mathtype_to_mathml 0.0.1 → 0.0.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/Gemfile +1 -0
- data/lib/mathtype_to_mathml.rb +1 -1
- data/lib/mathtype_to_mathml/char_replacer.rb +60 -5
- data/lib/mathtype_to_mathml/version.rb +1 -1
- data/lib/transform.xsl +20 -41
- data/lib/xsl/box.xsl +42 -0
- data/lib/xsl/char.xsl +1820 -1
- data/lib/xsl/fence.xsl +228 -0
- data/lib/xsl/frac.xsl +46 -0
- data/lib/xsl/int.xsl +622 -0
- data/lib/xsl/lim.xsl +32 -0
- data/lib/xsl/product_coproduct.xsl +107 -0
- data/lib/xsl/sum.xsl +24 -0
- data/mathtype_to_mathml.gemspec +1 -1
- data/spec/fixtures/expected/280.xml +122 -0
- data/spec/fixtures/expected/281.xml +61 -0
- data/spec/fixtures/expected/299.xml +70 -0
- data/spec/fixtures/expected/326.xml +173 -0
- data/spec/fixtures/expected/424.xml +425 -0
- data/spec/fixtures/expected/450.xml +174 -0
- data/spec/fixtures/expected/452.xml +166 -0
- data/spec/fixtures/expected/478.xml +303 -0
- data/spec/fixtures/expected/boxes.xml +22 -0
- data/spec/fixtures/expected/equation14.xml +54 -0
- data/spec/fixtures/expected/fences.xml +64 -0
- data/spec/fixtures/expected/integrals.xml +264 -0
- data/spec/fixtures/expected/sums.xml +36 -0
- data/spec/fixtures/expected/unions_and_intersections.xml +140 -0
- data/spec/fixtures/input/280.bin +0 -0
- data/spec/fixtures/input/281.bin +0 -0
- data/spec/fixtures/input/299.bin +0 -0
- data/spec/fixtures/input/326.bin +0 -0
- data/spec/fixtures/input/424.bin +0 -0
- data/spec/fixtures/input/450.bin +0 -0
- data/spec/fixtures/input/452.bin +0 -0
- data/spec/fixtures/input/478.bin +0 -0
- data/spec/fixtures/input/boxes.bin +0 -0
- data/spec/fixtures/input/equation14.bin +0 -0
- data/spec/fixtures/input/fences.bin +0 -0
- data/spec/fixtures/input/integrals.bin +0 -0
- data/spec/fixtures/input/sums.bin +0 -0
- data/spec/fixtures/input/unions_and_intersections.bin +0 -0
- metadata +66 -5
- data/lib/xsl/brace.xsl +0 -55
@@ -0,0 +1,166 @@
|
|
1
|
+
<math display="block">
|
2
|
+
<semantics>
|
3
|
+
<mtable columnalign='left'>
|
4
|
+
<mtr>
|
5
|
+
<mtd>
|
6
|
+
<mi>f</mi><mrow><mo>(</mo>
|
7
|
+
<mi>τ</mi>
|
8
|
+
<mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>−</mo><mfrac>
|
9
|
+
<mn>1</mn>
|
10
|
+
<mi>A</mi>
|
11
|
+
</mfrac>
|
12
|
+
<mrow><mo>[</mo> <mrow>
|
13
|
+
<mfrac>
|
14
|
+
<mrow>
|
15
|
+
<mn>79</mn><msup>
|
16
|
+
<mi>τ</mi>
|
17
|
+
<mrow>
|
18
|
+
<mo>−</mo><mn>1</mn></mrow>
|
19
|
+
</msup>
|
20
|
+
</mrow>
|
21
|
+
<mrow>
|
22
|
+
<mn>140</mn><mi>p</mi></mrow>
|
23
|
+
</mfrac>
|
24
|
+
<mo>+</mo><mfrac>
|
25
|
+
<mrow>
|
26
|
+
<mn>474</mn></mrow>
|
27
|
+
<mrow>
|
28
|
+
<mn>497</mn></mrow>
|
29
|
+
</mfrac>
|
30
|
+
<mrow><mo>(</mo>
|
31
|
+
<mrow>
|
32
|
+
<mfrac>
|
33
|
+
<mn>1</mn>
|
34
|
+
<mi>p</mi>
|
35
|
+
</mfrac>
|
36
|
+
<mo>−</mo><mn>1</mn></mrow>
|
37
|
+
<mo>)</mo></mrow><mrow><mo>(</mo>
|
38
|
+
<mrow>
|
39
|
+
<mfrac>
|
40
|
+
<mrow>
|
41
|
+
<msup>
|
42
|
+
<mi>τ</mi>
|
43
|
+
<mn>3</mn>
|
44
|
+
</msup>
|
45
|
+
</mrow>
|
46
|
+
<mn>6</mn>
|
47
|
+
</mfrac>
|
48
|
+
<mo>+</mo><mfrac>
|
49
|
+
<mrow>
|
50
|
+
<msup>
|
51
|
+
<mi>τ</mi>
|
52
|
+
<mn>9</mn>
|
53
|
+
</msup>
|
54
|
+
</mrow>
|
55
|
+
<mrow>
|
56
|
+
<mn>135</mn></mrow>
|
57
|
+
</mfrac>
|
58
|
+
<mo>+</mo><mfrac>
|
59
|
+
<mrow>
|
60
|
+
<msup>
|
61
|
+
<mi>τ</mi>
|
62
|
+
<mrow>
|
63
|
+
<mn>15</mn></mrow>
|
64
|
+
</msup>
|
65
|
+
</mrow>
|
66
|
+
<mrow>
|
67
|
+
<mn>600</mn></mrow>
|
68
|
+
</mfrac>
|
69
|
+
</mrow>
|
70
|
+
<mo>)</mo></mrow></mrow> <mo>]</mo></mrow><mo>,</mo><mo> </mo><mi>i</mi><mi>f</mi><mo> </mo><mi>τ</mi><mo>=</mo><mfrac>
|
71
|
+
<mi>T</mi>
|
72
|
+
<mrow>
|
73
|
+
<msub>
|
74
|
+
<mi>T</mi>
|
75
|
+
<mi>C</mi>
|
76
|
+
</msub>
|
77
|
+
</mrow>
|
78
|
+
</mfrac>
|
79
|
+
<mo>≤</mo><mn>1</mn>
|
80
|
+
</mtd>
|
81
|
+
</mtr>
|
82
|
+
<mtr>
|
83
|
+
<mtd>
|
84
|
+
<mi>f</mi><mrow><mo>(</mo>
|
85
|
+
<mi>τ</mi>
|
86
|
+
<mo>)</mo></mrow><mo>=</mo><mo>−</mo><mfrac>
|
87
|
+
<mn>1</mn>
|
88
|
+
<mi>A</mi>
|
89
|
+
</mfrac>
|
90
|
+
<mrow><mo>(</mo>
|
91
|
+
<mrow>
|
92
|
+
<mfrac>
|
93
|
+
<mrow>
|
94
|
+
<msup>
|
95
|
+
<mi>τ</mi>
|
96
|
+
<mrow>
|
97
|
+
<mo>−</mo><mn>5</mn></mrow>
|
98
|
+
</msup>
|
99
|
+
</mrow>
|
100
|
+
<mrow>
|
101
|
+
<mn>10</mn></mrow>
|
102
|
+
</mfrac>
|
103
|
+
<mo>+</mo><mfrac>
|
104
|
+
<mrow>
|
105
|
+
<msup>
|
106
|
+
<mi>τ</mi>
|
107
|
+
<mrow>
|
108
|
+
<mo>−</mo><mn>15</mn></mrow>
|
109
|
+
</msup>
|
110
|
+
</mrow>
|
111
|
+
<mrow>
|
112
|
+
<mn>315</mn></mrow>
|
113
|
+
</mfrac>
|
114
|
+
<mo>+</mo><mfrac>
|
115
|
+
<mrow>
|
116
|
+
<msup>
|
117
|
+
<mi>τ</mi>
|
118
|
+
<mrow>
|
119
|
+
<mo>−</mo><mn>25</mn></mrow>
|
120
|
+
</msup>
|
121
|
+
</mrow>
|
122
|
+
<mrow>
|
123
|
+
<mn>1500</mn></mrow>
|
124
|
+
</mfrac>
|
125
|
+
</mrow>
|
126
|
+
<mo>)</mo></mrow><mo>,</mo><mo> </mo><mi>i</mi><mi>f</mi><mo> </mo><mi>τ</mi><mo>=</mo><mfrac>
|
127
|
+
<mi>T</mi>
|
128
|
+
<mrow>
|
129
|
+
<msub>
|
130
|
+
<mi>T</mi>
|
131
|
+
<mi>C</mi>
|
132
|
+
</msub>
|
133
|
+
</mrow>
|
134
|
+
</mfrac>
|
135
|
+
<mo>≥</mo><mn>1</mn>
|
136
|
+
</mtd>
|
137
|
+
</mtr>
|
138
|
+
<mtr>
|
139
|
+
<mtd>
|
140
|
+
<mi>A</mi><mo>=</mo><mfrac>
|
141
|
+
<mrow>
|
142
|
+
<mn>518</mn></mrow>
|
143
|
+
<mrow>
|
144
|
+
<mn>1125</mn></mrow>
|
145
|
+
</mfrac>
|
146
|
+
<mo>+</mo><mfrac>
|
147
|
+
<mrow>
|
148
|
+
<mn>11,692</mn></mrow>
|
149
|
+
<mrow>
|
150
|
+
<mn>15,975</mn></mrow>
|
151
|
+
</mfrac>
|
152
|
+
<mrow><mo>(</mo>
|
153
|
+
<mrow>
|
154
|
+
<mfrac>
|
155
|
+
<mn>1</mn>
|
156
|
+
<mi>p</mi>
|
157
|
+
</mfrac>
|
158
|
+
<mo>−</mo><mn>1</mn></mrow>
|
159
|
+
<mo>)</mo></mrow><mo> </mo>
|
160
|
+
</mtd>
|
161
|
+
</mtr>
|
162
|
+
</mtable>
|
163
|
+
|
164
|
+
<annotation encoding='MathType-MTEF'>MathType@MTEF@5@5@+=faaagCart1ev2aqaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8FesqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaabaaaaaaaaapeGaamOzamaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH9aqpcaaIXaGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadgeaaaWaamWaaeaadaWcaaWdaeaapeGaaG4naiaaiMdacqaHepaDpaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaaaOWdaeaapeGaaGymaiaaisdacaaIWaGaamiCaaaacqGHRaWkdaWcaaWdaeaapeGaaGinaiaaiEdacaaI0aaapaqaa8qacaaI0aGaaGyoaiaaiEdaaaWaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGWbaaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaqadaWdaeaapeWaaSaaa8aabaWdbiabes8a09aadaahaaWcbeqaa8qacaaIZaaaaaGcpaqaa8qacaaI2aaaaiabgUcaRmaalaaapaqaa8qacqaHepaDpaWaaWbaaSqabeaapeGaaGyoaaaaaOWdaeaapeGaaGymaiaaiodacaaI1aaaaiabgUcaRmaalaaapaqaa8qacqaHepaDpaWaaWbaaSqabeaapeGaaGymaiaaiwdaaaaak8aabaWdbiaaiAdacaaIWaGaaGimaaaaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaGGSaGaaiiOaiaadMgacaWGMbGaaiiOaiabes8a0jabg2da9maalaaapaqaa8qacaWGubaapaqaa8qacaWGubWdamaaBaaaleaapeGaam4qaaWdaeqaaaaak8qacqGHKjYOcaaIXaaabaGaamOzamaabmaapaqaa8qacqaHepaDaiaawIcacaGLPaaacqGH9aqpcqGHsisldaWcaaWdaeaapeGaaGymaaWdaeaapeGaamyqaaaadaqadaWdaeaapeWaaSaaa8aabaWdbiabes8a09aadaahaaWcbeqaa8qacqGHsislcaaI1aaaaaGcpaqaa8qacaaIXaGaaGimaaaacqGHRaWkdaWcaaWdaeaapeGaeqiXdq3damaaCaaaleqabaWdbiabgkHiTiaaigdacaaI1aaaaaGcpaqaa8qacaaIZaGaaGymaiaaiwdaaaGaey4kaSYaaSaaa8aabaWdbiabes8a09aadaahaaWcbeqaa8qacqGHsislcaaIYaGaaGynaaaaaOWdaeaapeGaaGymaiaaiwdacaaIWaGaaGimaaaaaiaawIcacaGLPaaacaGGSaGaaiiOaiaadMgacaWGMbGaaiiOaiabes8a0jabg2da9maalaaapaqaa8qacaWGubaapaqaa8qacaWGubWdamaaBaaaleaapeGaam4qaaWdaeqaaaaak8qacqGHLjYScaaIXaaabaGaamyqaiabg2da9maalaaapaqaa8qacaaI1aGaaGymaiaaiIdaa8aabaWdbiaaigdacaaIXaGaaGOmaiaaiwdaaaGaey4kaSYaaSaaa8aabaWdbiaaigdacaaIXaGaaiilaiaaiAdacaaI5aGaaGOmaaWdaeaapeGaaGymaiaaiwdacaGGSaGaaGyoaiaaiEdacaaI1aaaamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamiCaaaacqGHsislcaaIXaaacaGLOaGaayzkaaGaaiiOaaaaaa@B667@</annotation>
|
165
|
+
</semantics>
|
166
|
+
</math>
|
@@ -0,0 +1,303 @@
|
|
1
|
+
<math display="block">
|
2
|
+
<semantics>
|
3
|
+
<mtable columnalign='left'>
|
4
|
+
<mtr>
|
5
|
+
<mtd>
|
6
|
+
<msubsup>
|
7
|
+
<mi>G</mi>
|
8
|
+
<mi>m</mi>
|
9
|
+
<mi>σ</mi>
|
10
|
+
</msubsup>
|
11
|
+
<mo>=</mo><munder>
|
12
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
13
|
+
<mi>i</mi>
|
14
|
+
</munder>
|
15
|
+
<munder>
|
16
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
17
|
+
<mi>j</mi>
|
18
|
+
</munder>
|
19
|
+
<msubsup>
|
20
|
+
<mi>y</mi>
|
21
|
+
<mi>i</mi>
|
22
|
+
<mo>'</mo>
|
23
|
+
</msubsup>
|
24
|
+
<msubsup>
|
25
|
+
<mi>y</mi>
|
26
|
+
<mi>j</mi>
|
27
|
+
<mrow>
|
28
|
+
<mo>'</mo><mo>'</mo></mrow>
|
29
|
+
</msubsup>
|
30
|
+
<mmultiscripts>
|
31
|
+
<mi>G</mi>
|
32
|
+
<mprescripts/>
|
33
|
+
<mo> </mo>
|
34
|
+
<mi>o</mi>
|
35
|
+
</mmultiscripts>
|
36
|
+
<msubsup>
|
37
|
+
<mrow></mrow>
|
38
|
+
<mrow>
|
39
|
+
<mi>i</mi><mo>:</mo><mi>j</mi><mo>:</mo><mi>C</mi><mi>r</mi></mrow>
|
40
|
+
<mi>σ</mi>
|
41
|
+
</msubsup>
|
42
|
+
<mo>+</mo><mi>R</mi><mi>T</mi><mrow><mo>[</mo> <mrow>
|
43
|
+
<mn>8</mn><munder>
|
44
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
45
|
+
<mi>i</mi>
|
46
|
+
</munder>
|
47
|
+
<msubsup>
|
48
|
+
<mi>y</mi>
|
49
|
+
<mi>i</mi>
|
50
|
+
<mo>'</mo>
|
51
|
+
</msubsup>
|
52
|
+
<mi>ln</mi><mrow><mo>(</mo>
|
53
|
+
<mrow>
|
54
|
+
<msubsup>
|
55
|
+
<mi>y</mi>
|
56
|
+
<mi>i</mi>
|
57
|
+
<mo>'</mo>
|
58
|
+
</msubsup>
|
59
|
+
</mrow>
|
60
|
+
<mo>)</mo></mrow><mo>+</mo><mn>18</mn><munder>
|
61
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
62
|
+
<mi>j</mi>
|
63
|
+
</munder>
|
64
|
+
<msubsup>
|
65
|
+
<mi>y</mi>
|
66
|
+
<mi>j</mi>
|
67
|
+
<mrow>
|
68
|
+
<mo>'</mo><mo>'</mo></mrow>
|
69
|
+
</msubsup>
|
70
|
+
<mi>ln</mi><mrow><mo>(</mo>
|
71
|
+
<mrow>
|
72
|
+
<msubsup>
|
73
|
+
<mi>y</mi>
|
74
|
+
<mi>j</mi>
|
75
|
+
<mrow>
|
76
|
+
<mo>'</mo><mo>'</mo></mrow>
|
77
|
+
</msubsup>
|
78
|
+
</mrow>
|
79
|
+
<mo>)</mo></mrow></mrow> <mo>]</mo></mrow>
|
80
|
+
</mtd>
|
81
|
+
</mtr>
|
82
|
+
<mtr>
|
83
|
+
<mtd>
|
84
|
+
<mo>+</mo><munder>
|
85
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
86
|
+
<mrow>
|
87
|
+
<msub>
|
88
|
+
<mi>i</mi>
|
89
|
+
<mn>1</mn>
|
90
|
+
</msub>
|
91
|
+
</mrow>
|
92
|
+
</munder>
|
93
|
+
<munder>
|
94
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
95
|
+
<mrow>
|
96
|
+
<msub>
|
97
|
+
<mi>i</mi>
|
98
|
+
<mn>2</mn>
|
99
|
+
</msub>
|
100
|
+
</mrow>
|
101
|
+
</munder>
|
102
|
+
<munder>
|
103
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
104
|
+
<mi>j</mi>
|
105
|
+
</munder>
|
106
|
+
<mrow><mo>{</mo> <mrow>
|
107
|
+
<msubsup>
|
108
|
+
<mi>y</mi>
|
109
|
+
<mrow>
|
110
|
+
<msub>
|
111
|
+
<mi>i</mi>
|
112
|
+
<mn>1</mn>
|
113
|
+
</msub>
|
114
|
+
</mrow>
|
115
|
+
<mo>'</mo>
|
116
|
+
</msubsup>
|
117
|
+
<msubsup>
|
118
|
+
<mi>y</mi>
|
119
|
+
<mrow>
|
120
|
+
<msub>
|
121
|
+
<mi>i</mi>
|
122
|
+
<mn>2</mn>
|
123
|
+
</msub>
|
124
|
+
</mrow>
|
125
|
+
<mo>'</mo>
|
126
|
+
</msubsup>
|
127
|
+
<msubsup>
|
128
|
+
<mi>y</mi>
|
129
|
+
<mi>j</mi>
|
130
|
+
<mrow>
|
131
|
+
<mo>'</mo><mo>'</mo></mrow>
|
132
|
+
</msubsup>
|
133
|
+
<mrow><mo>[</mo> <mrow>
|
134
|
+
<munder>
|
135
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
136
|
+
<mi>k</mi>
|
137
|
+
</munder>
|
138
|
+
<mmultiscripts>
|
139
|
+
<mi>L</mi>
|
140
|
+
<mprescripts/>
|
141
|
+
<mo> </mo>
|
142
|
+
<mi>k</mi>
|
143
|
+
</mmultiscripts>
|
144
|
+
<msubsup>
|
145
|
+
<mrow></mrow>
|
146
|
+
<mrow>
|
147
|
+
<msub>
|
148
|
+
<mi>i</mi>
|
149
|
+
<mn>1</mn>
|
150
|
+
</msub>
|
151
|
+
<mo>,</mo><msub>
|
152
|
+
<mi>i</mi>
|
153
|
+
<mn>2</mn>
|
154
|
+
</msub>
|
155
|
+
<mo>:</mo><mi>j</mi><mo>:</mo><mi>C</mi><mi>r</mi></mrow>
|
156
|
+
<mi>σ</mi>
|
157
|
+
</msubsup>
|
158
|
+
<msup>
|
159
|
+
<mrow>
|
160
|
+
<mrow><mo>(</mo>
|
161
|
+
<mrow>
|
162
|
+
<msubsup>
|
163
|
+
<mi>y</mi>
|
164
|
+
<mrow>
|
165
|
+
<msub>
|
166
|
+
<mi>i</mi>
|
167
|
+
<mn>1</mn>
|
168
|
+
</msub>
|
169
|
+
</mrow>
|
170
|
+
<mo>'</mo>
|
171
|
+
</msubsup>
|
172
|
+
<mo>−</mo><msubsup>
|
173
|
+
<mi>y</mi>
|
174
|
+
<mrow>
|
175
|
+
<msub>
|
176
|
+
<mi>i</mi>
|
177
|
+
<mn>2</mn>
|
178
|
+
</msub>
|
179
|
+
</mrow>
|
180
|
+
<mo>'</mo>
|
181
|
+
</msubsup>
|
182
|
+
</mrow>
|
183
|
+
<mo>)</mo></mrow></mrow>
|
184
|
+
<mi>k</mi>
|
185
|
+
</msup>
|
186
|
+
</mrow> <mo>]</mo></mrow></mrow> <mo>}</mo></mrow>
|
187
|
+
</mtd>
|
188
|
+
</mtr>
|
189
|
+
<mtr>
|
190
|
+
<mtd>
|
191
|
+
<mo>+</mo><munder>
|
192
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
193
|
+
<mi>i</mi>
|
194
|
+
</munder>
|
195
|
+
<munder>
|
196
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
197
|
+
<mrow>
|
198
|
+
<msub>
|
199
|
+
<mi>j</mi>
|
200
|
+
<mn>1</mn>
|
201
|
+
</msub>
|
202
|
+
</mrow>
|
203
|
+
</munder>
|
204
|
+
<munder>
|
205
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
206
|
+
<mrow>
|
207
|
+
<msub>
|
208
|
+
<mi>j</mi>
|
209
|
+
<mn>2</mn>
|
210
|
+
</msub>
|
211
|
+
</mrow>
|
212
|
+
</munder>
|
213
|
+
<mrow><mo>{</mo> <mrow>
|
214
|
+
<msubsup>
|
215
|
+
<mi>y</mi>
|
216
|
+
<mi>i</mi>
|
217
|
+
<mo>'</mo>
|
218
|
+
</msubsup>
|
219
|
+
<msubsup>
|
220
|
+
<mi>y</mi>
|
221
|
+
<mrow>
|
222
|
+
<msub>
|
223
|
+
<mi>j</mi>
|
224
|
+
<mn>1</mn>
|
225
|
+
</msub>
|
226
|
+
</mrow>
|
227
|
+
<mrow>
|
228
|
+
<mo>'</mo><mo>'</mo></mrow>
|
229
|
+
</msubsup>
|
230
|
+
<msubsup>
|
231
|
+
<mi>y</mi>
|
232
|
+
<mrow>
|
233
|
+
<msub>
|
234
|
+
<mi>j</mi>
|
235
|
+
<mn>2</mn>
|
236
|
+
</msub>
|
237
|
+
</mrow>
|
238
|
+
<mrow>
|
239
|
+
<mo>'</mo><mo>'</mo></mrow>
|
240
|
+
</msubsup>
|
241
|
+
<mrow><mo>[</mo> <mrow>
|
242
|
+
<munder>
|
243
|
+
<mstyle mathsize='140%' displaystyle='true'><mo>∑</mo></mstyle>
|
244
|
+
<mi>k</mi>
|
245
|
+
</munder>
|
246
|
+
<mmultiscripts>
|
247
|
+
<mi>L</mi>
|
248
|
+
<mprescripts/>
|
249
|
+
<mo> </mo>
|
250
|
+
<mi>k</mi>
|
251
|
+
</mmultiscripts>
|
252
|
+
<msubsup>
|
253
|
+
<mrow></mrow>
|
254
|
+
<mrow>
|
255
|
+
<mi>i</mi><mo>:</mo><msub>
|
256
|
+
<mi>j</mi>
|
257
|
+
<mn>1</mn>
|
258
|
+
</msub>
|
259
|
+
<mo>,</mo><msub>
|
260
|
+
<mi>j</mi>
|
261
|
+
<mn>2</mn>
|
262
|
+
</msub>
|
263
|
+
<mo>:</mo><mi>C</mi><mi>r</mi></mrow>
|
264
|
+
<mi>σ</mi>
|
265
|
+
</msubsup>
|
266
|
+
<msup>
|
267
|
+
<mrow>
|
268
|
+
<mrow><mo>(</mo>
|
269
|
+
<mrow>
|
270
|
+
<msubsup>
|
271
|
+
<mi>y</mi>
|
272
|
+
<mrow>
|
273
|
+
<msub>
|
274
|
+
<mi>j</mi>
|
275
|
+
<mn>1</mn>
|
276
|
+
</msub>
|
277
|
+
</mrow>
|
278
|
+
<mrow>
|
279
|
+
<mo>'</mo><mo>'</mo></mrow>
|
280
|
+
</msubsup>
|
281
|
+
<mo>−</mo><msubsup>
|
282
|
+
<mi>y</mi>
|
283
|
+
<mrow>
|
284
|
+
<msub>
|
285
|
+
<mi>j</mi>
|
286
|
+
<mn>2</mn>
|
287
|
+
</msub>
|
288
|
+
</mrow>
|
289
|
+
<mrow>
|
290
|
+
<mo>'</mo><mo>'</mo></mrow>
|
291
|
+
</msubsup>
|
292
|
+
</mrow>
|
293
|
+
<mo>)</mo></mrow></mrow>
|
294
|
+
<mi>k</mi>
|
295
|
+
</msup>
|
296
|
+
</mrow> <mo>]</mo></mrow></mrow> <mo>}</mo></mrow>
|
297
|
+
</mtd>
|
298
|
+
</mtr>
|
299
|
+
</mtable>
|
300
|
+
|
301
|
+
<annotation encoding='MathType-MTEF'>MathType@MTEF@5@5@+=faaagCart1ev2aqaKnaaaaWenf2ys9wBH5garuavP1wzZbItLDhis9wBH5garmWu51MyVXgaruWqVvNCPvMCG4uz3bqee0evGueE0jxyaibaieYlNi=xH8yiVC0xbbL8FesqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9Fve9Ff0dc9Gqpi0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaaabaaaaaaaaapeGaam4ra8aadaqhaaWcbaWdbiaad2gaa8aabaWdbiabeo8aZbaakiabg2da9maawafabeWcpaqaa8qacaWGPbaabeqdpaqaa8qacqGHris5aaGcdaGfqbqabSWdaeaapeGaamOAaaqab0WdaeaapeGaeyyeIuoaaOGaamyEa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaacEcaaaGccaWG5bWdamaaDaaaleaapeGaamOAaaWdaeaapeGaai4jaiaacEcaaaGcpaWaa0raaSqaa8qacaGGGcaapaqaa8qacaWGVbaaaOGaam4ra8aadaqhaaWcbaWdbiaadMgacaGG6aGaamOAaiaacQdacaWGdbGaamOCaaWdaeaapeGaeq4WdmhaaOGaey4kaSIaamOuaiaadsfadaWadaWdaeaapeGaaGioamaawafabeWcpaqaa8qacaWGPbaabeqdpaqaa8qacqGHris5aaGccaWG5bWdamaaDaaaleaapeGaamyAaaWdaeaapeGaai4jaaaakiGacYgacaGGUbWaaeWaa8aabaWdbiaadMhapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaGGNaaaaaGccaGLOaGaayzkaaGaey4kaSIaaGymaiaaiIdadaGfqbqabSWdaeaapeGaamOAaaqab0WdaeaapeGaeyyeIuoaaOGaamyEa8aadaqhaaWcbaWdbiaadQgaa8aabaWdbiaacEcacaGGNaaaaOGaciiBaiaac6gadaqadaWdaeaapeGaamyEa8aadaqhaaWcbaWdbiaadQgaa8aabaWdbiaacEcacaGGNaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaaabaGaey4kaSYaaybuaeqal8aabaWdbiaadMgapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qabeqdpaqaa8qacqGHris5aaGcdaGfqbqabSWdaeaapeGaamyAa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSWdbeqan8aabaWdbiabggHiLdaakmaawafabeWcpaqaa8qacaWGQbaabeqdpaqaa8qacqGHris5aaGcdaGadaWdaeaapeGaamyEa8aadaqhaaWcbaWdbiaadMgapaWaaSbaaWqaa8qacaaIXaaapaqabaaaleaapeGaai4jaaaakiaadMhapaWaa0baaSqaa8qacaWGPbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcbaWdbiaacEcaaaGccaWG5bWdamaaDaaaleaapeGaamOAaaWdaeaapeGaai4jaiaacEcaaaGcdaWadaWdaeaapeWaaybuaeqal8aabaWdbiaadUgaaeqan8aabaWdbiabggHiLdaak8aadaqhbaWcbaWdbiaacckaa8aabaWdbiaadUgaaaGccaWGmbWdamaaDaaaleaapeGaamyAa8aadaWgaaadbaWdbiaaigdaa8aabeaal8qacaGGSaGaamyAa8aadaWgaaadbaWdbiaaikdaa8aabeaal8qacaGG6aGaamOAaiaacQdacaWGdbGaamOCaaWdaeaapeGaeq4WdmhaaOWaaeWaa8aabaWdbiaadMhapaWaa0baaSqaa8qacaWGPbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbaWdbiaacEcaaaGccqGHsislcaWG5bWdamaaDaaaleaapeGaamyAa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSqaa8qacaGGNaaaaaGccaGLOaGaayzkaaWdamaaCaaaleqabaWdbiaadUgaaaaakiaawUfacaGLDbaaaiaawUhacaGL9baaaeaacqGHRaWkdaGfqbqabSWdaeaapeGaamyAaaqab0WdaeaapeGaeyyeIuoaaOWaaybuaeqal8aabaWdbiaadQgapaWaaSbaaWqaa8qacaaIXaaapaqabaaal8qabeqdpaqaa8qacqGHris5aaGcdaGfqbqabSWdaeaapeGaamOAa8aadaWgaaadbaWdbiaaikdaa8aabeaaaSWdbeqan8aabaWdbiabggHiLdaakmaacmaapaqaa8qacaWG5bWdamaaDaaaleaapeGaamyAaaWdaeaapeGaai4jaaaakiaadMhapaWaa0baaSqaa8qacaWGQbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbaWdbiaacEcacaGGNaaaaOGaamyEa8aadaqhaaWcbaWdbiaadQgapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleaapeGaai4jaiaacEcaaaGcdaWadaWdaeaapeWaaybuaeqal8aabaWdbiaadUgaaeqan8aabaWdbiabggHiLdaak8aadaqhbaWcbaWdbiaacckaa8aabaWdbiaadUgaaaGccaWGmbWdamaaDaaaleaapeGaamyAaiaacQdacaWGQbWdamaaBaaameaapeGaaGymaaWdaeqaaSWdbiaacYcacaWGQbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbiaacQdacaWGdbGaamOCaaWdaeaapeGaeq4WdmhaaOWaaeWaa8aabaWdbiaadMhapaWaa0baaSqaa8qacaWGQbWdamaaBaaameaapeGaaGymaaWdaeqaaaWcbaWdbiaacEcacaGGNaaaaOGaeyOeI0IaamyEa8aadaqhaaWcbaWdbiaadQgapaWaaSbaaWqaa8qacaaIYaaapaqabaaaleaapeGaai4jaiaacEcaaaaakiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaam4AaaaaaOGaay5waiaaw2faaaGaay5Eaiaaw2haaaaaaa@ED0E@</annotation>
|
302
|
+
</semantics>
|
303
|
+
</math>
|