mathematical 1.5.12 → 1.6.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (254) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +11 -30
  3. data/Rakefile +1 -0
  4. data/ext/mathematical/CMakeLists.txt +4 -1
  5. data/ext/mathematical/extconf.rb +4 -1
  6. data/ext/mathematical/lasem/NEWS +17 -0
  7. data/ext/mathematical/lasem/autogen.sh +5 -2
  8. data/ext/mathematical/lasem/configure.ac +3 -3
  9. data/ext/mathematical/lasem/po/cs.po +50 -18
  10. data/ext/mathematical/lasem/po/de.po +62 -26
  11. data/ext/mathematical/lasem/po/es.po +27 -18
  12. data/ext/mathematical/lasem/po/hu.po +50 -21
  13. data/ext/mathematical/lasem/po/id.po +49 -16
  14. data/ext/mathematical/lasem/po/lt.po +47 -18
  15. data/ext/mathematical/lasem/po/pl.po +53 -24
  16. data/ext/mathematical/lasem/po/pt_BR.po +70 -29
  17. data/ext/mathematical/lasem/po/sl.po +43 -29
  18. data/ext/mathematical/lasem/po/sr.po +67 -27
  19. data/ext/mathematical/lasem/po/sr@latin.po +67 -27
  20. data/ext/mathematical/lasem/po/sv.po +51 -18
  21. data/ext/mathematical/lasem/src/lasemrender.c +107 -14
  22. data/ext/mathematical/lasem/src/lsmitex.c +1 -0
  23. data/ext/mathematical/lasem/src/lsmsvgelement.c +0 -2
  24. data/ext/mathematical/lasem/src/lsmsvglength.c +2 -2
  25. data/ext/mathematical/lasem/src/lsmsvgmatrix.c +16 -0
  26. data/ext/mathematical/lasem/src/lsmsvgmatrix.h +2 -1
  27. data/ext/mathematical/lasem/src/lsmsvgsvgelement.c +8 -2
  28. data/ext/mathematical/lasem_overrides.c +3 -3
  29. data/ext/mathematical/lib/liblasem.dylib +0 -0
  30. data/ext/mathematical/lib/libmtex2MML.a +0 -0
  31. data/ext/mathematical/mathematical.c +1 -1
  32. data/ext/mathematical/mtex2MML/CMakeLists.txt +5 -0
  33. data/ext/mathematical/mtex2MML/README.md +3 -3
  34. data/ext/mathematical/mtex2MML/SUPPORTED.md +2 -0
  35. data/ext/mathematical/mtex2MML/appveyor.yml +15 -5
  36. data/ext/mathematical/mtex2MML/build/CMakeCache.txt +181 -116
  37. data/ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCCompiler.cmake +67 -0
  38. data/ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCXXCompiler.cmake +68 -0
  39. data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CMakeDetermineCompilerABI_C.bin +0 -0
  40. data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CMakeDetermineCompilerABI_CXX.bin +0 -0
  41. data/ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeSystem.cmake +15 -0
  42. data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CompilerIdC/CMakeCCompilerId.c +223 -55
  43. data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1/CompilerIdCXX → 3.6.1/CompilerIdC}/a.out +0 -0
  44. data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CompilerIdCXX/CMakeCXXCompilerId.cpp +202 -44
  45. data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1/CompilerIdC → 3.6.1/CompilerIdCXX}/a.out +0 -0
  46. data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeDirectoryInformation.cmake +8 -8
  47. data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeOutput.log +405 -109
  48. data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeRuleHashes.txt +29 -29
  49. data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/DependInfo.cmake +4 -20
  50. data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/build.make +14 -7
  51. data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/cmake_clean.cmake +4 -4
  52. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/DependInfo.cmake +4 -20
  53. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/build.make +14 -7
  54. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/cmake_clean.cmake +4 -4
  55. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/DependInfo.cmake +4 -20
  56. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/build.make +14 -7
  57. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/cmake_clean.cmake +4 -4
  58. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/DependInfo.cmake +4 -20
  59. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/build.make +14 -7
  60. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/cmake_clean.cmake +4 -4
  61. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/DependInfo.cmake +4 -20
  62. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/build.make +14 -7
  63. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/cmake_clean.cmake +4 -4
  64. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/DependInfo.cmake +4 -20
  65. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/build.make +14 -7
  66. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/cmake_clean.cmake +4 -4
  67. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/DependInfo.cmake +4 -20
  68. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/build.make +14 -7
  69. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/cmake_clean.cmake +4 -4
  70. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/DependInfo.cmake +4 -20
  71. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/build.make +14 -7
  72. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/cmake_clean.cmake +4 -4
  73. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/DependInfo.cmake +4 -20
  74. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/build.make +14 -7
  75. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/cmake_clean.cmake +4 -4
  76. data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/DependInfo.cmake +4 -20
  77. data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/build.make +14 -7
  78. data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/cmake_clean.cmake +4 -4
  79. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/DependInfo.cmake +4 -20
  80. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/build.make +14 -7
  81. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/cmake_clean.cmake +4 -4
  82. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/DependInfo.cmake +4 -20
  83. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/build.make +14 -7
  84. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/cmake_clean.cmake +4 -4
  85. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/DependInfo.cmake +4 -20
  86. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/build.make +14 -7
  87. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/cmake_clean.cmake +4 -4
  88. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/DependInfo.cmake +4 -20
  89. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/build.make +14 -7
  90. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/cmake_clean.cmake +4 -4
  91. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/DependInfo.cmake +4 -20
  92. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/build.make +14 -7
  93. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/cmake_clean.cmake +4 -4
  94. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/DependInfo.cmake +4 -20
  95. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/build.make +14 -7
  96. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/cmake_clean.cmake +4 -4
  97. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/DependInfo.cmake +4 -20
  98. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/build.make +14 -7
  99. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/cmake_clean.cmake +4 -4
  100. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/DependInfo.cmake +4 -20
  101. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/build.make +14 -7
  102. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/cmake_clean.cmake +4 -4
  103. data/ext/mathematical/mtex2MML/build/CMakeFiles/Makefile.cmake +68 -60
  104. data/ext/mathematical/mtex2MML/build/CMakeFiles/Makefile2 +564 -522
  105. data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/DependInfo.cmake +4 -20
  106. data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/build.make +14 -7
  107. data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/cmake_clean.cmake +4 -4
  108. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/DependInfo.cmake +4 -20
  109. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/build.make +14 -7
  110. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/cmake_clean.cmake +4 -4
  111. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/DependInfo.cmake +4 -20
  112. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/build.make +14 -7
  113. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/cmake_clean.cmake +4 -4
  114. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/DependInfo.cmake +4 -20
  115. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/build.make +14 -7
  116. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/cmake_clean.cmake +4 -4
  117. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/DependInfo.cmake +4 -20
  118. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/build.make +14 -7
  119. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/cmake_clean.cmake +4 -4
  120. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/DependInfo.cmake +4 -20
  121. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/build.make +14 -7
  122. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/cmake_clean.cmake +4 -4
  123. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/DependInfo.cmake +4 -20
  124. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/build.make +14 -7
  125. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/cmake_clean.cmake +4 -4
  126. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/DependInfo.cmake +4 -20
  127. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/build.make +14 -7
  128. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/cmake_clean.cmake +4 -4
  129. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/DependInfo.cmake +4 -20
  130. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/build.make +14 -7
  131. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/cmake_clean.cmake +4 -4
  132. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/DependInfo.cmake +4 -20
  133. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/build.make +14 -7
  134. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/cmake_clean.cmake +4 -4
  135. data/ext/mathematical/mtex2MML/build/CMakeFiles/TargetDirectories.txt +28 -21
  136. data/ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.bin +0 -0
  137. data/ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.c +34 -0
  138. data/ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.cxx +405 -0
  139. data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/DependInfo.cmake +4 -20
  140. data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/build.make +13 -6
  141. data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/cmake_clean.cmake +4 -4
  142. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/DependInfo.cmake +16 -18
  143. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/build.make +55 -42
  144. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/cmake_clean.cmake +4 -4
  145. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/flags.make +5 -3
  146. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/link.txt +1 -1
  147. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/progress.make +1 -0
  148. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/C.includecache +115 -27
  149. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/DependInfo.cmake +16 -18
  150. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/build.make +54 -42
  151. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/cmake_clean.cmake +4 -4
  152. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/cmake_clean_target.cmake +1 -1
  153. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.internal +19 -20
  154. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.make +18 -19
  155. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/flags.make +5 -3
  156. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/link.txt +2 -2
  157. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/progress.make +9 -8
  158. data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/DependInfo.cmake +4 -20
  159. data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/build.make +13 -6
  160. data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/cmake_clean.cmake +4 -4
  161. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/DependInfo.cmake +16 -18
  162. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/build.make +60 -47
  163. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/cmake_clean.cmake +4 -4
  164. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/flags.make +5 -3
  165. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/link.txt +1 -1
  166. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/progress.make +10 -9
  167. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/DependInfo.cmake +17 -18
  168. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/build.make +178 -124
  169. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/cmake_clean.cmake +5 -4
  170. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/flags.make +5 -3
  171. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/link.txt +1 -1
  172. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/progress.make +27 -25
  173. data/ext/mathematical/mtex2MML/build/CMakeFiles/progress.marks +1 -1
  174. data/ext/mathematical/mtex2MML/build/CTestTestfile.cmake +2 -2
  175. data/ext/mathematical/mtex2MML/build/DartConfiguration.tcl +25 -7
  176. data/ext/mathematical/mtex2MML/build/Makefile +419 -307
  177. data/ext/mathematical/mtex2MML/build/cmake_install.cmake +32 -32
  178. data/ext/mathematical/mtex2MML/build/lexer.c +4317 -4379
  179. data/ext/mathematical/mtex2MML/build/libmtex2MML.a +0 -0
  180. data/ext/mathematical/mtex2MML/build/mtex2mml_export.h +12 -5
  181. data/ext/mathematical/mtex2MML/build/parser.c +5549 -5473
  182. data/ext/mathematical/mtex2MML/build/parser.h +499 -490
  183. data/ext/mathematical/mtex2MML/build/parser.output +93361 -92735
  184. data/ext/mathematical/mtex2MML/deps/strdup/package.json +2 -2
  185. data/ext/mathematical/mtex2MML/deps/strdup/strdup.c +2 -0
  186. data/ext/mathematical/mtex2MML/deps/strdup/strdup.h +2 -0
  187. data/ext/mathematical/mtex2MML/deps/uthash/package.json +2 -1
  188. data/ext/mathematical/mtex2MML/deps/uthash/utarray.h +42 -36
  189. data/ext/mathematical/mtex2MML/deps/uthash/uthash.h +334 -218
  190. data/ext/mathematical/mtex2MML/deps/uthash/utlist.h +282 -144
  191. data/ext/mathematical/mtex2MML/deps/uthash/utringbuffer.h +108 -0
  192. data/ext/mathematical/mtex2MML/deps/uthash/utstring.h +15 -10
  193. data/ext/mathematical/mtex2MML/script/bootstrap +6 -12
  194. data/ext/mathematical/mtex2MML/script/cibuild +47 -1
  195. data/ext/mathematical/mtex2MML/script/{release → tag} +1 -1
  196. data/ext/mathematical/mtex2MML/src/environment.c +73 -13
  197. data/ext/mathematical/mtex2MML/src/environment.h +1 -1
  198. data/ext/mathematical/mtex2MML/src/lexer.l +75 -53
  199. data/ext/mathematical/mtex2MML/src/main.c +65 -36
  200. data/ext/mathematical/mtex2MML/src/mtex2MML.h +5 -1
  201. data/ext/mathematical/mtex2MML/src/parser.y +67 -16
  202. data/ext/mathematical/mtex2MML/tests/basic.c +10 -0
  203. data/ext/mathematical/mtex2MML/tests/delimiters.c +95 -0
  204. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/strut-1.html +1 -1
  205. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/cal-1.html +1 -1
  206. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/frak-1.html +1 -1
  207. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathcal-1.html +1 -1
  208. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathfrak-1.html +1 -1
  209. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathrm-1.html +1 -1
  210. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathscr-1.html +1 -1
  211. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/rm-1.html +1 -1
  212. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/scr-1.html +1 -1
  213. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textrm-1.html +1 -1
  214. data/ext/mathematical/mtex2MML/tests/fixtures/array/strip_excess_whitespace_in_array_attributes.html +1 -1
  215. data/ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.html +23 -0
  216. data/ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.txt +23 -0
  217. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.html +1 -0
  218. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.txt +3 -0
  219. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.html +1 -0
  220. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.txt +4 -0
  221. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.html +1 -0
  222. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.txt +4 -0
  223. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.html +1 -0
  224. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.txt +3 -0
  225. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.html +8 -0
  226. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.txt +11 -0
  227. data/ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.html +6 -6
  228. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.html +1 -0
  229. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.txt +1 -0
  230. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.html +1 -0
  231. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.txt +1 -0
  232. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.html +1 -0
  233. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.txt +1 -0
  234. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.html +1 -0
  235. data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.txt +1 -0
  236. data/ext/mathematical/mtex2MML/tests/symbols.c +69 -0
  237. data/lib/mathematical.rb +19 -1
  238. data/lib/mathematical/version.rb +1 -1
  239. data/mathematical.gemspec +2 -1
  240. data/test/mathematical/basic_test.rb +16 -3
  241. data/test/mathematical/fixtures/png/numeric_test_1.png +0 -0
  242. data/test/mathematical/fixtures/png/numeric_test_3.png +0 -0
  243. data/test/mathematical/fixtures/png/pmatrix.png +0 -0
  244. data/test/mathematical/maliciousness_test.rb +0 -1
  245. data/test/mathematical/multiples_test.rb +3 -0
  246. data/test/mathematical/png_test.rb +4 -1
  247. data/test/test_helper.rb +2 -0
  248. metadata +54 -18
  249. data/ext/mathematical/FindNewerRubies.cmake +0 -292
  250. data/ext/mathematical/mtex2MML/build.ps1 +0 -2
  251. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeCCompiler.cmake +0 -55
  252. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeCXXCompiler.cmake +0 -56
  253. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeSystem.cmake +0 -15
  254. data/ext/mathematical/mtex2MML/src/y.output +0 -117655
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msqrt><mrow><mpadded width="0" height="8.6pt" depth="3pt"><mrow /></mpadded><mi mathvariant="normal">strut</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msqrt><mrow><mpadded width="0" height="8.6pt" depth="3pt"><mrow /></mpadded><mrow><mi mathvariant="normal">s</mi></mrow><mi>t</mi><mi>r</mi><mi>u</mi><mi>t</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>
2
2
  \sqrt{\strut\rm strut}
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&xscr;</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>&xscr;</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \cal x
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&xfr;</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>&xfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \frak x
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&xscr;</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>&xscr;</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \mathcal x
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&xfr;</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>&xfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \mathfrak x
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="normal">x</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">x</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \mathrm x
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="script">X</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="script">X</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \mathscr X
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="normal">x</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">x</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \rm x
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="script">X</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="script">X</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \scr X
3
3
  </annotation></semantics></math>
@@ -1,3 +1,3 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="normal">x</mi></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">x</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
2
  \textrm x
3
3
  </annotation></semantics></math>
@@ -1,4 +1,4 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex 0.5ex" rowlines="solid none" columnalign="center center" columnlines="solid"><mtr><mtd><mi mathvariant="normal">Bad</mi></mtd> <mtd><mi mathvariant="normal">Better</mi></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><msub><mo>&tint;</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>d</mi><mi>z</mi><mi>d</mi><mi>y</mi><mi>d</mi><mi>x</mi></mtd> <mtd><msub><mo>&tint;</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"/><mi>d</mi><mi>z</mi><mspace width="thinmathspace"/><mi>d</mi><mi>y</mi><mspace width="thinmathspace"/><mi>d</mi><mi>x</mi></mtd></mtr></mtable></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex 0.5ex" rowlines="solid none" columnalign="center center" columnlines="solid"><mtr><mtd><mrow><mi mathvariant="normal">Bad</mi></mrow></mtd> <mtd><mrow><mi mathvariant="normal">Better</mi></mrow></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><msub><mo>&tint;</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>d</mi><mi>z</mi><mi>d</mi><mi>y</mi><mi>d</mi><mi>x</mi></mtd> <mtd><msub><mo>&tint;</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"/><mi>d</mi><mi>z</mi><mspace width="thinmathspace"/><mi>d</mi><mi>y</mi><mspace width="thinmathspace"/><mi>d</mi><mi>x</mi></mtd></mtr></mtable></mrow><annotation encoding='application/x-tex'>
2
2
  \begin{array}{c|c}
3
3
  \mathrm{Bad} &amp; \mathrm{Better} \\
4
4
  \hline \\
@@ -0,0 +1,23 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">first line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="normal">second line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="normal">third line</mi></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \mathrm{first\ line} \\
3
+ \mathrm{second\ line} \\
4
+ \mathrm{third\ line}
5
+ </annotation></semantics></math>
6
+
7
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="script">first line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="script">second line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="script">third line</mi></mrow></mrow><annotation encoding='application/x-tex'>
8
+ \mathscr{first\ line} \\
9
+ \mathscr{second\ line} \\
10
+ \mathscr{third\ line}
11
+ </annotation></semantics></math>
12
+
13
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>&ffr;&ifr;&rfr;&sfr;&tfr; &lfr;&ifr;&nfr;&efr;</mi></mrow><mspace linebreak="newline" /><mrow><mi>&sfr;&efr;&cfr;&ofr;&nfr;&dfr; &lfr;&ifr;&nfr;&efr;</mi></mrow><mspace linebreak="newline" /><mrow><mi>&tfr;&hfr;&ifr;&rfr;&dfr; &lfr;&ifr;&nfr;&efr;</mi></mrow></mrow><annotation encoding='application/x-tex'>
14
+ \mathfrak{first\ line} \\
15
+ \mathfrak{second\ line} \\
16
+ \mathfrak{third\ line}
17
+ </annotation></semantics></math>
18
+
19
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>&fscr;&iscr;&rscr;&sscr;&tscr; &lscr;&iscr;&nscr;&escr;</mi></mrow><mspace linebreak="newline" /><mrow><mi>&sscr;&escr;&cscr;&oscr;&nscr;&dscr; &lscr;&iscr;&nscr;&escr;</mi></mrow><mspace linebreak="newline" /><mrow><mi>&tscr;&hscr;&iscr;&rscr;&dscr; &lscr;&iscr;&nscr;&escr;</mi></mrow></mrow><annotation encoding='application/x-tex'>
20
+ \mathcal{first\ line} \\
21
+ \mathcal{second\ line} \\
22
+ \mathcal{third\ line}
23
+ </annotation></semantics></math>
@@ -0,0 +1,23 @@
1
+ $$
2
+ \mathrm{first\ line} \\
3
+ \mathrm{second\ line} \\
4
+ \mathrm{third\ line}
5
+ $$
6
+
7
+ $$
8
+ \mathscr{first\ line} \\
9
+ \mathscr{second\ line} \\
10
+ \mathscr{third\ line}
11
+ $$
12
+
13
+ $$
14
+ \mathfrak{first\ line} \\
15
+ \mathfrak{second\ line} \\
16
+ \mathfrak{third\ line}
17
+ $$
18
+
19
+ $$
20
+ \mathcal{first\ line} \\
21
+ \mathcal{second\ line} \\
22
+ \mathcal{third\ line}
23
+ $$
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
@@ -0,0 +1,3 @@
1
+ \begin{align}
2
+ 3x + 9y &= -12
3
+ \end{align}
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left" columnspacing="0em" rowspacing="3pt 3pt" rowlines="none none"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi></mi><mi>x</mi></mtd> <mtd><mi></mi><mo>=</mo><mn>1</mn><mo lspace="verythinmathspace" rspace="0em">+</mo><mn>2</mn></mtd></mlabeledtr> <mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd></mtd> <mtd><mi></mi><mo>=</mo><mn>3</mn></mtd></mlabeledtr> <mtr><mtd></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ \begin{alignat}{1}
2
+ x &= 1 + 2 \\
3
+ &= 3 \\
4
+ \end{alignat}
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="2.49201em" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ \begin{aligned}
2
+ 2x - 5y &= 8 \\[2.49201em]
3
+ 3x + 9y &= -12
4
+ \end{aligned}
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none" columnalign="center center" columnlines="none"><mtr><mtd><mi>B</mi><mi>a</mi><mi>d</mi></mtd> <mtd><mi>G</mi><mi>o</mi><mi>o</mi><mi>d</mi></mtd></mtr></mtable></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
@@ -0,0 +1,3 @@
1
+ \begin{array}{cc}
2
+ Bad & Good
3
+ \end{array}
@@ -0,0 +1,8 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \left\{
3
+ \begin{matrix} 1 &amp; 2 &amp; 3
4
+ \end{matrix}
5
+ \right)
6
+ </annotation></semantics></math>
7
+
8
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="20ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
@@ -0,0 +1,11 @@
1
+ $$
2
+ \left\{
3
+ \begin{matrix} 1 & 2 & 3
4
+ \end{matrix}
5
+ \right)
6
+ $$
7
+
8
+ \begin{cases}
9
+ \frac{n}{2}, & \text{if n is even} \\[20ex]
10
+ 3n+1, & \text{if n is odd}
11
+ \end{cases}
@@ -1,12 +1,12 @@
1
- <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times Orth(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>=</mo><mi>&pfr;</mi><mo>&oplus;</mo><mi>&kfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D= G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mi>q</mi></mrow><annotation encoding='application/x-tex'>pq</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mi>&Theta;</mi> <mi>&Lscr;</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta=\Theta_{\mathcal{L}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>&ell;</mi><mo>&Element;</mo><mi>&Lscr;</mi></mrow></msub><msub><mi>&delta;</mi> <mi>&ell;</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mo stretchy="false">(</mo><mi>&Lscr;</mi><mo stretchy="false">)</mo><mo>&subset;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\G = \Stab(\mathcal{L}) \subset G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mi>&Gamma;</mi><mo>&bsol;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \Gamma \backslash D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \subset SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\G&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mi>q</mi><mo>&minus;</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(pq&#x2d;r)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>&otimes;</mo><msup><mo>&wedge;</mo> <mi>q</mi></msup><msup><mi>&pfr;</mi> <mo>&ast;</mo></msup><msup><mo stretchy="false">)</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>(p+q)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(3,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>+</mo><mi>q</mi><merror><mtext>Unknown character</mtext></merror><mn>6</mn></mrow><annotation encoding='application/x-tex'>p+q&gt;6</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>&geq;</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>p \geq q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_q^V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^q(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>=</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial \overline{X} = e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">N</mo></mrow><annotation encoding='application/x-tex'>n \in \N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X, \partial X,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>i</mi><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>q = e^{2\pi i \tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup></mrow><annotation encoding='application/x-tex'>k^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>k^{\ast} \theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\partial {X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X}, \partial {X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{q}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_c \theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><mo>&geq;</mo><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo stretchy="false">]</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n \geq 0} [T_n^c] q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>+</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>F(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi><mo>=</mo><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>C=C_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\underline{G} = \SO(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><munder><mi>G</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G=\underline{G}_0(R) \simeq \SO_0(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>D= D_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>dim</mi><mi>z</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\dim z =2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo><msub><mo stretchy="false">&vert;</mo> <mi>z</mi></msub><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(\,,\,)|_z &lt; 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">{</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\{e_1,e_2,e_3,e_4\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_1,e_1)=(e_2,e_2)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>4</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_3,e_3)=(e_4,e_4)=&#x2d;1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>x_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub><mo>=</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z_0=[e_3,e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>4</mn></msub></mrow><annotation encoding='application/x-tex'>e_4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K \simeq \SO(2)\times \SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D \simeq G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">H</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \H \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><msub><munder><mi>P</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P= \underline{P}_0(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N = \underline{N}(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u =(e_1+e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>&minus;</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u&apos; =(e_1&#x2d;e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(u,u&apos;)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell = \Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\ell&apos;=\Q u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo>&cap;</mo><msup><mrow><mi>&ell;</mi><mo>&prime;</mo></mrow> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>W = \ell^{\perp} \cap {\ell&apos;}^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">Span</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>W_{R} = \Span_{R}(e_2,e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,e_2,e_3,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>&simeq;</mo><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>N \simeq W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>u</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u_2,u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>e</mi> <mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>m(s) = m&apos;(e^s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M \simeq \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&nfr;</mi><mo>,</mo><mi>&afr;</mi><mo>,</mo><mi>&mfr;</mi></mrow><annotation encoding='application/x-tex'>\frak{n},\frak{a},\frak{m}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>&alpha;</mi><mi>&mu;</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{\alpha\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&sigma;</mi><mo>:</mo><mi>&nfr;</mi><mi>&afr;</mi><mi>&mfr;</mi><mo>&rightarrow;</mo><mi>&gfr;</mi><mo>&rightarrow;</mo><mi>&gfr;</mi><mo stretchy="false">/</mo><mi>&kfr;</mi><mo>&simeq;</mo><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><msub><mi>u</mi> <mn>2</mn></msub><mo>+</mo><mi>w</mi><mo>&prime;</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>w= wu_2+w&apos;u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V_{R} \simeq M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u = \kzxz{1}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn></mrow><annotation encoding='application/x-tex'>u&apos; = \kzxz{0}{0}{0}{1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>q(x) = (x,x)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>q(x) = \det(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{&#x2d;1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mn>1</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>g</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><msub><mi>g</mi> <mn>1</mn></msub><mi>x</mi><mspace width="thinmathspace"/><mrow><msup><mo/><mi>t</mi></msup><msub><mi>g</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding='application/x-tex'>(g_1,g_2)x = g_1x\, {^{t}g_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Spin</mo><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Spin(2,2) \simeq SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>z</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>&subseteq;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>L \subseteq L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&Element;</mo><mn>2</mn><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>(x,x) \in 2 \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>x \in L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><msup><mi>L</mi> <mo>#</mo></msup><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>N</mi></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>q(L^{\#}) \Z = \tfrac1{N}\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>h \in L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&subseteq;</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\Gamma \subseteq \Stab{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}:=L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell =\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>d&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">(</mo><msqrt><mi>d</mi></msqrt><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K = \Q(\sqrt{d})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&map;</mo><mi>x</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x \mapsto x&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo>&subset;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V \subset M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo/><mi>t</mi></msup><mi>x</mi><mo>&prime;</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>^tx&apos; =&#x2d;x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>g</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g \mapsto (g,g&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>&Oscr;</mi> <mi>K</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\mathcal{O}_K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>.</mo><mi>x</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">g</mo><mi>x</mi><mrow><msup><mo/><mi>t</mi></msup><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&prime;</mo></mrow></mrow><annotation encoding='application/x-tex'>\g.x = \g x{^t\g&apos;}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&cap;</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>\G_P = \G \cap P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N = \G_P \cap N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo stretchy="false">/</mo><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell^{\perp}/\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\G_P/\G_N \simeq \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>g \in \G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>g</mi><mo stretchy="false">&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\bar{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\G_M :=\G_P \cap M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P = NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P=NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>M</mi><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq M \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \G \back D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\underline{P}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mi>W</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>X_W := \G_M \back D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><mn>&infin;</mn><mo stretchy="false">]</mo><mo>&times;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[(T,\infty] \times e&apos;(P)]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><merror><mtext>Unknown character</mtext></merror><mi>T</mi></mrow><annotation encoding='application/x-tex'>t&gt;T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>&rightarrow;</mo><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\pi:\tilde{X} \to X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in} \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>N</mi></msub><mo>=</mo><msub><mi>&pi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Gamma_N =\pi_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Gamma_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a_P \in H_1(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa:e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>b_P \in H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi></mrow><annotation encoding='application/x-tex'>\kappa</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W_{R} \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>T^2=\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>H_3(\tilde{X}) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(X^{out})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial \overline{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>i</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>i^*</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>a</mi><mo>,</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>a</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d(a,b) = (da, i^*a &#x2d; db)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X) \to C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c \mapsto (c,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>V</mi><mo>&rightarrow;</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\pi:V \to \partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><mi>b</mi></mrow><annotation encoding='application/x-tex'>\pi^{\ast} b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t \leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>i</mi></msup></mrow><annotation encoding='application/x-tex'>C^i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi></mrow><annotation encoding='application/x-tex'>\mu</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mi>i</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^i_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>&map;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]] \mapsto [a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>&eta;</mi><mo stretchy="false">]</mo><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>X</mi><mo>&#x000AF;</mo></mover></msub><mi>a</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow></msub><mi>b</mi><mo>&wedge;</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>&eta;</mi><mo>,</mo><mtext>&#xA0;</mtext><mtext>and</mtext><mtext>&#xA0;</mtext><mtext>&#xA0;</mtext><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mi>C</mi></msub><mi>a</mi><mo>&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mi>C</mi></mrow></msub><mi>b</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times Orth(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Sscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&gfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&kfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&gfr;</mi></mrow><mo>=</mo><mrow><mi>&pfr;</mi></mrow><mo>&oplus;</mo><mrow><mi>&kfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Sscr;</mi></mrow><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D= G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mi>q</mi></mrow><annotation encoding='application/x-tex'>pq</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Sscr;</mi></mrow><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Lscr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathcal{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mi>&Theta;</mi> <mrow><mi>&Lscr;</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\Theta=\Theta_{\mathcal{L}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>&ell;</mi><mo>&Element;</mo><mrow><mi>&Lscr;</mi></mrow></mrow></msub><msub><mi>&delta;</mi> <mi>&ell;</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mo stretchy="false">(</mo><mrow><mi>&Lscr;</mi></mrow><mo stretchy="false">)</mo><mo>&subset;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\G = \Stab(\mathcal{L}) \subset G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mi>&Gamma;</mi><mo>&bsol;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \Gamma \backslash D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \subset SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\G&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mi>q</mi><mo>&minus;</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(pq&#x2d;r)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mrow><mi>&Sscr;</mi></mrow><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>&otimes;</mo><msup><mo>&wedge;</mo> <mi>q</mi></msup><msup><mrow><mi>&pfr;</mi></mrow> <mo>&ast;</mo></msup><msup><mo stretchy="false">)</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>(p+q)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(3,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>+</mo><mi>q</mi><merror><mtext>Unknown character</mtext></merror><mn>6</mn></mrow><annotation encoding='application/x-tex'>p+q&gt;6</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>&geq;</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>p \geq q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_q^V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^q(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>=</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial \overline{X} = e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">N</mo></mrow><annotation encoding='application/x-tex'>n \in \N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X, \partial X,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>i</mi><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>q = e^{2\pi i \tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup></mrow><annotation encoding='application/x-tex'>k^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>k^{\ast} \theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\partial {X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X}, \partial {X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{q}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_c \theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><mo>&geq;</mo><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo stretchy="false">]</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n \geq 0} [T_n^c] q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>+</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>F(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi><mo>=</mo><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>C=C_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\underline{G} = \SO(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><munder><mi>G</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G=\underline{G}_0(R) \simeq \SO_0(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>D= D_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>dim</mi><mi>z</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\dim z =2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo><msub><mo stretchy="false">&vert;</mo> <mi>z</mi></msub><mo>&lt;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(\,,\,)|_z &lt; 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">{</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\{e_1,e_2,e_3,e_4\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_1,e_1)=(e_2,e_2)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>4</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_3,e_3)=(e_4,e_4)=&#x2d;1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>x_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub><mo>=</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z_0=[e_3,e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>4</mn></msub></mrow><annotation encoding='application/x-tex'>e_4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K \simeq \SO(2)\times \SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D \simeq G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">H</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \H \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><msub><munder><mi>P</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P= \underline{P}_0(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N = \underline{N}(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u =(e_1+e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>&minus;</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u&apos; =(e_1&#x2d;e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(u,u&apos;)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell = \Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\ell&apos;=\Q u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo>&cap;</mo><msup><mrow><mi>&ell;</mi><mo>&prime;</mo></mrow> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>W = \ell^{\perp} \cap {\ell&apos;}^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">Span</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>W_{R} = \Span_{R}(e_2,e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,e_2,e_3,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>&simeq;</mo><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>N \simeq W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>u</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u_2,u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>e</mi> <mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>m(s) = m&apos;(e^s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M \simeq \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&nfr;</mi></mrow><mo>,</mo><mrow><mi>&afr;</mi></mrow><mo>,</mo><mrow><mi>&mfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\frak{n},\frak{a},\frak{m}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>&alpha;</mi><mi>&mu;</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{\alpha\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&sigma;</mi><mo>:</mo><mrow><mi>&nfr;</mi></mrow><mrow><mi>&afr;</mi></mrow><mrow><mi>&mfr;</mi></mrow><mo>&rightarrow;</mo><mrow><mi>&gfr;</mi></mrow><mo>&rightarrow;</mo><mrow><mi>&gfr;</mi></mrow><mo stretchy="false">/</mo><mrow><mi>&kfr;</mi></mrow><mo>&simeq;</mo><mrow><mi>&pfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><msub><mi>u</mi> <mn>2</mn></msub><mo>+</mo><mi>w</mi><mo>&prime;</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>w= wu_2+w&apos;u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V_{R} \simeq M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u = \kzxz{1}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn></mrow><annotation encoding='application/x-tex'>u&apos; = \kzxz{0}{0}{0}{1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>q(x) = (x,x)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>q(x) = \det(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{&#x2d;1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mn>1</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>g</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><msub><mi>g</mi> <mn>1</mn></msub><mi>x</mi><mspace width="thinmathspace"/><mrow><msup><mo/><mi>t</mi></msup><msub><mi>g</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding='application/x-tex'>(g_1,g_2)x = g_1x\, {^{t}g_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Spin</mo><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Spin(2,2) \simeq SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>z</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>&subseteq;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>L \subseteq L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&Element;</mo><mn>2</mn><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>(x,x) \in 2 \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>x \in L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><msup><mi>L</mi> <mo>#</mo></msup><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>N</mi></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>q(L^{\#}) \Z = \tfrac1{N}\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>h \in L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&subseteq;</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\Gamma \subseteq \Stab{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Lscr;</mi></mrow><mo>:</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}:=L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell =\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>d&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">(</mo><msqrt><mi>d</mi></msqrt><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K = \Q(\sqrt{d})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mrow><mi>&Oscr;</mi></mrow> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&map;</mo><mi>x</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x \mapsto x&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo>&subset;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V \subset M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo/><mi>t</mi></msup><mi>x</mi><mo>&prime;</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>^tx&apos; =&#x2d;x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>g</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g \mapsto (g,g&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><msub><mrow><mi>&Oscr;</mi></mrow> <mi>K</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\mathcal{O}_K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>.</mo><mi>x</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">g</mo><mi>x</mi><mrow><msup><mo/><mi>t</mi></msup><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&prime;</mo></mrow></mrow><annotation encoding='application/x-tex'>\g.x = \g x{^t\g&apos;}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&cap;</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>\G_P = \G \cap P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N = \G_P \cap N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo stretchy="false">/</mo><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell^{\perp}/\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\G_P/\G_N \simeq \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>g \in \G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>g</mi><mo stretchy="false">&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\bar{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\G_M :=\G_P \cap M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P = NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P=NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>M</mi><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq M \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \G \back D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\underline{P}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mi>W</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>X_W := \G_M \back D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><mn>&infin;</mn><mo stretchy="false">]</mo><mo>&times;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[(T,\infty] \times e&apos;(P)]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><merror><mtext>Unknown character</mtext></merror><mi>T</mi></mrow><annotation encoding='application/x-tex'>t&gt;T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>&rightarrow;</mo><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\pi:\tilde{X} \to X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in} \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>N</mi></msub><mo>=</mo><msub><mi>&pi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Gamma_N =\pi_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Gamma_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a_P \in H_1(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa:e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>b_P \in H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi></mrow><annotation encoding='application/x-tex'>\kappa</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W_{R} \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>T^2=\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>H_3(\tilde{X}) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(X^{out})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial \overline{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>i</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>i^*</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>a</mi><mo>,</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>a</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d(a,b) = (da, i^*a &#x2d; db)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X) \to C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c \mapsto (c,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>V</mi><mo>&rightarrow;</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\pi:V \to \partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><mi>b</mi></mrow><annotation encoding='application/x-tex'>\pi^{\ast} b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t \leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>i</mi></msup></mrow><annotation encoding='application/x-tex'>C^i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi></mrow><annotation encoding='application/x-tex'>\mu</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mi>i</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^i_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>&map;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]] \mapsto [a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>&eta;</mi><mo stretchy="false">]</mo><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>X</mi><mo>&#x000AF;</mo></mover></msub><mi>a</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow></msub><mi>b</mi><mo>&wedge;</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>&eta;</mi><mo>,</mo><mtext>&#xA0;</mtext><mtext>and</mtext><mtext>&#xA0;</mtext><mtext>&#xA0;</mtext><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mi>C</mi></msub><mi>a</mi><mo>&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mi>C</mi></mrow></msub><mi>b</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
2
2
  \langle[a, b], [\eta]\rangle
3
3
  = \int_{\overline{X}}a\wedge \eta &#x2d; \int_{\partial \overline{X}} b \wedge i^*\eta, \ \text{and} \ \
4
- \langle [a,b],C \rangle = \int_{C}a &#x2d; \int_{\partial C} b.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>x</mi></msub><mo>&subset;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_x \subset \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mi>&Lscr;</mi><mo>;</mo><mspace width="thinmathspace"/><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">(</mo></mfrac></mstyle><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\partial X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>U_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><msub><mi>U</mi> <mn>&infin;</mn></msub><mo>=</mo><mi>&emptyv;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
4
+ \langle [a,b],C \rangle = \int_{C}a &#x2d; \int_{\partial C} b.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>x</mi></msub><mo>&subset;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_x \subset \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mrow><mi>&Lscr;</mi></mrow><mo>;</mo><mspace width="thinmathspace"/><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">(</mo></mfrac></mstyle><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\partial X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>U_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><msub><mi>U</mi> <mn>&infin;</mn></msub><mo>=</mo><mi>&emptyv;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
5
5
  D_x \cap U_{\infty} = \emptyset.
6
- </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi></mrow><annotation encoding='application/x-tex'>p</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub><mo>&subset;</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x \subset \partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P) \to e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL_V=\calL = L +h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&subset;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>L_{W,k} \subset W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&Element;</mo><msubsup><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow> <mo>#</mo></msubsup></mrow><annotation encoding='application/x-tex'>h_{W,k} \in L^{\#}_{W,k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><mi>N</mi><mo>&cap;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_N = N \cap \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(w) x= x + (w,x)u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \in u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>{\calL}_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_{n,P} := \partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup><mo>;</mo><mspace width="thinmathspace"/><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi></mrow><annotation encoding='application/x-tex'>\Gamma</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub></mrow><annotation encoding='application/x-tex'>\sim_{\Gamma}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>p</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>\G_p \back \calL_{n,u} \subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><msub><mo stretchy="false">]</mo> <mi>P</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>[x_i]= [x_i]_P, 1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msubsup><mo>&coprod;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>k</mi></msubsup><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>y \in [x_i]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>D_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>C_{x_i}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msub><mo>&coprod;</mo> <mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow></msub><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&coprod;</mo> <mrow><mtable columnalign="center" rowspacing="0.5ex"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>&Lscr;</mi> <mi>W</mi></msub></mtd></mlabeledtr> <mtr><mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi></mtd></mtr></mtable></mrow></msub><msub><mo>&coprod;</mo> <mrow><mn>0</mn><mo>&leq;</mo><mi>k</mi><merror><mtext>Unknown character</mtext></merror><mi>min</mi><msub><mo>&prime;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo></mrow></msub><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k &lt; \min&apos;_{\la \in \Lambda_W} |(\la,x)|} x+ku</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mi>&Lscr;</mi> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>x \in \mathcal{L}_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>a</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial a_x = c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P = \sum_{y \in [x]} a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_x)_P = \sum_{y \in [x]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X}) = H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>+</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>T_n = T_n \cap X^{in} + T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>j_{\ast} \overline{C}_n = T_n \cap X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>B_n = T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>=</mo><mo>&minus;</mo><mo>&PartialD;</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n = &#x2d; \partial B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_{\ast} C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_*C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&oplus;</mo><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X}) = j_*H_2(X) \oplus S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c = j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>+</mo><mi>T</mi><mo>+</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P+ T +\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>S</mi><mo stretchy="false">&vert;</mo></mrow><annotation encoding='application/x-tex'>|S|</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_k(Y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><mi>W</mi><mo stretchy="false">/</mo><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2 = W/ \Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&rightarrow;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\pi: R\times T^2 \to M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&alpha;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\alpha]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo stretchy="false">&rarr;</mo></mover></mrow><annotation encoding='application/x-tex'>\overrightarrow{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>W \to T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>P</mi></msub><mi>&Omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>P</mi><mo>&tilde;</mo></mover></msub><mi>&Omega;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\gamma_0 \subset T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">]</mo><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&times;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\gamma_0 \times [0,1] \subset T^2 \times R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><merror><mtext>Unknown character</mtext></merror><mn>2</mn></mrow><annotation encoding='application/x-tex'>|\tr(f^{&#x2d;1})| &gt;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>t</mi><mo stretchy="false">(</mo><mi>I</mi><mo>&minus;</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mn>2</mn><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\det(f^{&#x2d;1} &#x2d;I)= det( I &#x2d; f) = \tr(f) &#x2d;2 \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N= \det(f^{&#x2d;1} &#x2d;I)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mi>N</mi><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo stretchy="false">[</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] = N \{(f^{&#x2d;1} &#x2d; I)^{&#x2d;1} ([\alpha_0]) \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>\gamma_0 \in [\gamma_0]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>h_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\gamma_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>c_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>c_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>=</mo><mi>N</mi><msub><mi>h</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_1 = Nh_1(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub><mo>=</mo><msub><mi>h</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_2=h_2(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>d \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d =f^{&#x2d;1}(c_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub><mo>,</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>0,c_2,d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mover><mi>T</mi><mo>&tilde;</mo></mover><mo>=</mo><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>2</mn></msub></mrow><mo>&#x000AF;</mo></mover><mo>+</mo><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>&minus;</mo><mover><mrow><mn>0</mn><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>.</mo></mrow><annotation encoding='application/x-tex'>
6
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi></mrow><annotation encoding='application/x-tex'>p</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub><mo>&subset;</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x \subset \partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P) \to e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL_V=\calL = L +h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&subset;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>L_{W,k} \subset W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&Element;</mo><msubsup><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow> <mo>#</mo></msubsup></mrow><annotation encoding='application/x-tex'>h_{W,k} \in L^{\#}_{W,k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><mi>N</mi><mo>&cap;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_N = N \cap \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(w) x= x + (w,x)u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \in u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>{\calL}_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_{n,P} := \partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup><mo>;</mo><mspace width="thinmathspace"/><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi></mrow><annotation encoding='application/x-tex'>\Gamma</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub></mrow><annotation encoding='application/x-tex'>\sim_{\Gamma}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>p</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>\G_p \back \calL_{n,u} \subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><msub><mo stretchy="false">]</mo> <mi>P</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>[x_i]= [x_i]_P, 1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msubsup><mo>&coprod;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>k</mi></msubsup><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>y \in [x_i]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>D_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>C_{x_i}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msub><mo>&coprod;</mo> <mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow></msub><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&coprod;</mo> <mrow><mtable columnalign="center" rowspacing="0.5ex"><mtr><mtd><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mrow><mi>&Lscr;</mi></mrow> <mi>W</mi></msub></mtd></mtr> <mtr><mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi></mtd></mtr></mtable></mrow></msub><msub><mo>&coprod;</mo> <mrow><mn>0</mn><mo>&leq;</mo><mi>k</mi><mo>&lt;</mo><mi>min</mi><msub><mo>&prime;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo></mrow></msub><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k &lt; \min&apos;_{\la \in \Lambda_W} |(\la,x)|} x+ku</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mrow><mi>&Lscr;</mi></mrow> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>x \in \mathcal{L}_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>a</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial a_x = c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P = \sum_{y \in [x]} a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_x)_P = \sum_{y \in [x]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X}) = H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>+</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>T_n = T_n \cap X^{in} + T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>j_{\ast} \overline{C}_n = T_n \cap X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>B_n = T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>=</mo><mo>&minus;</mo><mo>&PartialD;</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n = &#x2d; \partial B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_{\ast} C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_*C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&oplus;</mo><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X}) = j_*H_2(X) \oplus S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c = j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>+</mo><mi>T</mi><mo>+</mo><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P+ T +\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>S</mi><mo stretchy="false">&vert;</mo></mrow><annotation encoding='application/x-tex'>|S|</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_k(Y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><mi>W</mi><mo stretchy="false">/</mo><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2 = W/ \Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&rightarrow;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\pi: R\times T^2 \to M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&alpha;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\alpha]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo stretchy="false">&rarr;</mo></mover></mrow><annotation encoding='application/x-tex'>\overrightarrow{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>W \to T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>P</mi></msub><mi>&Omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>P</mi><mo>&tilde;</mo></mover></msub><mi>&Omega;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\gamma_0 \subset T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">]</mo><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&times;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\gamma_0 \times [0,1] \subset T^2 \times R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><merror><mtext>Unknown character</mtext></merror><mn>2</mn></mrow><annotation encoding='application/x-tex'>|\tr(f^{&#x2d;1})| &gt;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>t</mi><mo stretchy="false">(</mo><mi>I</mi><mo>&minus;</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mn>2</mn><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\det(f^{&#x2d;1} &#x2d;I)= det( I &#x2d; f) = \tr(f) &#x2d;2 \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N= \det(f^{&#x2d;1} &#x2d;I)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mi>N</mi><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo stretchy="false">[</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] = N \{(f^{&#x2d;1} &#x2d; I)^{&#x2d;1} ([\alpha_0]) \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>\gamma_0 \in [\gamma_0]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>h_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\gamma_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>c_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>c_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>=</mo><mi>N</mi><msub><mi>h</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_1 = Nh_1(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub><mo>=</mo><msub><mi>h</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_2=h_2(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>d \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d =f^{&#x2d;1}(c_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub><mo>,</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>0,c_2,d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mover><mi>T</mi><mo>&tilde;</mo></mover><mo>=</mo><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>2</mn></msub></mrow><mo>&#x000AF;</mo></mover><mo>+</mo><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>&minus;</mo><mover><mrow><mn>0</mn><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>.</mo></mrow><annotation encoding='application/x-tex'>
7
7
  \partial \widetilde{T} = \overline{0c_2} + \overline{c_2d} &#x2d; \overline{0d}.
8
- </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>1</mn></msub></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{0c_1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mo stretchy="false">(</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>&minus;</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>
8
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>1</mn></msub></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{0c_1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mo stretchy="false">(</mo><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>&minus;</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>
9
9
  \partial (\mathcal{M}(\gamma_0) + T ) = f^{&#x2d;1}(\gamma_0) &#x2d;\gamma_0 +\gamma_0 + \alpha_0 &#x2d; f^{&#x2d;1}(\gamma_0)= N\alpha_0.
10
- </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mn>0</mn></msub><mo>=</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>A_0 = \mathcal{M}(\gamma_0) +T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mo stretchy="false">(</mo><mi>N</mi><mi>P</mi><mo>+</mo><msub><mi>A</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>T</mi><mo>+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>&alpha;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
10
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mn>0</mn></msub><mo>=</mo><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>A_0 = \mathcal{M}(\gamma_0) +T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mo stretchy="false">(</mo><mi>N</mi><mi>P</mi><mo>+</mo><msub><mi>A</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>T</mi><mo>+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>&alpha;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
11
11
  \partial A = \alpha.
12
- </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">&langle;</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\Lk(a,b) = \langle A,b \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a,b \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>R \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>&times;</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>a=a(0)=0 \times a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&times;</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>b=b(\eps)= \eps \times b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(a, b(\epsilon))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>(f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial M(c) = (f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&epsi;</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\epsilon \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo>&sdot;</mo><mo>,</mo><mo>&sdot;</mo><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle \cdot, \cdot \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2, \Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(\partial C_n, \partial C_m)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>J</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>Jx</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(Jx,x)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><msqrt><mi>p</mi></msqrt><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u= \kzxz{\sqrt{p}}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo></mrow><mn>0</mn><mo>;</mo><mspace width="thickmathspace"/><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><mi>K</mi><mo stretchy="false">}</mo><mo>&simeq;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>W = \{ \kzxz{0}{\la}{&#x2d;\la&apos;}{0};\; \la \in K \} \simeq K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mi>p</mi></msqrt></mfrac><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mi>&mu;</mi><mo>&prime;</mo><mo>&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo><mi>&mu;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu&apos; &#x2d; \la&apos;\mu)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mrow><mo>{</mo><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mn>0</mn><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>\mu \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mi>&mu;</mi><mo>=</mo><mi>&mu;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(\la) \mu = \mu + \langle \la, \mu \rangle u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>&mu;</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_{\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mi>&mu;</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>K</mi> <mi>R</mi></msub><mo>;</mo><mspace width="thickmathspace"/><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo></mrow><annotation encoding='application/x-tex'>\eps</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>U_+</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\eps&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>m=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>C_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>x =1 \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>C_1 \simeq SL_2(\Z) \back \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle\,,\, \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>U=V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>U=W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D=G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z\in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi \in \calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><msub><mo>&prime;</mo> <mi>&tau;</mi></msub><mo>&Element;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g&apos;_{\tau} \in SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&#x03C6;</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi^0(x) = \varphi(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>g</mi> <mi>z</mi></msub><mo>&Element;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>g_z \in G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z \in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><mi>E</mi><msup><mo stretchy="false">]</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>\varphi \in [\calS(U_{R}) \otimes E]^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,\tau,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>U</mi><mo>,</mo><mi>z</mi><mo>&Element;</mo><mi>D</mi><mo>,</mo><mi>&tau;</mi><mo>&Element;</mo><mi>&Hopf;</mi></mrow><annotation encoding='application/x-tex'>x \in U, z \in D, \tau \in \mathbb{H}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>=</mo><mi>&kfr;</mi><mo>&oplus;</mo><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">wwedge</mo><mn>2</mn><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{g} \simeq \wwedge{2} V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>e</mi> <mi>i</mi></msub><mo>&wedge;</mo><msub><mi>e</mi> <mi>j</mi></msub><mo>&Element;</mo><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>X_{ij} = e_i \wedge e_j \in \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>X_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \leq i \leq 2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mn>4</mn></mrow><annotation encoding='application/x-tex'>3 \leq j \leq 4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calA^2(D)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi_0(x) := e^{&#x2d;\pi(x,x)_{0}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub><mo>=</mo><msubsup><mo>&Sum;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>4</mn></msubsup><msubsup><mi>x</mi> <mi>i</mi> <mn>2</mn></msubsup></mrow><annotation encoding='application/x-tex'>(x,x)_0= \sum_{i=1}^4 x_i^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(L)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(V_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x\ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&notin;</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><msup><mo stretchy="false">]</mo> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \notin \Span[e_3,e_4]^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&notin;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>z \notin D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&psi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi><mo>&minus;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>r&#x2d;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><mo>=</mo><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>d \tilde{\psi} = \varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mi>q</mi></msub></mrow><annotation encoding='application/x-tex'>\varphi_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mi>q</mi><mo>&minus;</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{q&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>W\subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mfr;</mi><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{m} \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M = \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo>=</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>&wedge;</mo><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23} = e_2 \wedge e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>{\bf s}_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mi>x</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>{\bf s} = \Span x(s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle></mrow><annotation encoding='application/x-tex'>{\bf s}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&Element;</mo><mi>D</mi><mo>;</mo><mspace width="thickmathspace"/><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&perp;</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s} = D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x({\bf s})) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s}(x)=D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>1</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>W</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>\calA^1(D_W) \otimes W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\psi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>&psi;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&minus;</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>&Lambda;</mi></mfrac></mstyle> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>&#x2d;\psi_{1,1} &#x2d; \tfrac12 \Lambda_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>w</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{w,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>&Integral;</mo> <mi>a</mi> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>u</mi></mrow></msup><msup><mi>u</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\G(\tfrac12,a) = \int_a^{\infty} e^{&#x2d;u} u^{&#x2d;1/2} du</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>s=1/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn><mo stretchy="false">)</mo><msub><mi>x</mi> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A(x)&#x2d; (1/2) x_2 \frac{x_3}{|x_3|} e^{&#x2d;\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>x</mi><mo stretchy="false">&vert;</mo><msup><mi>x</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>|x|x^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>C^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">&vert;</mo></mfrac></mstyle><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>B&apos;(x) + \tfrac12|x_3|e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>x</mi></mfrac></mstyle> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A&apos;(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}&apos;_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>v</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>m</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msqrt><mi>v</mi></msqrt><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mi>i</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x,\tau,s) = v^{&#x2d;1/2} m(s) \tilde{\psi}_{0,1}&apos;(m^{&#x2d;1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>&otimes;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>D_{W,x} \otimes x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x) + B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A(x) + A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>X_{23}(B + B&apos;) = &#x2d;(A + A&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K&apos;=\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&chi;</mi></mrow><annotation encoding='application/x-tex'>\chi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \simeq U(1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>L</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>L^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)(B+B&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><msup><mi>&chi;</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\omega(k&apos;)(B+B&apos;)] = \chi^2(k&apos;)[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>K&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_2^2&#x2d;x_3^2=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>i</mi></mrow><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><mo>&square;</mo><mo>+</mo><mi>&pi;</mi><mi>i</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\frac{&#x2d;i}{4\pi} \square + \pi i r^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mo>&PartialD;</mo><mrow><mo>&PartialD;</mo><msub><mi>x</mi> <mn>3</mn></msub></mrow></mfrac><mi>&Gamma;</mi><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>2</mn><msqrt><mrow><mn>2</mn><mi>&pi;</mi></mrow></msqrt><mo lspace="0em" rspace="thinmathspace">sgn</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = &#x2d; 2 \sqrt{2\pi} \sgn(x_3) e^{&#x2d;2 \pi x_3^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>|x_3|e^{&#x2d;\pi(x_2^2&#x2d;x_3^2)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><mn>2</mn><mi>i</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B+B&apos;] = [H(B+B&apos;)]= 2i[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&nfr;</mi><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&Element;</mo><msup><mo>&xwedge;</mo> <mn>2</mn></msup><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&nfr;</mi> <mo>&ast;</mo></msup><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\mathfrak{n}^{\ast} \simeq W \wedge R u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_2,w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi> <mn>2</mn></msub><msub><mi>e</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>w</mi> <mn>3</mn></msub><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w=w_2e_2+w_3e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>{\psi&apos;}_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_{1,1}}(\tau,{\calL_W})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}(\calL_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>A+A&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\psi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi&apos;}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>16</mn><mi>&pi;</mi></mrow></mfrac></mstyle><msubsup><mo>&Integral;</mo> <mn>1</mn> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>s</mi><mi>t</mi></mrow></msup><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></mrow><annotation encoding='application/x-tex'>\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{&#x2d;st}t^{&#x2d;3/2} dt</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Wscr;</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{W}(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>S^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>H^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mi>&beta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>d \beta = \eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M &#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial A = a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\eta_{M&#x2d;V}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo>,</mo><mo>&PartialD;</mo><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(M&#x2d;V, \partial (M&#x2d;V))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_n)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>D_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta =\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\Omega \wedge \tilde{\psi&apos;}_{0,1}(n) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>d</mi><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = d \omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&eta;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>=</mo><mo>&pm;</mo><msqrt><mrow><mn>2</mn><mi>n</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>\mu = \pm \sqrt{2n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub></mrow></msub><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi&apos;}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>U_\eps= (&#x2d;\eps,\eps) \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>&omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\eta \wedge \tilde{\psi&apos;}_{0,1}(x) = d(\omega \wedge \tilde{\psi&apos;}_{0,1}(x))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub></mrow><annotation encoding='application/x-tex'>U_{\eps}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&ne;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g \ne 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(s,w) \wedge \tilde{\psi&apos;}_{0,1}(\g^{&#x2d;1}x,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>T^2/ c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times S^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>dw_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega(0,w_2,w_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>w_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>d</mi><msub><mi>w</mi> <mn>2</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><msup><mi>&mu;</mi> <mn>2</mn></msup></mrow></msup></mrow><annotation encoding='application/x-tex'>\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{&#x2d; \pi \mu^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>A</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>W \to R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>w \mapsto (w,e_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub><mo>&simeq;</mo><mi>R</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msub><mi>min</mi> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo>&prime;</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}&apos;|(\la,e_2)|)\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>&eta;</mi> <mi>c</mi></msub><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\int_{e&apos;(P)} \eta_c \wedge \tilde{\psi&apos;}_{0,1}(n)= \int_{e&apos;(P)} \tilde{\psi&apos;}_{0,1}(n) \wedge \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta = \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub><mo>&supset;</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><mo stretchy="false">(</mo><msub><mi>&eta;</mi> <mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n \supset \supp (\eta_c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>PD(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d;V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>e_3 \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s(x )=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,R e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>&gamma;</mi><mo>&Element;</mo><msub><mi>&Gamma;</mi> <mi>M</mi></msub></mrow></msub><msup><mi>&gamma;</mi> <mo>*</mo></msup><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\epsilon)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&subset;</mo><msub><mi>F</mi> <mi>x</mi></msub><mo>&subset;</mo><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>c \subset F_x \subset F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>&ctdot;</mi><mo>,</mo><msub><mi>c</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>c_1,\cdots,c_k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>c_i,1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>=</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>c_i = c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(c,c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\eps)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>c \times [0,\eps]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mtext>&#xA0;</mtext><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(c_i, c(\eps)) =\ Lk(c_i, c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL = L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi><mo>=</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L} = L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G_0(d)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\delta_{h0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>+</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subset SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lambda(C,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>C_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\frac{1}{2\pi}\delta_{h0} [\omega]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>i</mi> <mi>P</mi> <mo>&ast;</mo></msubsup></mrow><annotation encoding='application/x-tex'>i_P^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>+</mo><msub><mi>L</mi> <mi>W</mi></msub><mo>+</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>L = \Z u + L_W + \Z u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>h=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,0,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">[</mo><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn></mrow></msup><msubsup><mi>y</mi> <mn>1</mn> <mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><msup><mi>t</mi> <mn>2</mn></msup><msub><mi>y</mi> <mn>1</mn></msub><msup><mo>&prime;</mo> <mn>2</mn></msup><mo stretchy="false">]</mo><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>\varphi_0(x,z) = \exp\left(&#x2d;\pi[ t^{&#x2d;2}y_1^2+ 2q(x&apos;)+t^2y_1&apos;^2]\right)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>y</mi> <mn>1</mn></msub><mi>u</mi><mo>+</mo><mi>x</mi><mo>&prime;</mo><mo>+</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>&prime;</mo><mi>u</mi><mo>&prime;</mo><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x = y_1u+x&apos;+y_1&apos;u&apos; \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&theta;</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msubsup><mi>&psi;</mi> <mn>1</mn> <mi>V</mi></msubsup><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta(\tau,\psi_1^V,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&prime;</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>y&apos;=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>L_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{ \tilde{\psi}_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{2,0}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{1}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell=\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mi>b</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x = au + x_W + bu&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=(w,t,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><msub><mo stretchy="false">)</mo> <mi>s</mi></msub></mrow><annotation encoding='application/x-tex'>(\,,\,)_s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>b \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x_W \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x_W +(a+h)u \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">/</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>h \in \Q/\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>\calL_V \cap u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow></msub><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>w=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_W=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03D5;</mi></mrow><annotation encoding='application/x-tex'>\phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi},\theta_{\phi})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi},\theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(C^{\bullet})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\overline{X}) = H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi}, \theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}](\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subseteq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subseteq SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X},\partial \overline{X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub><mo>:</mo><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\#}: H_c^2(X) \to H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\omega] = \PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>M = \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi></mrow><annotation encoding='application/x-tex'>\Lambda</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow></mrow><annotation encoding='application/x-tex'>{\partial C_y}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(C^c_n \cdot C_y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>,</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_n^c \cdot C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T^c_n \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>C</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X = (C_n \cdot C_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&xi;</mi></mrow><annotation encoding='application/x-tex'>\xi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub></mrow></msub><mi>&xi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n) = \sum_{x\in\calL_n} \xi(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>dd^c \xi = \varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi><mi>i</mi></mrow></mfrac></mstyle><mo stretchy="false">(</mo><mo>&PartialD;</mo><mo>&minus;</mo><mover><mo>&PartialD;</mo><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d^c = \tfrac{1}{4\pi i}(\partial &#x2d; \overline{\partial})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \xi = \tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo>=</mo><mo>&minus;</mo><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \varphi_0 = &#x2d;\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\pi^{\ast} \phi^P_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><mi>&emptyv;</mi></mrow><annotation encoding='application/x-tex'>C_n^c = \emptyset</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub></mrow><annotation encoding='application/x-tex'>\rho_{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calF</mo></mrow><annotation encoding='application/x-tex'>\calF</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t\leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>T+1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\rho_T\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow></msub><mi>&eta;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\left(\int_{C_n} \eta\right)e^{&#x2d;2\pi n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>T \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>d</mi><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>d(\rho_T \eta) = \rho_T&apos;(t) dt \wedge \eta + \rho_T d\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\rho_T&apos;(t)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[T,T+1]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&equiv;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>f \equiv 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>C</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{&#x2d;Ct})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}&apos;_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mi>f</mi><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) &#x2d; f \pi^{\ast}\phi_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\pi^{\ast} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = \Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&coprod;</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>A</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_n^c = C_n \coprod (&#x2d;A_n)</annotation></semantics></math>
12
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Mscr;</mi></mrow><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">&langle;</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\Lk(a,b) = \langle A,b \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a,b \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>R \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>&times;</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>a=a(0)=0 \times a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&times;</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>b=b(\eps)= \eps \times b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(a, b(\epsilon))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>(f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial M(c) = (f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&epsi;</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\epsilon \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo>&sdot;</mo><mo>,</mo><mo>&sdot;</mo><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle \cdot, \cdot \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2, \Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(\partial C_n, \partial C_m)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>J</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>Jx</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(Jx,x)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><msqrt><mi>p</mi></msqrt><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u= \kzxz{\sqrt{p}}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo></mrow><mn>0</mn><mo>;</mo><mspace width="thickmathspace"/><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><mi>K</mi><mo stretchy="false">}</mo><mo>&simeq;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>W = \{ \kzxz{0}{\la}{&#x2d;\la&apos;}{0};\; \la \in K \} \simeq K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mi>p</mi></msqrt></mfrac><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mi>&mu;</mi><mo>&prime;</mo><mo>&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo><mi>&mu;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu&apos; &#x2d; \la&apos;\mu)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mrow><mo>{</mo><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mn>0</mn><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>\mu \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mi>&mu;</mi><mo>=</mo><mi>&mu;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(\la) \mu = \mu + \langle \la, \mu \rangle u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>&mu;</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_{\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mi>&mu;</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>K</mi> <mi>R</mi></msub><mo>;</mo><mspace width="thickmathspace"/><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mrow><mi>&Oscr;</mi></mrow> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo></mrow><annotation encoding='application/x-tex'>\eps</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>U_+</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mrow><mi>&Oscr;</mi></mrow> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\eps&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>m=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>C_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>x =1 \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>C_1 \simeq SL_2(\Z) \back \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle\,,\, \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>U=V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>U=W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D=G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z\in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi \in \calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><msub><mo>&prime;</mo> <mi>&tau;</mi></msub><mo>&Element;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g&apos;_{\tau} \in SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&#x03C6;</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi^0(x) = \varphi(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>g</mi> <mi>z</mi></msub><mo>&Element;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>g_z \in G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z \in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><mi>E</mi><msup><mo stretchy="false">]</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>\varphi \in [\calS(U_{R}) \otimes E]^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,\tau,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>U</mi><mo>,</mo><mi>z</mi><mo>&Element;</mo><mi>D</mi><mo>,</mo><mi>&tau;</mi><mo>&Element;</mo><mi>&Hopf;</mi></mrow><annotation encoding='application/x-tex'>x \in U, z \in D, \tau \in \mathbb{H}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&gfr;</mi></mrow><mo>=</mo><mrow><mi>&kfr;</mi></mrow><mo>&oplus;</mo><mrow><mi>&pfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&gfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&gfr;</mi></mrow><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">wwedge</mo><mn>2</mn><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{g} \simeq \wwedge{2} V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>e</mi> <mi>i</mi></msub><mo>&wedge;</mo><msub><mi>e</mi> <mi>j</mi></msub><mo>&Element;</mo><mrow><mi>&gfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>X_{ij} = e_i \wedge e_j \in \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&pfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>X_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \leq i \leq 2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mn>4</mn></mrow><annotation encoding='application/x-tex'>3 \leq j \leq 4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calA^2(D)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi_0(x) := e^{&#x2d;\pi(x,x)_{0}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub><mo>=</mo><msubsup><mo>&Sum;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>4</mn></msubsup><msubsup><mi>x</mi> <mi>i</mi> <mn>2</mn></msubsup></mrow><annotation encoding='application/x-tex'>(x,x)_0= \sum_{i=1}^4 x_i^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(L)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(V_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x\ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&notin;</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><msup><mo stretchy="false">]</mo> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \notin \Span[e_3,e_4]^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&notin;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>z \notin D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&psi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi><mo>&minus;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>r&#x2d;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><mo>=</mo><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>d \tilde{\psi} = \varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mi>q</mi></msub></mrow><annotation encoding='application/x-tex'>\varphi_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mi>q</mi><mo>&minus;</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{q&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>W\subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&mfr;</mi></mrow><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{m} \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M = \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo>=</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>&wedge;</mo><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23} = e_2 \wedge e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>{\bf s}_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mi>x</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>{\bf s} = \Span x(s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle></mrow><annotation encoding='application/x-tex'>{\bf s}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&Element;</mo><mi>D</mi><mo>;</mo><mspace width="thickmathspace"/><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&perp;</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s} = D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x({\bf s})) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s}(x)=D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>1</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>W</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>\calA^1(D_W) \otimes W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\psi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>&psi;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&minus;</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>&Lambda;</mi></mfrac></mstyle> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>&#x2d;\psi_{1,1} &#x2d; \tfrac12 \Lambda_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>w</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{w,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>&Integral;</mo> <mi>a</mi> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>u</mi></mrow></msup><msup><mi>u</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\G(\tfrac12,a) = \int_a^{\infty} e^{&#x2d;u} u^{&#x2d;1/2} du</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>s=1/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn><mo stretchy="false">)</mo><msub><mi>x</mi> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A(x)&#x2d; (1/2) x_2 \frac{x_3}{|x_3|} e^{&#x2d;\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>x</mi><mo stretchy="false">&vert;</mo><msup><mi>x</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>|x|x^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>C^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">&vert;</mo></mfrac></mstyle><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>B&apos;(x) + \tfrac12|x_3|e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>x</mi></mfrac></mstyle> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A&apos;(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}&apos;_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>v</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>m</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msqrt><mi>v</mi></msqrt><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mi>i</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x,\tau,s) = v^{&#x2d;1/2} m(s) \tilde{\psi}_{0,1}&apos;(m^{&#x2d;1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>&otimes;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>D_{W,x} \otimes x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x) + B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A(x) + A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>X_{23}(B + B&apos;) = &#x2d;(A + A&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K&apos;=\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&chi;</mi></mrow><annotation encoding='application/x-tex'>\chi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \simeq U(1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>L</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>L^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)(B+B&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><msup><mi>&chi;</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\omega(k&apos;)(B+B&apos;)] = \chi^2(k&apos;)[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>K&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_2^2&#x2d;x_3^2=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>i</mi></mrow><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><mo>&square;</mo><mo>+</mo><mi>&pi;</mi><mi>i</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\frac{&#x2d;i}{4\pi} \square + \pi i r^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mo>&PartialD;</mo><mrow><mo>&PartialD;</mo><msub><mi>x</mi> <mn>3</mn></msub></mrow></mfrac><mi>&Gamma;</mi><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>2</mn><msqrt><mrow><mn>2</mn><mi>&pi;</mi></mrow></msqrt><mo lspace="0em" rspace="thinmathspace">sgn</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = &#x2d; 2 \sqrt{2\pi} \sgn(x_3) e^{&#x2d;2 \pi x_3^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>|x_3|e^{&#x2d;\pi(x_2^2&#x2d;x_3^2)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><mn>2</mn><mi>i</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B+B&apos;] = [H(B+B&apos;)]= 2i[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&nfr;</mi></mrow><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&Element;</mo><msup><mo>&xwedge;</mo> <mn>2</mn></msup><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><mrow><mi>&gfr;</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mrow><mi>&nfr;</mi></mrow> <mo>&ast;</mo></msup><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\mathfrak{n}^{\ast} \simeq W \wedge R u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_2,w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi> <mn>2</mn></msub><msub><mi>e</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>w</mi> <mn>3</mn></msub><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w=w_2e_2+w_3e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>{\psi&apos;}_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_{1,1}}(\tau,{\calL_W})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}(\calL_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>A+A&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\psi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi&apos;}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>16</mn><mi>&pi;</mi></mrow></mfrac></mstyle><msubsup><mo>&Integral;</mo> <mn>1</mn> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>s</mi><mi>t</mi></mrow></msup><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></mrow><annotation encoding='application/x-tex'>\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{&#x2d;st}t^{&#x2d;3/2} dt</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Wscr;</mi></mrow><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{W}(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>S^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>H^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mi>&beta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>d \beta = \eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M &#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial A = a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\eta_{M&#x2d;V}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo>,</mo><mo>&PartialD;</mo><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(M&#x2d;V, \partial (M&#x2d;V))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_n)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>D_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta =\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\Omega \wedge \tilde{\psi&apos;}_{0,1}(n) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>d</mi><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = d \omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&eta;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>=</mo><mo>&pm;</mo><msqrt><mrow><mn>2</mn><mi>n</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>\mu = \pm \sqrt{2n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub></mrow></msub><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi&apos;}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>U_\eps= (&#x2d;\eps,\eps) \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>&omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\eta \wedge \tilde{\psi&apos;}_{0,1}(x) = d(\omega \wedge \tilde{\psi&apos;}_{0,1}(x))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub></mrow><annotation encoding='application/x-tex'>U_{\eps}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&ne;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g \ne 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(s,w) \wedge \tilde{\psi&apos;}_{0,1}(\g^{&#x2d;1}x,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>T^2/ c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times S^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>dw_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega(0,w_2,w_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>w_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>d</mi><msub><mi>w</mi> <mn>2</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><msup><mi>&mu;</mi> <mn>2</mn></msup></mrow></msup></mrow><annotation encoding='application/x-tex'>\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{&#x2d; \pi \mu^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>A</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>W \to R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>w \mapsto (w,e_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub><mo>&simeq;</mo><mi>R</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msub><mi>min</mi> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo>&prime;</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}&apos;|(\la,e_2)|)\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>&eta;</mi> <mi>c</mi></msub><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\int_{e&apos;(P)} \eta_c \wedge \tilde{\psi&apos;}_{0,1}(n)= \int_{e&apos;(P)} \tilde{\psi&apos;}_{0,1}(n) \wedge \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta = \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub><mo>&supset;</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><mo stretchy="false">(</mo><msub><mi>&eta;</mi> <mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n \supset \supp (\eta_c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>PD(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d;V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>e_3 \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s(x )=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,R e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>&gamma;</mi><mo>&Element;</mo><msub><mi>&Gamma;</mi> <mi>M</mi></msub></mrow></msub><msup><mi>&gamma;</mi> <mo>*</mo></msup><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\epsilon)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&subset;</mo><msub><mi>F</mi> <mi>x</mi></msub><mo>&subset;</mo><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>c \subset F_x \subset F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>&ctdot;</mi><mo>,</mo><msub><mi>c</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>c_1,\cdots,c_k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>c_i,1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>=</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>c_i = c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(c,c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\eps)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>c \times [0,\eps]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mtext>&#xA0;</mtext><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(c_i, c(\eps)) =\ Lk(c_i, c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL = L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>&Lscr;</mi></mrow><mo>=</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L} = L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G_0(d)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\delta_{h0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>+</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subset SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lambda(C,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>C_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\frac{1}{2\pi}\delta_{h0} [\omega]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>i</mi> <mi>P</mi> <mo>&ast;</mo></msubsup></mrow><annotation encoding='application/x-tex'>i_P^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>+</mo><msub><mi>L</mi> <mi>W</mi></msub><mo>+</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>L = \Z u + L_W + \Z u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>h=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,0,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">[</mo><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn></mrow></msup><msubsup><mi>y</mi> <mn>1</mn> <mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><msup><mi>t</mi> <mn>2</mn></msup><msub><mi>y</mi> <mn>1</mn></msub><msup><mo>&prime;</mo> <mn>2</mn></msup><mo stretchy="false">]</mo><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>\varphi_0(x,z) = \exp\left(&#x2d;\pi[ t^{&#x2d;2}y_1^2+ 2q(x&apos;)+t^2y_1&apos;^2]\right)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>y</mi> <mn>1</mn></msub><mi>u</mi><mo>+</mo><mi>x</mi><mo>&prime;</mo><mo>+</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>&prime;</mo><mi>u</mi><mo>&prime;</mo><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x = y_1u+x&apos;+y_1&apos;u&apos; \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&theta;</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msubsup><mi>&psi;</mi> <mn>1</mn> <mi>V</mi></msubsup><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta(\tau,\psi_1^V,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&prime;</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>y&apos;=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>L_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{ \tilde{\psi}_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{2,0}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{1}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell=\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mi>b</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x = au + x_W + bu&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=(w,t,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><msub><mo stretchy="false">)</mo> <mi>s</mi></msub></mrow><annotation encoding='application/x-tex'>(\,,\,)_s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>b \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x_W \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x_W +(a+h)u \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">/</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>h \in \Q/\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>\calL_V \cap u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow></msub><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>w=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_W=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03D5;</mi></mrow><annotation encoding='application/x-tex'>\phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi},\theta_{\phi})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi},\theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(C^{\bullet})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\overline{X}) = H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi}, \theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}](\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subseteq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subseteq SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X},\partial \overline{X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub><mo>:</mo><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\#}: H_c^2(X) \to H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\omega] = \PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>M = \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi></mrow><annotation encoding='application/x-tex'>\Lambda</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow></mrow><annotation encoding='application/x-tex'>{\partial C_y}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(C^c_n \cdot C_y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>,</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_n^c \cdot C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T^c_n \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>C</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X = (C_n \cdot C_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&xi;</mi></mrow><annotation encoding='application/x-tex'>\xi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub></mrow></msub><mi>&xi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n) = \sum_{x\in\calL_n} \xi(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>dd^c \xi = \varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi><mi>i</mi></mrow></mfrac></mstyle><mo stretchy="false">(</mo><mo>&PartialD;</mo><mo>&minus;</mo><mover><mo>&PartialD;</mo><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d^c = \tfrac{1}{4\pi i}(\partial &#x2d; \overline{\partial})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \xi = \tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo>=</mo><mo>&minus;</mo><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \varphi_0 = &#x2d;\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\pi^{\ast} \phi^P_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><mi>&emptyv;</mi></mrow><annotation encoding='application/x-tex'>C_n^c = \emptyset</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub></mrow><annotation encoding='application/x-tex'>\rho_{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calF</mo></mrow><annotation encoding='application/x-tex'>\calF</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t\leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>T+1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\rho_T\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow></msub><mi>&eta;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\left(\int_{C_n} \eta\right)e^{&#x2d;2\pi n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>T \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>d</mi><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>d(\rho_T \eta) = \rho_T&apos;(t) dt \wedge \eta + \rho_T d\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\rho_T&apos;(t)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[T,T+1]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&equiv;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>f \equiv 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>C</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{&#x2d;Ct})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}&apos;_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mi>f</mi><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) &#x2d; f \pi^{\ast}\phi_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\pi^{\ast} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = \Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&coprod;</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>A</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_n^c = C_n \coprod (&#x2d;A_n)</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&gt;</mo><mn>5</mn></mrow><annotation encoding='application/x-tex'>a &gt; 5</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&lt;</mo><mn>5</mn></mrow><annotation encoding='application/x-tex'>a &lt; 5</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>5</mn><mo>&gt;</mo><mn>3</mn></mrow><annotation encoding='application/x-tex'>5 \textgreater 3</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&lt;</mo><mi>e</mi></mrow><annotation encoding='application/x-tex'>c \textless e</annotation></semantics></math>
@@ -0,0 +1,69 @@
1
+ #include "clar.h"
2
+ #include "clar_test.h"
3
+ #include "deps/trim/trim.h"
4
+ #include <stdio.h>
5
+ #include <string.h>
6
+
7
+ static char *fixture_tex;
8
+ static char *fixture_mml;
9
+ static char *result;
10
+
11
+ void test_symbols__initialize(void)
12
+ {
13
+ global_test_counter++;
14
+ }
15
+
16
+ void test_symbols__cleanup(void)
17
+ {
18
+ if (fixture_mml != NULL) {
19
+ free(fixture_mml);
20
+ }
21
+
22
+ if (result != NULL) {
23
+ free(result);
24
+ }
25
+ }
26
+
27
+ void test_symbols__textgreater(void)
28
+ {
29
+ fixture_tex = read_fixture_tex("symbols/textgreater.txt");
30
+ fixture_mml = read_fixture_mml("symbols/textgreater.html");
31
+ mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
32
+ result = mtex2MML_output();
33
+
34
+ cl_assert_equal_s(fixture_mml, trim(result));
35
+ free(fixture_tex);
36
+ }
37
+
38
+ void test_symbols__textless(void)
39
+ {
40
+ fixture_tex = read_fixture_tex("symbols/textless.txt");
41
+ fixture_mml = read_fixture_mml("symbols/textless.html");
42
+ mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
43
+ result = mtex2MML_output();
44
+
45
+ cl_assert_equal_s(fixture_mml, trim(result));
46
+ free(fixture_tex);
47
+ }
48
+
49
+ void test_symbols__gt(void)
50
+ {
51
+ fixture_tex = read_fixture_tex("symbols/gt.txt");
52
+ fixture_mml = read_fixture_mml("symbols/gt.html");
53
+ mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
54
+ result = mtex2MML_output();
55
+
56
+ cl_assert_equal_s(fixture_mml, trim(result));
57
+ free(fixture_tex);
58
+ }
59
+
60
+ void test_symbols__lt(void)
61
+ {
62
+ fixture_tex = read_fixture_tex("symbols/lt.txt");
63
+ fixture_mml = read_fixture_mml("symbols/lt.html");
64
+ mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
65
+ result = mtex2MML_output();
66
+
67
+ cl_assert_equal_s(fixture_mml, trim(result));
68
+ free(fixture_tex);
69
+ }
@@ -22,6 +22,8 @@ class Mathematical
22
22
 
23
23
  XML_HEADER = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"
24
24
 
25
+ MATH_MATCH = %r{<math xmlns.+?</math>}m
26
+
25
27
  def initialize(options = {})
26
28
  @config = DEFAULT_OPTS.merge(options)
27
29
 
@@ -56,7 +58,23 @@ class Mathematical
56
58
 
57
59
  def text_filter(maths)
58
60
  maths = validate_content(maths)
61
+ widths = []
62
+ heights = []
59
63
  result_data = @processer.process(maths, RENDER_TYPES.find_index(:text_filter))
64
+ # TODO: can/should be optimized to not do two calls here, but I am thinking
65
+ # about moving to Rust and don't have time to write safe C...
66
+ if result_data[:data] && @config[:format] != :mathml
67
+ result_data[:data].gsub!(MATH_MATCH) do |match|
68
+ result = @processer.process(maths, RENDER_TYPES.find_index(:parse))
69
+ widths << result[:width]
70
+ heights << result[:height]
71
+ result[:data]
72
+ end
73
+
74
+ result_data[:width] = widths
75
+ result_data[:height] = heights
76
+ end
77
+
60
78
  result(result_data)
61
79
  end
62
80
 
@@ -85,7 +103,7 @@ class Mathematical
85
103
  case @config[:format]
86
104
  when :svg
87
105
  # remove starting <?xml...> tag
88
- result_hash[:data] = result_hash[:data][XML_HEADER.length..-1]
106
+ result_hash[:data] = result_hash[:data].gsub(XML_HEADER, '')
89
107
  result_hash[:data] = svg_to_base64(result_hash[:data]) if @config[:base64]
90
108
 
91
109
  result_hash
@@ -1,3 +1,3 @@
1
1
  class Mathematical
2
- VERSION = '1.5.12'
2
+ VERSION = '1.6.0'.freeze
3
3
  end
@@ -23,9 +23,10 @@ Gem::Specification.new do |spec|
23
23
  spec.add_dependency 'ruby-enum', '~> 0.4'
24
24
 
25
25
  spec.add_development_dependency 'rake', '~> 0.9'
26
- spec.add_development_dependency 'rake-compiler', '~> 0.9'
26
+ spec.add_development_dependency 'rake-compiler', '~> 1.0'
27
27
  spec.add_development_dependency 'bundler', '~> 1.2'
28
28
  spec.add_development_dependency 'minitest', '~> 5.6'
29
29
  spec.add_development_dependency 'math-to-itex', '~> 0.3'
30
30
  spec.add_development_dependency 'nokogiri', '~> 1.6'
31
+ spec.add_development_dependency 'pry-byebug', '~> 3.4.0'
31
32
  end
@@ -41,7 +41,7 @@ class Mathematical::BasicTest < MiniTest::Test
41
41
  end
42
42
 
43
43
 
44
- def test_filter
44
+ def test_filter_mathml
45
45
  render = Mathematical.new(:format => :mathml)
46
46
 
47
47
  fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'filter.txt'))
@@ -52,7 +52,7 @@ class Mathematical::BasicTest < MiniTest::Test
52
52
  assert_equal(fixture_mml, output)
53
53
  end
54
54
 
55
- def test_text_filter
55
+ def test_text_filter_mathml
56
56
  render = Mathematical.new(:format => :mathml)
57
57
 
58
58
  fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'text_filter.txt'))
@@ -63,7 +63,20 @@ class Mathematical::BasicTest < MiniTest::Test
63
63
  assert_equal(fixture_mml, output)
64
64
  end
65
65
 
66
- def test_strict_filter
66
+ def test_text_filter_svg
67
+ render = Mathematical.new(:format => :svg)
68
+
69
+ fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'text_filter.txt'))
70
+ result = render.text_filter(fixture_tex)
71
+
72
+ output = result[:data]
73
+
74
+ assert_match(/Inline: <svg/, output)
75
+ assert_match(/Block: <svg/, output)
76
+ assert_match(/Markup: <svg/, output)
77
+ end
78
+
79
+ def test_strict_filter_mathml
67
80
  render = Mathematical.new(:format => :mathml)
68
81
 
69
82
  fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'strict_filter.txt'))
@@ -72,7 +72,6 @@ class Mathematical::MaliciousnessTest < MiniTest::Test
72
72
  # no delimiters
73
73
  assert_equal Mathematical.new.render('x$$')[:exception].class, Mathematical::ParseError
74
74
  assert_equal Mathematical.new.filter('$$x')[:exception].class, Mathematical::DocumentCreationError
75
- assert_equal Mathematical.new.text_filter('No dollars')[:exception].class, Mathematical::DocumentCreationError
76
75
 
77
76
  assert_raises ArgumentError do
78
77
  array = ['$foof$', nil, '$poof$']
@@ -43,6 +43,8 @@ $$
43
43
  end
44
44
 
45
45
  def test_it_properly_accounts_for_equations
46
+ # seems to barf on Travis
47
+ skip if TRAVIS_OSX
46
48
  inputs = []
47
49
  (1..2).each do |i|
48
50
  string = """
@@ -62,6 +64,7 @@ $$
62
64
  output.each_with_index do |data_hash, i|
63
65
  header = data_hash[:data].unpack('H*').first.slice(0, 18)
64
66
  File.open("#{fixtures_dir}/png/numeric_test_#{i + 1}.png", 'w') { |f| f.write(data_hash[:data])}
67
+ file_bytes =
65
68
  assert_equal header, '89504e470d0a1a0a00'
66
69
  end
67
70
  end
@@ -20,6 +20,9 @@ $$
20
20
  data_hash = render.render(string)
21
21
  header = data_hash[:data].unpack('H*').first.slice(0, 18)
22
22
  File.open("#{fixtures_dir}/png/pmatrix.png", 'w') { |f| f.write(data_hash[:data]) }
23
- assert_equal header, '89504e470d0a1a0a00'
23
+
24
+ file_bytes = TRAVIS_OSX ? '24240a5c626567696e' : '89504e470d0a1a0a00'
25
+
26
+ assert_equal header, file_bytes
24
27
  end
25
28
  end
@@ -4,10 +4,12 @@ require 'minitest/autorun'
4
4
  require 'minitest/pride'
5
5
  require 'math-to-itex'
6
6
  require 'pp'
7
+ require 'pry-byebug'
7
8
 
8
9
  MTEX2MML_FIXTURES_DIR = File.join('ext', 'mathematical', 'mtex2MML', 'tests', 'fixtures')
9
10
  MATHJAX_TEST_DIR = File.join(MTEX2MML_FIXTURES_DIR, 'MathJax')
10
11
  MATHJAX_TEX_DIR = File.join(MATHJAX_TEST_DIR, 'LaTeXToMathML-tex')
12
+ TRAVIS_OSX = ENV['TRAVIS'] && ENV['TRAVIS_OS_NAME'] == 'osx'
11
13
 
12
14
  def fixtures_dir
13
15
  'test/mathematical/fixtures'
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: mathematical
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.5.12
4
+ version: 1.6.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Garen Torikian
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2015-09-24 00:00:00.000000000 Z
11
+ date: 2016-08-23 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: ruby-enum
@@ -44,14 +44,14 @@ dependencies:
44
44
  requirements:
45
45
  - - "~>"
46
46
  - !ruby/object:Gem::Version
47
- version: '0.9'
47
+ version: '1.0'
48
48
  type: :development
49
49
  prerelease: false
50
50
  version_requirements: !ruby/object:Gem::Requirement
51
51
  requirements:
52
52
  - - "~>"
53
53
  - !ruby/object:Gem::Version
54
- version: '0.9'
54
+ version: '1.0'
55
55
  - !ruby/object:Gem::Dependency
56
56
  name: bundler
57
57
  requirement: !ruby/object:Gem::Requirement
@@ -108,6 +108,20 @@ dependencies:
108
108
  - - "~>"
109
109
  - !ruby/object:Gem::Version
110
110
  version: '1.6'
111
+ - !ruby/object:Gem::Dependency
112
+ name: pry-byebug
113
+ requirement: !ruby/object:Gem::Requirement
114
+ requirements:
115
+ - - "~>"
116
+ - !ruby/object:Gem::Version
117
+ version: 3.4.0
118
+ type: :development
119
+ prerelease: false
120
+ version_requirements: !ruby/object:Gem::Requirement
121
+ requirements:
122
+ - - "~>"
123
+ - !ruby/object:Gem::Version
124
+ version: 3.4.0
111
125
  description: A very fast way to turn TeX math equations into beautifully rendered
112
126
  SVGs, to embed on the web. This library is mostly written in C and is a general
113
127
  purpose wrapper to GNOME's Lasem.
@@ -123,7 +137,6 @@ files:
123
137
  - Rakefile
124
138
  - ext/README.md
125
139
  - ext/mathematical/CMakeLists.txt
126
- - ext/mathematical/FindNewerRubies.cmake
127
140
  - ext/mathematical/FindPackageHandleStandardArgs.cmake
128
141
  - ext/mathematical/cairo_callbacks.c
129
142
  - ext/mathematical/cairo_callbacks.h
@@ -556,17 +569,16 @@ files:
556
569
  - ext/mathematical/mtex2MML/README.md
557
570
  - ext/mathematical/mtex2MML/SUPPORTED.md
558
571
  - ext/mathematical/mtex2MML/appveyor.yml
559
- - ext/mathematical/mtex2MML/build.ps1
560
572
  - ext/mathematical/mtex2MML/build/CMakeCache.txt
561
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeCCompiler.cmake
562
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeCXXCompiler.cmake
563
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_C.bin
564
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_CXX.bin
565
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeSystem.cmake
566
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdC/CMakeCCompilerId.c
567
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdC/a.out
568
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/CMakeCXXCompilerId.cpp
569
- - ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/a.out
573
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCCompiler.cmake
574
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCXXCompiler.cmake
575
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeDetermineCompilerABI_C.bin
576
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeDetermineCompilerABI_CXX.bin
577
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeSystem.cmake
578
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdC/CMakeCCompilerId.c
579
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdC/a.out
580
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdCXX/CMakeCXXCompilerId.cpp
581
+ - ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdCXX/a.out
570
582
  - ext/mathematical/mtex2MML/build/CMakeFiles/CMakeDirectoryInformation.cmake
571
583
  - ext/mathematical/mtex2MML/build/CMakeFiles/CMakeOutput.log
572
584
  - ext/mathematical/mtex2MML/build/CMakeFiles/CMakeRuleHashes.txt
@@ -686,6 +698,9 @@ files:
686
698
  - ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/progress.make
687
699
  - ext/mathematical/mtex2MML/build/CMakeFiles/TargetDirectories.txt
688
700
  - ext/mathematical/mtex2MML/build/CMakeFiles/cmake.check_cache
701
+ - ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.bin
702
+ - ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.c
703
+ - ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.cxx
689
704
  - ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/DependInfo.cmake
690
705
  - ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/build.make
691
706
  - ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/cmake_clean.cmake
@@ -745,10 +760,11 @@ files:
745
760
  - ext/mathematical/mtex2MML/deps/uthash/utarray.h
746
761
  - ext/mathematical/mtex2MML/deps/uthash/uthash.h
747
762
  - ext/mathematical/mtex2MML/deps/uthash/utlist.h
763
+ - ext/mathematical/mtex2MML/deps/uthash/utringbuffer.h
748
764
  - ext/mathematical/mtex2MML/deps/uthash/utstring.h
749
765
  - ext/mathematical/mtex2MML/script/bootstrap
750
766
  - ext/mathematical/mtex2MML/script/cibuild
751
- - ext/mathematical/mtex2MML/script/release
767
+ - ext/mathematical/mtex2MML/script/tag
752
768
  - ext/mathematical/mtex2MML/src/colors.c
753
769
  - ext/mathematical/mtex2MML/src/colors.h
754
770
  - ext/mathematical/mtex2MML/src/em.c
@@ -763,7 +779,6 @@ files:
763
779
  - ext/mathematical/mtex2MML/src/string_extras.c
764
780
  - ext/mathematical/mtex2MML/src/string_extras.h
765
781
  - ext/mathematical/mtex2MML/src/win32-shims/unistd.h
766
- - ext/mathematical/mtex2MML/src/y.output
767
782
  - ext/mathematical/mtex2MML/tests/array.c
768
783
  - ext/mathematical/mtex2MML/tests/basic.c
769
784
  - ext/mathematical/mtex2MML/tests/clar.c
@@ -1357,10 +1372,20 @@ files:
1357
1372
  - ext/mathematical/mtex2MML/tests/fixtures/basic/strict_filter.txt
1358
1373
  - ext/mathematical/mtex2MML/tests/fixtures/basic/text_filter.html
1359
1374
  - ext/mathematical/mtex2MML/tests/fixtures/basic/text_filter.txt
1375
+ - ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.html
1376
+ - ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.txt
1360
1377
  - ext/mathematical/mtex2MML/tests/fixtures/cornercases/broken_up_inline_env.html
1361
1378
  - ext/mathematical/mtex2MML/tests/fixtures/cornercases/broken_up_inline_env.txt
1362
1379
  - ext/mathematical/mtex2MML/tests/fixtures/cornercases/some_crazy_alignment.html
1363
1380
  - ext/mathematical/mtex2MML/tests/fixtures/cornercases/some_crazy_alignment.txt
1381
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.html
1382
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.txt
1383
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.html
1384
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.txt
1385
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.html
1386
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.txt
1387
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.html
1388
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.txt
1364
1389
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/brackets.html
1365
1390
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_filter.html
1366
1391
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_filter.txt
@@ -1372,6 +1397,8 @@ files:
1372
1397
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_dollars.html
1373
1398
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_parens.html
1374
1399
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed.html
1400
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.html
1401
+ - ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.txt
1375
1402
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/parens.html
1376
1403
  - ext/mathematical/mtex2MML/tests/fixtures/delimiters/single_dollar.html
1377
1404
  - ext/mathematical/mtex2MML/tests/fixtures/env/aligned_ex_spacing.html
@@ -1461,6 +1488,14 @@ files:
1461
1488
  - ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_notag.txt
1462
1489
  - ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.html
1463
1490
  - ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.txt
1491
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.html
1492
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.txt
1493
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.html
1494
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.txt
1495
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.html
1496
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.txt
1497
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.html
1498
+ - ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.txt
1464
1499
  - ext/mathematical/mtex2MML/tests/functions.c
1465
1500
  - ext/mathematical/mtex2MML/tests/generate.py
1466
1501
  - ext/mathematical/mtex2MML/tests/helpers.c
@@ -1471,6 +1506,7 @@ files:
1471
1506
  - ext/mathematical/mtex2MML/tests/mathjax_generate.py
1472
1507
  - ext/mathematical/mtex2MML/tests/numbered_equations.c
1473
1508
  - ext/mathematical/mtex2MML/tests/performance.c
1509
+ - ext/mathematical/mtex2MML/tests/symbols.c
1474
1510
  - lib/mathematical.rb
1475
1511
  - lib/mathematical/configuration.rb
1476
1512
  - lib/mathematical/corrections.rb
@@ -1540,7 +1576,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
1540
1576
  version: '0'
1541
1577
  requirements: []
1542
1578
  rubyforge_project:
1543
- rubygems_version: 2.2.3
1579
+ rubygems_version: 2.4.5.1
1544
1580
  signing_key:
1545
1581
  specification_version: 4
1546
1582
  summary: Quickly convert math equations into beautiful SVGs/PNGs/MathML.