ if mutation_rv.next < @mutation_threshold
48
+ bitval = bitstring[i]
49
+ bitstring[i] = (bitval == 1 ? '0' : '1')
50
+ end
51
+ end
52
+ end
53
+
54
+ def onepoint_crossover(bitstring1, bitstring2, recombination_rv)
55
+ # TODO: disable this check in non-debugging mode
56
+ unless bitstring1.length == @bitstring_length and bitstring2.length == @bitstring_length
57
+ raise 'Error! Different bit string sizes!'
58
+ end
59
+
60
+ if recombination_rv.next < @recombination_threshold
61
+ size = bitstring1.length
62
+ point = 1 + rand(size - 2)
63
+ hi_mask = bitstring1.mask(point, BitString::LOW_END) # lowest point bits
64
+ low_mask = bitstring1.mask(size - point, BitString::HIGH_END) # highest size-point bits
65
+ new_b1 = (bitstring1 & hi_mask) | (bitstring2 & low_mask)
66
+ new_b2 = (bitstring2 & hi_mask) | (bitstring1 & low_mask)
67
+ return new_b1, new_b2
68
+ end
69
+ return bitstring1, bitstring2
70
+ end
71
+
72
+ def default_random_func(one_to_zero_ratio)
73
+ random_percentage_of_ones = one_to_zero_ratio / (1.0 + one_to_zero_ratio)
74
+ lambda do
75
+ str = (0...@bitstring_length).inject("") do |s,i|
76
+ s << ((rand < random_percentage_of_ones) ? '1' : '0')
77
+ end
78
+ BitString.new(str, size)
79
+ end
80
+ end
81
+
82
+ end
83
+
84
+ end
@@ -0,0 +1,164 @@
1
+ require 'concurrent'
2
+ require 'erv'
3
+
4
+ require 'mhl/bitstring_genotype_space'
5
+ require 'mhl/integer_genotype_space'
6
+
7
+
8
+ module MHL
9
+
10
+ class GeneticAlgorithmSolver
11
+ def initialize(opts)
12
+ @population_size = opts[:population_size].to_i
13
+ unless @population_size and @population_size.even?
14
+ raise ArgumentError, 'Even population size required!'
15
+ end
16
+
17
+ # perform genotype space-specific configuration
18
+ case opts[:genotype_space_type]
19
+ when :integer
20
+ @genotype_space = IntegerVectorGenotypeSpace.new(opts[:genotype_space_conf])
21
+
22
+ begin
23
+ p_m = opts[:mutation_probability].to_f
24
+ @mutation_rv = \
25
+ ERV::RandomVariable.new(:distribution => :geometric,
26
+ :probability_of_success => p_m)
27
+ rescue
28
+ raise ArgumentError, 'Mutation probability configuration is wrong.'
29
+ end
30
+
31
+ begin
32
+ p_r = opts[:recombination_probability].to_f
33
+ @recombination_rv = \
34
+ ERV::RandomVariable.new(:distribution => :uniform,
35
+ :min_value => -p_r,
36
+ :max_value => 1.0 + p_r)
37
+ rescue
38
+ raise ArgumentError, 'Recombination probability configuration is wrong.'
39
+ end
40
+
41
+ when :bitstring
42
+ @genotype_space = BitstringGenotypeSpace.new(opts[:genotype_space_conf])
43
+ @recombination_rv = ERV::RandomVariable.new(:distribution => :uniform, :max_value => 1.0)
44
+ @mutation_rv = ERV::RandomVariable.new(:distribution => :uniform, :max_value => 1.0)
45
+
46
+ else
47
+ raise ArgumentError, 'Only integer and bitstring genotype representations are supported!'
48
+ end
49
+
50
+ @exit_condition = opts[:exit_condition]
51
+ @start_population = opts[:genotype_space_conf][:start_population]
52
+ end
53
+
54
+
55
+ # This is the method that solves the optimization problem
56
+ #
57
+ # Parameter func is supposed to be a method (or a Proc, a lambda, or any callable
58
+ # object) that accepts the genotype as argument (that is, the set of
59
+ # parameters) and returns the phenotype (that is, the function result)
60
+ def solve(func)
61
+ # setup population
62
+ if @start_population.nil?
63
+ population = Array.new(@population_size) do
64
+ # generate random genotype according to the chromosome type
65
+ { :genotype => @genotype_space.get_random }
66
+ end
67
+ else
68
+ population = @start_population.map do |x|
69
+ { :genotype => x }
70
+ end
71
+ end
72
+
73
+ # initialize variables
74
+ gen = 0
75
+ overall_best = nil
76
+
77
+ # default behavior is to loop forever
78
+ begin
79
+ gen += 1
80
+ puts "Starting generation #{gen} at #{Time.now}"
81
+
82
+ # assess fitness for every member of the population
83
+ population.each do |s|
84
+ s[:task] = Concurrent::Future.new { func.call(s[:genotype]) }
85
+ end
86
+
87
+ # wait for all the evaluations to end
88
+ population.each do |s|
89
+ s[:fitness] = s[:task].value
90
+ end
91
+
92
+ # find fittest member
93
+ population_best = population.max_by {|x| x[:fitness] }
94
+
95
+ # calculate overall best
96
+ if overall_best.nil?
97
+ overall_best = population_best
98
+ else
99
+ overall_best = [ overall_best, population_best ].max_by {|x| x[:fitness] }
100
+ end
101
+
102
+ # print results
103
+ puts "> gen #{gen}, best: #{overall_best[:genotype]}, #{overall_best[:fitness]}"
104
+
105
+ # selection by binary tournament
106
+ children = new_generation(population)
107
+
108
+ # update population and generation number
109
+ population = children
110
+ end while @exit_condition.nil? or !@exit_condition.call(gen, overall_best)
111
+ end
112
+
113
+
114
+ private
115
+
116
+ # reproduction with point mutation and one-point crossover
117
+ def new_generation(population)
118
+ population_size = population.size
119
+
120
+ # check correct population size
121
+ # TODO: disable this check in non-debugging mode
122
+ raise ArgumentError, 'Population size error!' if population_size != @population_size
123
+
124
+ # prepare children
125
+ children = []
126
+
127
+ # select members to reproduce through binary tournament
128
+ selected = Array.new(@population_size) { |i| binary_tournament(population) }
129
+ selected.shuffle!
130
+
131
+ # reproduction
132
+ selected.each_slice(2) do |p1, p2|
133
+ # get two new samples...
134
+ c1, c2 = @genotype_space.reproduce_from(p1, p2, @mutation_rv, @recombination_rv)
135
+
136
+ # ...and add them to the children population
137
+ children.push(c1, c2)
138
+
139
+ # check correct population size
140
+ # TODO: disable this check in non-debugging mode
141
+ raise 'Children size error!' if children.size > population_size
142
+ end
143
+
144
+ return children
145
+ end
146
+
147
+ # This method implements binary tournament selection, which is probably
148
+ # the most popular selection method for genetic algorithms
149
+ def binary_tournament(population)
150
+ i = rand(population.size)
151
+ j = rand(population.size - 1)
152
+ j += 1 if j >= i
153
+
154
+ select_fittest(population[i], population[j])
155
+ end
156
+
157
+ def select_fittest(*a)
158
+ # TODO: disable this check in non-debugging mode
159
+ raise 'Attempting to select the fittest sample of an empty population!' if a.empty?
160
+ a.max_by {|x| x[:fitness] }
161
+ end
162
+ end
163
+
164
+ end
@@ -0,0 +1,106 @@
1
+ module MHL
2
+
3
+ # This class implements a genotype with integer space representation
4
+ class IntegerVectorGenotypeSpace
5
+ def initialize(opts)
6
+ @random_func = opts[:random_func]
7
+
8
+ @dimensions = opts[:dimensions].to_i
9
+ unless @dimensions and @dimensions > 0
10
+ raise ArgumentError, 'Must have positive integer dimensions'
11
+ end
12
+
13
+ # TODO: enable to choose which recombination function to use
14
+ case opts[:recombination_type].to_s
15
+ when /intermediate/i
16
+ @recombination_func = :intermediate_recombination
17
+ when /line/i
18
+ @recombination_func = :line_recombination
19
+ else
20
+ raise ArgumentError, 'Recombination function must be either line or intermediate!'
21
+ end
22
+ end
23
+
24
+ def get_random
25
+ if @random_func
26
+ @random_func.call
27
+ else
28
+ # TODO: implement this
29
+ end
30
+ end
31
+
32
+ # reproduction with random geometric mutation
33
+ # and intermediate recombination
34
+ def reproduce_from(p1, p2, mutation_rv, recombination_rv)
35
+ # make copies of p1 and p2
36
+ # (we're only interested in the :genotype key)
37
+ c1 = { :genotype => p1[:genotype].dup }
38
+ c2 = { :genotype => p2[:genotype].dup }
39
+
40
+ # mutation comes first
41
+ random_geometric_mutation(c1[:genotype], mutation_rv)
42
+ random_geometric_mutation(c2[:genotype], mutation_rv)
43
+
44
+ # and then recombination
45
+ send(@recombination_func, c1[:genotype], c2[:genotype], recombination_rv)
46
+
47
+ return c1, c2
48
+ end
49
+
50
+
51
+ private
52
+
53
+ def random_geometric_mutation(g, mutation_rv)
54
+ g.each_index do |i|
55
+ # being sampled from a geometric distribution, delta will always
56
+ # be a non-negative integer (that is, 0 or greater)
57
+ delta = mutation_rv.next
58
+
59
+ if rand() >= 0.5
60
+ # half of the times the variation will be positive ...
61
+ g[i] += delta
62
+ else
63
+ # ... and half of the times it will be negative
64
+ g[i] -= delta
65
+ end
66
+ end
67
+ end
68
+
69
+ def intermediate_recombination(g1, g2, recombination_rv)
70
+ # TODO: disable this check in non-debugging mode
71
+ raise ArgumentError, 'g1 and g2 must have the same dimension' unless g1.size == g2.size
72
+
73
+ # recombination
74
+ g1.each_index do |i|
75
+ begin
76
+ alpha = recombination_rv.next
77
+ beta = recombination_rv.next
78
+ t = (alpha * g1[i] + (1.0 - alpha) * g2[i] + 0.5).floor
79
+ s = ( beta * g2[i] + (1.0 - beta) * g1[i] + 0.5).floor
80
+ end # until t >= 0 and s >= 0 # TODO: implement within-bounds condition checking
81
+ g1[i] = t
82
+ g2[i] = s
83
+ end
84
+ end
85
+
86
+ def line_recombination(g1, g2, recombination_rv)
87
+ # TODO: disable this check in non-debugging mode
88
+ raise ArgumentError, 'g1 and g2 must have the same dimension' unless g1.size == g2.size
89
+
90
+ alpha = recombination_rv.next
91
+ beta = recombination_rv.next
92
+
93
+ # recombination
94
+ g1.each_index do |i|
95
+ t = (alpha * g1[i] + (1.0 - alpha) * g2[i] + 0.5).floor
96
+ s = ( beta * g2[i] + (1.0 - beta) * g1[i] + 0.5).floor
97
+ # if t >= 0 and s >= 0 # TODO: implement within-bounds condition checking
98
+ g1[i] = t
99
+ g2[i] = s
100
+ # end
101
+ end
102
+ end
103
+
104
+ end
105
+
106
+ end
@@ -0,0 +1,122 @@
1
+ require 'matrix'
2
+ require 'securerandom'
3
+
4
+ module MHL
5
+
6
+ class ParticleSwarmOptimizationSolver
7
+
8
+ def initialize(opts={})
9
+ @swarm_size = opts[:swarm_size].to_i
10
+ unless @swarm_size
11
+ raise ArgumentError, 'Swarm size is a required parameter!'
12
+ end
13
+
14
+ @random_position_func = opts[:random_position_func]
15
+ @random_velocity_func = opts[:random_velocity_func]
16
+
17
+ @start_positions = opts[:start_positions]
18
+ @exit_condition = opts[:exit_condition]
19
+ end
20
+
21
+ # This is the method that solves the optimization problem
22
+ #
23
+ # Parameter func is supposed to be a method (or a Proc, a lambda, or any callable
24
+ # object) that accepts the genotype as argument (that is, the set of
25
+ # parameters) and returns the phenotype (that is, the function result)
26
+ def solve(func)
27
+ # setup particles
28
+ if @start_positions.nil?
29
+ particles = Array.new(@swarm_size) do
30
+ { position: Vector[*@random_position_func.call], velocity: Vector[*@random_velocity_func.call] }
31
+ end
32
+ else
33
+ particles = @start_positions.each_slice(2).map do |pos,vel|
34
+ { position: Vector[*pos], velocity: Vector[*vel] }
35
+ end
36
+ end
37
+
38
+ # initialize variables
39
+ gen = 0
40
+ overall_best = nil
41
+
42
+ # completely made up values
43
+ alpha = 0.5
44
+ beta = 0.3
45
+ gamma = 0.7
46
+ delta = 0.5
47
+ epsilon = 0.6
48
+
49
+ # default behavior is to loop forever
50
+ begin
51
+ gen += 1
52
+ puts "Starting generation #{gen} at #{Time.now}"
53
+
54
+ # assess height for every particle
55
+ particles.each do |p|
56
+ p[:task] = Concurrent::Future.new { func.call(p[:position]) }
57
+ end
58
+
59
+ # wait for all the evaluations to end
60
+ particles.each_with_index do |p,i|
61
+ p[:height] = p[:task].value
62
+ if p[:highest_value].nil? or p[:height] > p[:highest_value]
63
+ p[:highest_value] = p[:height]
64
+ p[:highest_position] = p[:position]
65
+ end
66
+ end
67
+
68
+ # find highest particle
69
+ highest_particle = particles.max_by {|x| x[:height] }
70
+
71
+ # calculate overall best
72
+ if overall_best.nil?
73
+ overall_best = highest_particle
74
+ else
75
+ overall_best = [ overall_best, highest_particle ].max_by {|x| x[:height] }
76
+ end
77
+
78
+ # mutate swarm
79
+ particles.each do |p|
80
+ # randomly sample particles and use them as informants
81
+ informants = random_portion(particles)
82
+
83
+ # make sure that p is included among the informants
84
+ informants << p unless informants.include? p
85
+
86
+ # get fittest informant
87
+ fittest_informant = informants.max_by {|x| x[:height] }
88
+
89
+ # update velocity
90
+ p[:velocity] =
91
+ alpha * p[:velocity] +
92
+ beta * (p[:highest_position] - p[:position]) +
93
+ gamma * (fittest_informant[:highest_position] - p[:position]) +
94
+ delta * (overall_best[:highest_position] - p[:position])
95
+
96
+ # update position
97
+ p[:position] = p[:position] + epsilon * p[:velocity]
98
+ end
99
+
100
+ end while @exit_condition.nil? or !@exit_condition.call(gen, overall_best)
101
+ end
102
+
103
+ private
104
+
105
+ def random_portion(array, ratio=0.1)
106
+ # get size of random array to return
107
+ size = (ratio * array.size).ceil
108
+
109
+ (1..size).inject([]) do |acc,i|
110
+ # randomly sample a new element
111
+ begin
112
+ new_element = array[SecureRandom.random_number(array.size)]
113
+ end while acc.include? new_element
114
+
115
+ # insert element in the accumulator
116
+ acc << new_element
117
+ end
118
+ end
119
+
120
+ end
121
+
122
+ end
@@ -0,0 +1,3 @@
1
+ module MHL
2
+ VERSION = '0.0.1'
3
+ end
@@ -0,0 +1,28 @@
1
+ # coding: utf-8
2
+ lib = File.expand_path('../lib', __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require 'mhl/version'
5
+
6
+ Gem::Specification.new do |spec|
7
+ spec.name = 'mhl'
8
+ spec.version = MHL::VERSION
9
+ spec.authors = ['Mauro Tortonesi']
10
+ spec.email = ['mauro.tortonesi@unife.it']
11
+ spec.description = %q{A Ruby Metaheuristics library}
12
+ spec.summary = %q{A scientific library for Ruby that provides several metaheuristics}
13
+ spec.homepage = 'https://github.com/mtortonesi/ruby-mhl'
14
+ spec.license = 'MIT'
15
+
16
+ spec.files = `git ls-files`.split($/).reject{|x| x == '.gitignore' }
17
+ spec.executables = spec.files.grep(%r{^bin/}) { |f| File.basename(f) }
18
+ spec.test_files = spec.files.grep(%r{^(test|spec|features)/})
19
+ spec.require_paths = ['lib']
20
+
21
+ spec.add_dependency 'bitstring'
22
+ spec.add_dependency 'concurrent-ruby'
23
+ spec.add_dependency 'erv'
24
+
25
+ spec.add_development_dependency 'bundler', '~> 1.3'
26
+ spec.add_development_dependency 'rake'
27
+ spec.add_development_dependency 'rspec'
28
+ end
@@ -0,0 +1,53 @@
1
+ require 'spec_helper'
2
+
3
+ describe MHL::GeneticAlgorithmSolver do
4
+
5
+ it 'should accept bitstring representation genotypes' do
6
+ lambda {
7
+ MHL::GeneticAlgorithmSolver.new(
8
+ :population_size => 128,
9
+ :genotype_space_type => :bitstring,
10
+ :mutation_threshold => 0.5,
11
+ :recombination_threshold => 0.5,
12
+ :genotype_space_conf => {
13
+ :bitstring_length => 120,
14
+ }
15
+ )
16
+ }.should_not raise_error
17
+ end
18
+
19
+ it 'should accept integer representation genotypes' do
20
+ lambda {
21
+ MHL::GeneticAlgorithmSolver.new(
22
+ :population_size => 128,
23
+ :genotype_space_type => :integer,
24
+ :mutation_probability => 0.5,
25
+ :recombination_probability => 0.5,
26
+ :genotype_space_conf => {
27
+ :dimensions => 6,
28
+ :recombination_type => :intermediate,
29
+ }
30
+ )
31
+ }.should_not raise_error
32
+ end
33
+
34
+ it 'should solve a 2-dimension parabola in integer space' do
35
+ solver = MHL::GeneticAlgorithmSolver.new(
36
+ :population_size => 40,
37
+ :genotype_space_type => :integer,
38
+ :mutation_probability => 0.5,
39
+ :recombination_probability => 0.5,
40
+ :genotype_space_conf => {
41
+ :dimensions => 2,
42
+ :recombination_type => :intermediate,
43
+ :random_func => lambda { Array.new(2) { rand(20) } }
44
+ },
45
+ :exit_condition => lambda {|generation,best_sample| best_sample[:fitness] == 0}
46
+ )
47
+ solver.solve(Proc.new{|genotype| -(genotype[0]**2 + genotype[1]**2) })
48
+ end
49
+
50
+ # it 'should solve a 2-dimension parabola in real space'
51
+
52
+ end
53
+
@@ -0,0 +1,16 @@
1
+ require 'spec_helper'
2
+
3
+ describe MHL::ParticleSwarmOptimizationSolver do
4
+
5
+ it 'should solve a 2-dimension parabola in real space' do
6
+ solver = MHL::ParticleSwarmOptimizationSolver.new(
7
+ :swarm_size => 40,
8
+ :random_position_func => lambda { Array.new(2) { rand(20) } },
9
+ :random_velocity_func => lambda { Array.new(2) { rand(10) } },
10
+ :exit_condition => lambda {|generation,best_sample| best_sample[:height].abs < 0.001 },
11
+ )
12
+ solver.solve(Proc.new{|position| -(position[0]**2 + position[1]**2) })
13
+ end
14
+
15
+ end
16
+
@@ -0,0 +1,19 @@
1
+ # This file was generated by the `rspec --init` command. Conventionally, all
2
+ # specs live under a `spec` directory, which RSpec adds to the `$LOAD_PATH`.
3
+ # Require this file using `require "spec_helper"` to ensure that it is only
4
+ # loaded once.
5
+
6
+ require 'mhl'
7
+
8
+ # See http://rubydoc.info/gems/rspec-core/RSpec/Core/Configuration
9
+ RSpec.configure do |config|
10
+ config.treat_symbols_as_metadata_keys_with_true_values = true
11
+ config.run_all_when_everything_filtered = true
12
+ config.filter_run :focus
13
+
14
+ # Run specs in random order to surface order dependencies. If you find an
15
+ # order dependency and want to debug it, you can fix the order by providing
16
+ # the seed, which is printed after each run.
17
+ # --seed 1234
18
+ config.order = 'random'
19
+ end
metadata ADDED
@@ -0,0 +1,145 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: mhl
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.1
5
+ platform: ruby
6
+ authors:
7
+ - Mauro Tortonesi
8
+ autorequire:
9
+ bindir: bin
10
+ cert_chain: []
11
+ date: 2014-02-06 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: bitstring
15
+ version_requirements: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - '>='
18
+ - !ruby/object:Gem::Version
19
+ version: '0'
20
+ requirement: !ruby/object:Gem::Requirement
21
+ requirements:
22
+ - - '>='
23
+ - !ruby/object:Gem::Version
24
+ version: '0'
25
+ prerelease: false
26
+ type: :runtime
27
+ - !ruby/object:Gem::Dependency
28
+ name: concurrent-ruby
29
+ version_requirements: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - '>='
32
+ - !ruby/object:Gem::Version
33
+ version: '0'
34
+ requirement: !ruby/object:Gem::Requirement
35
+ requirements:
36
+ - - '>='
37
+ - !ruby/object:Gem::Version
38
+ version: '0'
39
+ prerelease: false
40
+ type: :runtime
41
+ - !ruby/object:Gem::Dependency
42
+ name: erv
43
+ version_requirements: !ruby/object:Gem::Requirement
44
+ requirements:
45
+ - - '>='
46
+ - !ruby/object:Gem::Version
47
+ version: '0'
48
+ requirement: !ruby/object:Gem::Requirement
49
+ requirements:
50
+ - - '>='
51
+ - !ruby/object:Gem::Version
52
+ version: '0'
53
+ prerelease: false
54
+ type: :runtime
55
+ - !ruby/object:Gem::Dependency
56
+ name: bundler
57
+ version_requirements: !ruby/object:Gem::Requirement
58
+ requirements:
59
+ - - ~>
60
+ - !ruby/object:Gem::Version
61
+ version: '1.3'
62
+ requirement: !ruby/object:Gem::Requirement
63
+ requirements:
64
+ - - ~>
65
+ - !ruby/object:Gem::Version
66
+ version: '1.3'
67
+ prerelease: false
68
+ type: :development
69
+ - !ruby/object:Gem::Dependency
70
+ name: rake
71
+ version_requirements: !ruby/object:Gem::Requirement
72
+ requirements:
73
+ - - '>='
74
+ - !ruby/object:Gem::Version
75
+ version: '0'
76
+ requirement: !ruby/object:Gem::Requirement
77
+ requirements:
78
+ - - '>='
79
+ - !ruby/object:Gem::Version
80
+ version: '0'
81
+ prerelease: false
82
+ type: :development
83
+ - !ruby/object:Gem::Dependency
84
+ name: rspec
85
+ version_requirements: !ruby/object:Gem::Requirement
86
+ requirements:
87
+ - - '>='
88
+ - !ruby/object:Gem::Version
89
+ version: '0'
90
+ requirement: !ruby/object:Gem::Requirement
91
+ requirements:
92
+ - - '>='
93
+ - !ruby/object:Gem::Version
94
+ version: '0'
95
+ prerelease: false
96
+ type: :development
97
+ description: A Ruby Metaheuristics library
98
+ email:
99
+ - mauro.tortonesi@unife.it
100
+ executables: []
101
+ extensions: []
102
+ extra_rdoc_files: []
103
+ files:
104
+ - Gemfile
105
+ - LICENSE
106
+ - README.md
107
+ - Rakefile
108
+ - lib/mhl.rb
109
+ - lib/mhl/bitstring_genotype_space.rb
110
+ - lib/mhl/genetic_algorithm_solver.rb
111
+ - lib/mhl/integer_genotype_space.rb
112
+ - lib/mhl/particle_swarm_optimization_solver.rb
113
+ - lib/mhl/version.rb
114
+ - mhl.gemspec
115
+ - spec/mhl/genetic_algorithm_spec.rb
116
+ - spec/mhl/particle_swarm_optimization_solver_spec.rb
117
+ - spec/spec_helper.rb
118
+ homepage: https://github.com/mtortonesi/ruby-mhl
119
+ licenses:
120
+ - MIT
121
+ metadata: {}
122
+ post_install_message:
123
+ rdoc_options: []
124
+ require_paths:
125
+ - lib
126
+ required_ruby_version: !ruby/object:Gem::Requirement
127
+ requirements:
128
+ - - '>='
129
+ - !ruby/object:Gem::Version
130
+ version: '0'
131
+ required_rubygems_version: !ruby/object:Gem::Requirement
132
+ requirements:
133
+ - - '>='
134
+ - !ruby/object:Gem::Version
135
+ version: '0'
136
+ requirements: []
137
+ rubyforge_project:
138
+ rubygems_version: 2.2.1
139
+ signing_key:
140
+ specification_version: 4
141
+ summary: A scientific library for Ruby that provides several metaheuristics
142
+ test_files:
143
+ - spec/mhl/genetic_algorithm_spec.rb
144
+ - spec/mhl/particle_swarm_optimization_solver_spec.rb
145
+ - spec/spec_helper.rb