megahal 0.4.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/Gemfile +18 -0
- data/Gemfile.lock +100 -0
- data/README.md +187 -0
- data/Rakefile +44 -0
- data/UNLICENSE +24 -0
- data/VERSION +1 -0
- data/bin/megahal +196 -0
- data/lib/megahal.rb +3 -0
- data/lib/megahal/keyword.rb +485 -0
- data/lib/megahal/megahal.rb +482 -0
- data/lib/megahal/personalities.rb +12 -0
- data/lib/megahal/personalities/aliens.rb +837 -0
- data/lib/megahal/personalities/bill.rb +163 -0
- data/lib/megahal/personalities/caitsith.rb +289 -0
- data/lib/megahal/personalities/default.rb +351 -0
- data/lib/megahal/personalities/ferris.rb +1080 -0
- data/lib/megahal/personalities/manson.rb +291 -0
- data/lib/megahal/personalities/pepys.rb +2 -0
- data/lib/megahal/personalities/pulp.rb +1527 -0
- data/lib/megahal/personalities/scream.rb +1083 -0
- data/lib/megahal/personalities/sherlock.rb +254 -0
- data/lib/megahal/personalities/startrek.rb +273 -0
- data/lib/megahal/personalities/starwars.rb +1158 -0
- data/megahal.gemspec +101 -0
- metadata +251 -0
@@ -0,0 +1,482 @@
|
|
1
|
+
require 'cld'
|
2
|
+
require 'sooth'
|
3
|
+
require 'tempfile'
|
4
|
+
require 'json'
|
5
|
+
require 'zip'
|
6
|
+
|
7
|
+
class MegaHAL
|
8
|
+
attr_accessor :learning
|
9
|
+
|
10
|
+
# Create a new MegaHAL instance, loading the :default personality.
|
11
|
+
def initialize
|
12
|
+
@learning = true
|
13
|
+
@seed = Sooth::Predictor.new(0)
|
14
|
+
@fore = Sooth::Predictor.new(0)
|
15
|
+
@back = Sooth::Predictor.new(0)
|
16
|
+
@case = Sooth::Predictor.new(0)
|
17
|
+
@punc = Sooth::Predictor.new(0)
|
18
|
+
become(:default)
|
19
|
+
end
|
20
|
+
|
21
|
+
def inspect
|
22
|
+
to_s
|
23
|
+
end
|
24
|
+
|
25
|
+
# Wipe MegaHAL's brain. Note that this wipes the personality too, allowing you
|
26
|
+
# to begin from a truly blank slate.
|
27
|
+
def clear
|
28
|
+
@seed.clear
|
29
|
+
@fore.clear
|
30
|
+
@back.clear
|
31
|
+
@case.clear
|
32
|
+
@punc.clear
|
33
|
+
@dictionary = { "<error>" => 0, "<fence>" => 1, "<blank>" => 2 }
|
34
|
+
nil
|
35
|
+
end
|
36
|
+
|
37
|
+
def self.add_personality(name, data)
|
38
|
+
@@personalities ||= {}
|
39
|
+
@@personalities[name.to_sym] = data.each_line.to_a
|
40
|
+
nil
|
41
|
+
end
|
42
|
+
|
43
|
+
# Returns an array of MegaHAL personalities.
|
44
|
+
#
|
45
|
+
# @return [Array] A list of symbols representing the available personalities.
|
46
|
+
def self.list
|
47
|
+
@@personalities ||= {}
|
48
|
+
@@personalities.keys
|
49
|
+
end
|
50
|
+
|
51
|
+
# Loads the specified personality. Will raise an exception if the personality
|
52
|
+
# parameter isn't one of those returned by #list. Note that this will clear
|
53
|
+
# MegaHAL's brain first.
|
54
|
+
#
|
55
|
+
# @param [Symbol] name The personality to be loaded.
|
56
|
+
def become(name=:default)
|
57
|
+
raise ArgumentError, "no such personality" unless @@personalities.key?(name)
|
58
|
+
clear
|
59
|
+
_train(@@personalities[name])
|
60
|
+
end
|
61
|
+
|
62
|
+
# Generate a reply to the user's input. If the learning attribute is set to true,
|
63
|
+
# MegaHAL will also learn from what the user said. Note that it takes MegaHAL
|
64
|
+
# about one second to generate about 500 replies.
|
65
|
+
#
|
66
|
+
# @param [String] input A string that represents the user's input. If this is
|
67
|
+
# nil, MegaHAL will attempt to reply with a greeting,
|
68
|
+
# suitable for beginning a conversation.
|
69
|
+
# @param [String] error The default reply, which will be used when no
|
70
|
+
# suitable reply can be formed.
|
71
|
+
#
|
72
|
+
# @return [String] MegaHAL's reply to the user's input, or the error
|
73
|
+
# string if no reply could be formed.
|
74
|
+
def reply(input, error="...")
|
75
|
+
puncs, norms, words = _decompose(input ? input.strip : nil)
|
76
|
+
|
77
|
+
keyword_symbols =
|
78
|
+
MegaHAL.extract(norms)
|
79
|
+
.map { |keyword| @dictionary[keyword] }
|
80
|
+
.compact
|
81
|
+
|
82
|
+
input_symbols = (norms || []).map { |norm| @dictionary[norm] }
|
83
|
+
|
84
|
+
# create candidate utterances
|
85
|
+
utterances = []
|
86
|
+
9.times { utterances << _generate(keyword_symbols) }
|
87
|
+
utterances << _generate([])
|
88
|
+
utterances.delete_if { |utterance| utterance == input_symbols }
|
89
|
+
utterances.compact!
|
90
|
+
|
91
|
+
# select the best utterance, and handle _rewrite failure
|
92
|
+
reply = nil
|
93
|
+
while reply.nil? && utterances.length > 0
|
94
|
+
break unless utterance = _select_utterance(utterances, keyword_symbols)
|
95
|
+
reply = _rewrite(utterance)
|
96
|
+
utterances.delete(utterance)
|
97
|
+
end
|
98
|
+
|
99
|
+
# learn from what the user said _after_ generating the reply
|
100
|
+
_learn(puncs, norms, words) if @learning && norms
|
101
|
+
|
102
|
+
return reply || error
|
103
|
+
end
|
104
|
+
|
105
|
+
# Save MegaHAL's brain to the specified binary file.
|
106
|
+
#
|
107
|
+
# @param [String] filename The brain file to be saved.
|
108
|
+
# @param [ProgressBar] bar An optional progress bar instance.
|
109
|
+
def save(filename, bar = nil)
|
110
|
+
bar.total = 6 unless bar.nil?
|
111
|
+
Zip::File.open(filename, Zip::File::CREATE) do |zipfile|
|
112
|
+
zipfile.get_output_stream("dictionary") do |file|
|
113
|
+
file.write({
|
114
|
+
version: 'MH10',
|
115
|
+
learning: @learning,
|
116
|
+
dictionary: @dictionary
|
117
|
+
}.to_json)
|
118
|
+
end
|
119
|
+
bar.increment
|
120
|
+
[:seed, :fore, :back, :case, :punc].each do |name|
|
121
|
+
tmp = _get_tmp_filename(name)
|
122
|
+
instance_variable_get("@#{name}").save(tmp)
|
123
|
+
zipfile.add(name, tmp)
|
124
|
+
bar.increment
|
125
|
+
end
|
126
|
+
end
|
127
|
+
end
|
128
|
+
|
129
|
+
# Load a brain that has previously been saved.
|
130
|
+
#
|
131
|
+
# @param [String] filename The brain file to be loaded.
|
132
|
+
# @param [ProgressBar] bar An optional progress bar instance.
|
133
|
+
def load(filename, bar = nil)
|
134
|
+
bar.total = 6 unless bar.nil?
|
135
|
+
Zip::File.open(filename) do |zipfile|
|
136
|
+
data = JSON.parse(zipfile.find_entry("dictionary").get_input_stream.read)
|
137
|
+
raise "bad version" unless data['version'] == "MH10"
|
138
|
+
@learning = data['learning']
|
139
|
+
@dictionary = data['dictionary']
|
140
|
+
bar.increment
|
141
|
+
[:seed, :fore, :back, :case, :punc].each do |name|
|
142
|
+
tmp = _get_tmp_filename(name)
|
143
|
+
zipfile.find_entry(name.to_s).extract(tmp)
|
144
|
+
instance_variable_get("@#{name}").load(tmp)
|
145
|
+
bar.increment
|
146
|
+
end
|
147
|
+
end
|
148
|
+
end
|
149
|
+
|
150
|
+
# Train MegaHAL with the contents of the specified file, which should be plain
|
151
|
+
# text with one sentence per line. Note that it takes MegaHAL about one
|
152
|
+
# second to process about 500 lines, so large files may cause the process to
|
153
|
+
# block for a while. Lines that are too long will be skipped.
|
154
|
+
#
|
155
|
+
# @param [String] filename The text file to be used for training.
|
156
|
+
# @param [ProgressBar] bar An optional progress bar instance.
|
157
|
+
def train(filename, bar = nil)
|
158
|
+
lines = File.read(filename).each_line.to_a
|
159
|
+
bar.total = lines.length unless bar.nil?
|
160
|
+
_train(lines, bar)
|
161
|
+
end
|
162
|
+
|
163
|
+
private
|
164
|
+
|
165
|
+
def _train(data, bar = nil)
|
166
|
+
data.map!(&:strip)
|
167
|
+
data.each do |line|
|
168
|
+
_learn(*_decompose(line))
|
169
|
+
bar.increment unless bar.nil?
|
170
|
+
end
|
171
|
+
nil
|
172
|
+
end
|
173
|
+
|
174
|
+
# Train each of the five models based on a sentence decomposed into a list of
|
175
|
+
# word separators (puncs), capitalised words (norms) and words as they were
|
176
|
+
# observed (in mixed case).
|
177
|
+
def _learn(puncs, norms, words)
|
178
|
+
return if words.length == 0
|
179
|
+
|
180
|
+
# Convert the three lists of strings into three lists of symbols so that we
|
181
|
+
# can use the Sooth::Predictor. This is done by finding the ID of each of
|
182
|
+
# the strings in the @dictionary, allowing us to easily rewrite each symbol
|
183
|
+
# back to a string later.
|
184
|
+
punc_symbols = puncs.map { |punc| @dictionary[punc] ||= @dictionary.length }
|
185
|
+
norm_symbols = norms.map { |norm| @dictionary[norm] ||= @dictionary.length }
|
186
|
+
word_symbols = words.map { |word| @dictionary[word] ||= @dictionary.length }
|
187
|
+
|
188
|
+
# The @seed model is used to start the forwards-backwards reply generation.
|
189
|
+
# Given a keyword, we want to find a word that has been observed adjacent to
|
190
|
+
# it. Each context here is a bigram where one symbol is the keyword and the
|
191
|
+
# other is the special <blank> symbol (which has ID 2). The model learns
|
192
|
+
# which words can fill the blank.
|
193
|
+
prev = 1
|
194
|
+
(norm_symbols + [1]).each do |norm|
|
195
|
+
context = [prev, 2]
|
196
|
+
@seed.observe(context, norm)
|
197
|
+
context = [2, norm]
|
198
|
+
@seed.observe(context, prev)
|
199
|
+
prev = norm
|
200
|
+
end
|
201
|
+
|
202
|
+
# The @fore model is a classic second-order Markov model that can be used to
|
203
|
+
# generate an utterance in a random-walk fashion. For each adjacent pair of
|
204
|
+
# symbols the model learns which symbols can come next. Note that the
|
205
|
+
# special <fence> symbol (which has ID 1) is used to delimit the utterance.
|
206
|
+
context = [1, 1]
|
207
|
+
norm_symbols.each do |norm|
|
208
|
+
@fore.observe(context, norm)
|
209
|
+
context << norm
|
210
|
+
context.shift
|
211
|
+
end
|
212
|
+
@fore.observe(context, 1)
|
213
|
+
|
214
|
+
# The @back model is similar to the @fore model; it simply operates in the
|
215
|
+
# opposite direction. This is how the original MegaHAL was able to generate
|
216
|
+
# a random sentence guaranteed to contain a keyword; the @fore model filled
|
217
|
+
# in the gaps towards the end of the sentence, and the @back model filled in
|
218
|
+
# the gaps towards the beginning of the sentence.
|
219
|
+
context = [1, 1]
|
220
|
+
norm_symbols.reverse.each do |norm|
|
221
|
+
@back.observe(context, norm)
|
222
|
+
context << norm
|
223
|
+
context.shift
|
224
|
+
end
|
225
|
+
@back.observe(context, 1)
|
226
|
+
|
227
|
+
# The previous three models were all learning the sequence of norms, which
|
228
|
+
# are capitalised words. When we generate a reply, we want to rewrite it so
|
229
|
+
# MegaHAL doesn't speak in ALL CAPS. The @case model achieves this. For the
|
230
|
+
# previous word and the current norm it learns what the next word should be.
|
231
|
+
context = [1, 1]
|
232
|
+
word_symbols.zip(norm_symbols).each do |word, norm|
|
233
|
+
context[1] = norm
|
234
|
+
@case.observe(context, word)
|
235
|
+
context[0] = word
|
236
|
+
end
|
237
|
+
|
238
|
+
# After generating a list of words, we need to join them together with
|
239
|
+
# word-separators (whitespace and punctuation) in-between. The @punc model
|
240
|
+
# is used to do this; here it learns for two adjacent words which
|
241
|
+
# word-separators can be used to join them together.
|
242
|
+
context = [1, 1]
|
243
|
+
punc_symbols.zip(word_symbols + [1]).each do |punc, word|
|
244
|
+
context << word
|
245
|
+
context.shift
|
246
|
+
@punc.observe(context, punc)
|
247
|
+
end
|
248
|
+
end
|
249
|
+
|
250
|
+
# This takes a string and decomposes it into three arrays representing
|
251
|
+
# word-separators, capitalised words and the original words.
|
252
|
+
def _decompose(line, maximum_length=1024)
|
253
|
+
return [nil, nil, nil] if line.nil?
|
254
|
+
line = "" if line.length > maximum_length
|
255
|
+
return [[], [], []] if line.length == 0
|
256
|
+
puncs, words = _segment(line)
|
257
|
+
norms = words.map(&:upcase)
|
258
|
+
[puncs, norms, words]
|
259
|
+
end
|
260
|
+
|
261
|
+
# This segments a sentence into two arrays representing word-separators and
|
262
|
+
# the original words themselves/
|
263
|
+
def _segment(line)
|
264
|
+
# split the sentence into an array of alternating words and word-separators
|
265
|
+
sequence =
|
266
|
+
if _character_segmentation(line)
|
267
|
+
line.split(/([[:word:]])/)
|
268
|
+
else
|
269
|
+
line.split(/([[:word:]]+)/)
|
270
|
+
end
|
271
|
+
# ensure the array starts with and ends with a word-separator, even if it's the blank onw
|
272
|
+
sequence << "" if sequence.last =~ /[[:word:]]+/
|
273
|
+
sequence.unshift("") if sequence.first =~ /[[:word:]]+/
|
274
|
+
# join trigrams of word-separator-word if the separator is a single ' or -
|
275
|
+
# this means "don't" and "hob-goblin" become single words
|
276
|
+
while index = sequence[1..-2].index { |item| item =~ /^['-]$/ } do
|
277
|
+
sequence[index+1] = sequence[index, 3].join
|
278
|
+
sequence[index] = nil
|
279
|
+
sequence[index+2] = nil
|
280
|
+
sequence.compact!
|
281
|
+
end
|
282
|
+
# split the alternating sequence into two arrays of word-separators and words
|
283
|
+
sequence.partition.with_index { |symbol, index| index.even? }
|
284
|
+
end
|
285
|
+
|
286
|
+
# Given an array of keyword symbols, generate an array of norms that hopefully
|
287
|
+
# contain at least one of the keywords. All the symbols given as keywords must
|
288
|
+
# have been observed in the past, othewise this will raise an exception.
|
289
|
+
def _generate(keyword_symbols)
|
290
|
+
results =
|
291
|
+
if keyword = _select_keyword(keyword_symbols)
|
292
|
+
# Use the @seed model to find two contexts that contain the keyword.
|
293
|
+
contexts = [[2, keyword], [keyword, 2]]
|
294
|
+
contexts.map! do |context|
|
295
|
+
count = @seed.count(context)
|
296
|
+
if count > 0
|
297
|
+
limit = @seed.count(context)
|
298
|
+
context[context.index(2)] = @seed.select(context, limit)
|
299
|
+
context
|
300
|
+
else
|
301
|
+
nil
|
302
|
+
end
|
303
|
+
end
|
304
|
+
# Select one of the contexts at random
|
305
|
+
context = contexts.compact.shuffle.first
|
306
|
+
raise unless context
|
307
|
+
# Here we glue the generations of the @back and @fore models together
|
308
|
+
glue = context.select { |symbol| symbol != 1 }
|
309
|
+
_random_walk(@back, context.reverse, keyword_symbols).reverse + glue + _random_walk(@fore, context, keyword_symbols)
|
310
|
+
else
|
311
|
+
# we weren't given any keywords, so do a normal markovian generation
|
312
|
+
context = [1, 1]
|
313
|
+
_random_walk(@fore, context, keyword_symbols)
|
314
|
+
end
|
315
|
+
results.length == 0 ? nil : results
|
316
|
+
end
|
317
|
+
|
318
|
+
# Remove auxilliary words and select at random from what remains
|
319
|
+
def _select_keyword(keyword_symbols)
|
320
|
+
(keyword_symbols - AUXILIARY.map { |word| @dictionary[word] }).shuffle.first
|
321
|
+
end
|
322
|
+
|
323
|
+
# This is classic Markovian generation; using a model, start with a context
|
324
|
+
# and continue until we hit a <fence> symbol. The only addition here is that
|
325
|
+
# we roll the dice several times, and prefer generations that elicit a
|
326
|
+
# keyword.
|
327
|
+
def _random_walk(model, static_context, keyword_symbols)
|
328
|
+
context = static_context.dup
|
329
|
+
results = []
|
330
|
+
return [] if model.count(context) == 0
|
331
|
+
local_keywords = keyword_symbols.dup
|
332
|
+
loop do
|
333
|
+
symbol = 0
|
334
|
+
10.times do
|
335
|
+
limit = rand(model.count(context)) + 1
|
336
|
+
symbol = model.select(context, limit)
|
337
|
+
if local_keywords.include?(symbol)
|
338
|
+
local_keywords.delete(symbol)
|
339
|
+
break
|
340
|
+
end
|
341
|
+
end
|
342
|
+
raise if symbol == 0
|
343
|
+
break if symbol == 1
|
344
|
+
results << symbol
|
345
|
+
context << symbol
|
346
|
+
context.shift
|
347
|
+
end
|
348
|
+
results
|
349
|
+
end
|
350
|
+
|
351
|
+
# Given an array of utterances and an array of keywords, select the best
|
352
|
+
# utterance (returning nil for none at all).
|
353
|
+
def _select_utterance(utterances, keyword_symbols)
|
354
|
+
best_score = -1
|
355
|
+
best_utterance = nil
|
356
|
+
|
357
|
+
utterances.each do |utterance|
|
358
|
+
score = _calculate_score(utterance, keyword_symbols)
|
359
|
+
next unless score > best_score
|
360
|
+
best_score = score
|
361
|
+
best_utterance = utterance
|
362
|
+
end
|
363
|
+
|
364
|
+
return best_utterance
|
365
|
+
end
|
366
|
+
|
367
|
+
# Calculate the score of a particular utterance
|
368
|
+
def _calculate_score(utterance, keyword_symbols)
|
369
|
+
score = 0
|
370
|
+
|
371
|
+
context = [1, 1]
|
372
|
+
utterance.each do |norm|
|
373
|
+
if keyword_symbols.include?(norm)
|
374
|
+
surprise = @fore.surprise(context, norm)
|
375
|
+
score += surprise unless surprise.nil?
|
376
|
+
end
|
377
|
+
context << norm
|
378
|
+
context.shift
|
379
|
+
end
|
380
|
+
|
381
|
+
context = [1, 1]
|
382
|
+
utterance.reverse.each do |norm|
|
383
|
+
if keyword_symbols.include?(norm)
|
384
|
+
surprise = @back.surprise(context, norm)
|
385
|
+
score += surprise unless surprise.nil?
|
386
|
+
end
|
387
|
+
context << norm
|
388
|
+
context.shift
|
389
|
+
end
|
390
|
+
|
391
|
+
if utterance.length >= 8
|
392
|
+
score /= Math.sqrt(utterance.length - 1)
|
393
|
+
end
|
394
|
+
|
395
|
+
if utterance.length >= 16
|
396
|
+
score /= utterance.length
|
397
|
+
end
|
398
|
+
|
399
|
+
score
|
400
|
+
end
|
401
|
+
|
402
|
+
# Here we take a generated sequence of norms and convert them back to a string
|
403
|
+
# that may be displayed to the user as output. This involves using the @case
|
404
|
+
# model to rewrite each norm as a word, and then using the @punc model to
|
405
|
+
# insert appropriate word separators.
|
406
|
+
def _rewrite(norm_symbols)
|
407
|
+
decode = Hash[@dictionary.to_a.map(&:reverse)]
|
408
|
+
|
409
|
+
# Here we generate the sequence of words. This is slightly tricky, because
|
410
|
+
# it is possible to generate a word (based on the context of the previous
|
411
|
+
# word and the current norm) such that it is impossible to generate the next
|
412
|
+
# word in the sequence (because we may generate a word of a different case
|
413
|
+
# than what we have observed in the past). So we keep trying until we
|
414
|
+
# stumble upon a combination that works, or until we've tried too many
|
415
|
+
# times. Note that backtracking would need to go back an arbitrary number of
|
416
|
+
# steps, and is therefore too messy to implement.
|
417
|
+
word_symbols = []
|
418
|
+
context = [1, 1]
|
419
|
+
i = 0
|
420
|
+
retries = 0
|
421
|
+
while word_symbols.length != norm_symbols.length
|
422
|
+
return nil if retries > 9
|
423
|
+
# We're trying to rewrite norms to words, so build a context for the @case
|
424
|
+
# model, of the previous word and the current norm. This may fail if the
|
425
|
+
# previous word hasn't been observed adjacent to the current norm, which
|
426
|
+
# will happen if the rewrote the previous norm to a different case that
|
427
|
+
# what was observed previously.
|
428
|
+
context[0] = (i == 0) ? 1 : word_symbols[i-1]
|
429
|
+
context[1] = norm_symbols[i]
|
430
|
+
count = @case.count(context)
|
431
|
+
unless failed = (count == 0)
|
432
|
+
limit = rand(count) + 1
|
433
|
+
word_symbols << @case.select(context, limit)
|
434
|
+
end
|
435
|
+
if (word_symbols.length == norm_symbols.length)
|
436
|
+
# We need to check that the final word has been previously observed.
|
437
|
+
context[0] = word_symbols.last
|
438
|
+
context[1] = 1
|
439
|
+
failed = (@punc.count(context) == 0)
|
440
|
+
end
|
441
|
+
if failed
|
442
|
+
raise if i == 0
|
443
|
+
retries += 1
|
444
|
+
word_symbols.clear
|
445
|
+
i = 0
|
446
|
+
next
|
447
|
+
end
|
448
|
+
i += 1
|
449
|
+
end
|
450
|
+
|
451
|
+
# We've used the case model to rewrite the norms to a words in a way that
|
452
|
+
# guarantees that each adjacent pair of words has been previously observed.
|
453
|
+
# Now we use the @punc model to generate the word-separators to be inserted
|
454
|
+
# between the words in the reply.
|
455
|
+
punc_symbols = []
|
456
|
+
context = [1, 1]
|
457
|
+
(word_symbols + [1]).each do |word|
|
458
|
+
context << word
|
459
|
+
context.shift
|
460
|
+
limit = rand(@punc.count(context)) + 1
|
461
|
+
punc_symbols << @punc.select(context, limit)
|
462
|
+
end
|
463
|
+
|
464
|
+
# Finally we zip the word-separators and the words together, decode the
|
465
|
+
# symbols to their string representations (as stored in the @dictionary),
|
466
|
+
# and join everything together to give the final reply.
|
467
|
+
punc_symbols.zip(word_symbols).flatten.map { |word| decode[word] }.join
|
468
|
+
end
|
469
|
+
|
470
|
+
def _get_tmp_filename(name)
|
471
|
+
file = Tempfile.new(name.to_s)
|
472
|
+
retval = file.path
|
473
|
+
file.close
|
474
|
+
file.unlink
|
475
|
+
return retval
|
476
|
+
end
|
477
|
+
|
478
|
+
def _character_segmentation(line)
|
479
|
+
language = CLD.detect_language(line)[:name]
|
480
|
+
["Japanese", "Korean", "Chinese", "TG_UNKNOWN_LANGUAGE", "Unknown", "JAVANESE", "THAI", "ChineseT", "LAOTHIAN", "BURMESE", "KHMER", "XX"].include?(language)
|
481
|
+
end
|
482
|
+
end
|