mathematical 1.5.12 → 1.6.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +11 -30
- data/Rakefile +1 -0
- data/ext/mathematical/CMakeLists.txt +4 -1
- data/ext/mathematical/extconf.rb +4 -1
- data/ext/mathematical/lasem/NEWS +17 -0
- data/ext/mathematical/lasem/autogen.sh +5 -2
- data/ext/mathematical/lasem/configure.ac +3 -3
- data/ext/mathematical/lasem/po/cs.po +50 -18
- data/ext/mathematical/lasem/po/de.po +62 -26
- data/ext/mathematical/lasem/po/es.po +27 -18
- data/ext/mathematical/lasem/po/hu.po +50 -21
- data/ext/mathematical/lasem/po/id.po +49 -16
- data/ext/mathematical/lasem/po/lt.po +47 -18
- data/ext/mathematical/lasem/po/pl.po +53 -24
- data/ext/mathematical/lasem/po/pt_BR.po +70 -29
- data/ext/mathematical/lasem/po/sl.po +43 -29
- data/ext/mathematical/lasem/po/sr.po +67 -27
- data/ext/mathematical/lasem/po/sr@latin.po +67 -27
- data/ext/mathematical/lasem/po/sv.po +51 -18
- data/ext/mathematical/lasem/src/lasemrender.c +107 -14
- data/ext/mathematical/lasem/src/lsmitex.c +1 -0
- data/ext/mathematical/lasem/src/lsmsvgelement.c +0 -2
- data/ext/mathematical/lasem/src/lsmsvglength.c +2 -2
- data/ext/mathematical/lasem/src/lsmsvgmatrix.c +16 -0
- data/ext/mathematical/lasem/src/lsmsvgmatrix.h +2 -1
- data/ext/mathematical/lasem/src/lsmsvgsvgelement.c +8 -2
- data/ext/mathematical/lasem_overrides.c +3 -3
- data/ext/mathematical/lib/liblasem.dylib +0 -0
- data/ext/mathematical/lib/libmtex2MML.a +0 -0
- data/ext/mathematical/mathematical.c +1 -1
- data/ext/mathematical/mtex2MML/CMakeLists.txt +5 -0
- data/ext/mathematical/mtex2MML/README.md +3 -3
- data/ext/mathematical/mtex2MML/SUPPORTED.md +2 -0
- data/ext/mathematical/mtex2MML/appveyor.yml +15 -5
- data/ext/mathematical/mtex2MML/build/CMakeCache.txt +181 -116
- data/ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCCompiler.cmake +67 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCXXCompiler.cmake +68 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CMakeDetermineCompilerABI_C.bin +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CMakeDetermineCompilerABI_CXX.bin +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeSystem.cmake +15 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CompilerIdC/CMakeCCompilerId.c +223 -55
- data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1/CompilerIdCXX → 3.6.1/CompilerIdC}/a.out +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1 → 3.6.1}/CompilerIdCXX/CMakeCXXCompilerId.cpp +202 -44
- data/ext/mathematical/mtex2MML/build/CMakeFiles/{2.8.10.1/CompilerIdC → 3.6.1/CompilerIdCXX}/a.out +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeDirectoryInformation.cmake +8 -8
- data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeOutput.log +405 -109
- data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeRuleHashes.txt +29 -29
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Makefile.cmake +68 -60
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Makefile2 +564 -522
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/build.make +14 -7
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/TargetDirectories.txt +28 -21
- data/ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.bin +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.c +34 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.cxx +405 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/build.make +13 -6
- data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/DependInfo.cmake +16 -18
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/build.make +55 -42
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/flags.make +5 -3
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/link.txt +1 -1
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/C.includecache +115 -27
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/DependInfo.cmake +16 -18
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/build.make +54 -42
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/cmake_clean_target.cmake +1 -1
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.internal +19 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.make +18 -19
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/flags.make +5 -3
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/link.txt +2 -2
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/progress.make +9 -8
- data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/DependInfo.cmake +4 -20
- data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/build.make +13 -6
- data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/DependInfo.cmake +16 -18
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/build.make +60 -47
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/cmake_clean.cmake +4 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/flags.make +5 -3
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/link.txt +1 -1
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/progress.make +10 -9
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/DependInfo.cmake +17 -18
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/build.make +178 -124
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/cmake_clean.cmake +5 -4
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/flags.make +5 -3
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/link.txt +1 -1
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/progress.make +27 -25
- data/ext/mathematical/mtex2MML/build/CMakeFiles/progress.marks +1 -1
- data/ext/mathematical/mtex2MML/build/CTestTestfile.cmake +2 -2
- data/ext/mathematical/mtex2MML/build/DartConfiguration.tcl +25 -7
- data/ext/mathematical/mtex2MML/build/Makefile +419 -307
- data/ext/mathematical/mtex2MML/build/cmake_install.cmake +32 -32
- data/ext/mathematical/mtex2MML/build/lexer.c +4317 -4379
- data/ext/mathematical/mtex2MML/build/libmtex2MML.a +0 -0
- data/ext/mathematical/mtex2MML/build/mtex2mml_export.h +12 -5
- data/ext/mathematical/mtex2MML/build/parser.c +5549 -5473
- data/ext/mathematical/mtex2MML/build/parser.h +499 -490
- data/ext/mathematical/mtex2MML/build/parser.output +93361 -92735
- data/ext/mathematical/mtex2MML/deps/strdup/package.json +2 -2
- data/ext/mathematical/mtex2MML/deps/strdup/strdup.c +2 -0
- data/ext/mathematical/mtex2MML/deps/strdup/strdup.h +2 -0
- data/ext/mathematical/mtex2MML/deps/uthash/package.json +2 -1
- data/ext/mathematical/mtex2MML/deps/uthash/utarray.h +42 -36
- data/ext/mathematical/mtex2MML/deps/uthash/uthash.h +334 -218
- data/ext/mathematical/mtex2MML/deps/uthash/utlist.h +282 -144
- data/ext/mathematical/mtex2MML/deps/uthash/utringbuffer.h +108 -0
- data/ext/mathematical/mtex2MML/deps/uthash/utstring.h +15 -10
- data/ext/mathematical/mtex2MML/script/bootstrap +6 -12
- data/ext/mathematical/mtex2MML/script/cibuild +47 -1
- data/ext/mathematical/mtex2MML/script/{release → tag} +1 -1
- data/ext/mathematical/mtex2MML/src/environment.c +73 -13
- data/ext/mathematical/mtex2MML/src/environment.h +1 -1
- data/ext/mathematical/mtex2MML/src/lexer.l +75 -53
- data/ext/mathematical/mtex2MML/src/main.c +65 -36
- data/ext/mathematical/mtex2MML/src/mtex2MML.h +5 -1
- data/ext/mathematical/mtex2MML/src/parser.y +67 -16
- data/ext/mathematical/mtex2MML/tests/basic.c +10 -0
- data/ext/mathematical/mtex2MML/tests/delimiters.c +95 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/strut-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/cal-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/frak-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathcal-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathfrak-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathrm-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathscr-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/rm-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/scr-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textrm-1.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/array/strip_excess_whitespace_in_array_attributes.html +1 -1
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.html +23 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.txt +23 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.txt +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.txt +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.txt +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.txt +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.txt +11 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.html +6 -6
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.txt +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.txt +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.txt +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.txt +1 -0
- data/ext/mathematical/mtex2MML/tests/symbols.c +69 -0
- data/lib/mathematical.rb +19 -1
- data/lib/mathematical/version.rb +1 -1
- data/mathematical.gemspec +2 -1
- data/test/mathematical/basic_test.rb +16 -3
- data/test/mathematical/fixtures/png/numeric_test_1.png +0 -0
- data/test/mathematical/fixtures/png/numeric_test_3.png +0 -0
- data/test/mathematical/fixtures/png/pmatrix.png +0 -0
- data/test/mathematical/maliciousness_test.rb +0 -1
- data/test/mathematical/multiples_test.rb +3 -0
- data/test/mathematical/png_test.rb +4 -1
- data/test/test_helper.rb +2 -0
- metadata +54 -18
- data/ext/mathematical/FindNewerRubies.cmake +0 -292
- data/ext/mathematical/mtex2MML/build.ps1 +0 -2
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeCCompiler.cmake +0 -55
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeCXXCompiler.cmake +0 -56
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeSystem.cmake +0 -15
- data/ext/mathematical/mtex2MML/src/y.output +0 -117655
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msqrt><mrow><mpadded width="0" height="8.6pt" depth="3pt"><mrow /></mpadded><mi mathvariant="normal">
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msqrt><mrow><mpadded width="0" height="8.6pt" depth="3pt"><mrow /></mpadded><mrow><mi mathvariant="normal">s</mi></mrow><mi>t</mi><mi>r</mi><mi>u</mi><mi>t</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\sqrt{\strut\rm strut}
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/cal-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>𝓍</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>𝓍</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\cal x
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/frak-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>𝔵</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>𝔵</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\frak x
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathcal-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>𝓍</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>𝓍</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\mathcal x
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathfrak-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>𝔵</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>𝔵</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\mathfrak x
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathrm-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="normal">x</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">x</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\mathrm x
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathscr-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="script">X</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="script">X</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\mathscr X
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/rm-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="normal">x</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">x</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\rm x
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/scr-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="script">X</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="script">X</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\scr X
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textrm-1.html
CHANGED
@@ -1,3 +1,3 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi mathvariant="normal">x</mi></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">x</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\textrm x
|
3
3
|
</annotation></semantics></math>
|
data/ext/mathematical/mtex2MML/tests/fixtures/array/strip_excess_whitespace_in_array_attributes.html
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex 0.5ex" rowlines="solid none" columnalign="center center" columnlines="solid"><mtr><mtd><mi mathvariant="normal">Bad</mi></mtd> <mtd><mi mathvariant="normal">Better</mi></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><msub><mo>∭</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>d</mi><mi>z</mi><mi>d</mi><mi>y</mi><mi>d</mi><mi>x</mi></mtd> <mtd><msub><mo>∭</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"/><mi>d</mi><mi>z</mi><mspace width="thinmathspace"/><mi>d</mi><mi>y</mi><mspace width="thinmathspace"/><mi>d</mi><mi>x</mi></mtd></mtr></mtable></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex 0.5ex" rowlines="solid none" columnalign="center center" columnlines="solid"><mtr><mtd><mrow><mi mathvariant="normal">Bad</mi></mrow></mtd> <mtd><mrow><mi mathvariant="normal">Better</mi></mrow></mtd></mtr> <mtr><mtd></mtd></mtr> <mtr><mtd><msub><mo>∭</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi>d</mi><mi>z</mi><mi>d</mi><mi>y</mi><mi>d</mi><mi>x</mi></mtd> <mtd><msub><mo>∭</mo> <mi>V</mi></msub><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"/><mi>d</mi><mi>z</mi><mspace width="thinmathspace"/><mi>d</mi><mi>y</mi><mspace width="thinmathspace"/><mi>d</mi><mi>x</mi></mtd></mtr></mtable></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\begin{array}{c|c}
|
3
3
|
\mathrm{Bad} & \mathrm{Better} \\
|
4
4
|
\hline \\
|
@@ -0,0 +1,23 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="normal">first line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="normal">second line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="normal">third line</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\mathrm{first\ line} \\
|
3
|
+
\mathrm{second\ line} \\
|
4
|
+
\mathrm{third\ line}
|
5
|
+
</annotation></semantics></math>
|
6
|
+
|
7
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi mathvariant="script">first line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="script">second line</mi></mrow><mspace linebreak="newline" /><mrow><mi mathvariant="script">third line</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
8
|
+
\mathscr{first\ line} \\
|
9
|
+
\mathscr{second\ line} \\
|
10
|
+
\mathscr{third\ line}
|
11
|
+
</annotation></semantics></math>
|
12
|
+
|
13
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>𝔣𝔦𝔯𝔰𝔱 𝔩𝔦𝔫𝔢</mi></mrow><mspace linebreak="newline" /><mrow><mi>𝔰𝔢𝔠𝔬𝔫𝔡 𝔩𝔦𝔫𝔢</mi></mrow><mspace linebreak="newline" /><mrow><mi>𝔱𝔥𝔦𝔯𝔡 𝔩𝔦𝔫𝔢</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
14
|
+
\mathfrak{first\ line} \\
|
15
|
+
\mathfrak{second\ line} \\
|
16
|
+
\mathfrak{third\ line}
|
17
|
+
</annotation></semantics></math>
|
18
|
+
|
19
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mi>𝒻𝒾𝓇𝓈𝓉 𝓁𝒾𝓃ℯ</mi></mrow><mspace linebreak="newline" /><mrow><mi>𝓈ℯ𝒸ℴ𝓃𝒹 𝓁𝒾𝓃ℯ</mi></mrow><mspace linebreak="newline" /><mrow><mi>𝓉𝒽𝒾𝓇𝒹 𝓁𝒾𝓃ℯ</mi></mrow></mrow><annotation encoding='application/x-tex'>
|
20
|
+
\mathcal{first\ line} \\
|
21
|
+
\mathcal{second\ line} \\
|
22
|
+
\mathcal{third\ line}
|
23
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,23 @@
|
|
1
|
+
$$
|
2
|
+
\mathrm{first\ line} \\
|
3
|
+
\mathrm{second\ line} \\
|
4
|
+
\mathrm{third\ line}
|
5
|
+
$$
|
6
|
+
|
7
|
+
$$
|
8
|
+
\mathscr{first\ line} \\
|
9
|
+
\mathscr{second\ line} \\
|
10
|
+
\mathscr{third\ line}
|
11
|
+
$$
|
12
|
+
|
13
|
+
$$
|
14
|
+
\mathfrak{first\ line} \\
|
15
|
+
\mathfrak{second\ line} \\
|
16
|
+
\mathfrak{third\ line}
|
17
|
+
$$
|
18
|
+
|
19
|
+
$$
|
20
|
+
\mathcal{first\ line} \\
|
21
|
+
\mathcal{second\ line} \\
|
22
|
+
\mathcal{third\ line}
|
23
|
+
$$
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>−</mo><mn>12</mn></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left" columnspacing="0em" rowspacing="3pt 3pt" rowlines="none none"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi></mi><mi>x</mi></mtd> <mtd><mi></mi><mo>=</mo><mn>1</mn><mo lspace="verythinmathspace" rspace="0em">+</mo><mn>2</mn></mtd></mlabeledtr> <mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd></mtd> <mtd><mi></mi><mo>=</mo><mn>3</mn></mtd></mlabeledtr> <mtr><mtd></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="2.49201em" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>−</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>−</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none" columnalign="center center" columnlines="none"><mtr><mtd><mi>B</mi><mi>a</mi><mi>d</mi></mtd> <mtd><mi>G</mi><mi>o</mi><mi>o</mi><mi>d</mi></mtd></mtr></mtable></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
|
@@ -0,0 +1,8 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\left\{
|
3
|
+
\begin{matrix} 1 & 2 & 3
|
4
|
+
\end{matrix}
|
5
|
+
\right)
|
6
|
+
</annotation></semantics></math>
|
7
|
+
|
8
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="20ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'></annotation></semantics></math>
|
@@ -1,12 +1,12 @@
|
|
1
|
-
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>×</mo><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times Orth(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒮</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔨</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi><mo>=</mo><mi>𝔭</mi><mo>⊕</mo><mi>𝔨</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒮</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>φ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D= G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mi>q</mi></mrow><annotation encoding='application/x-tex'>pq</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒮</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℒ</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi><mo>=</mo><msub><mi>Θ</mi> <mi>ℒ</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta=\Theta_{\mathcal{L}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi><mo>=</mo><msub><mo>∑</mo> <mrow><mi>ℓ</mi><mo>∈</mo><mi>ℒ</mi></mrow></msub><msub><mi>δ</mi> <mi>ℓ</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mo stretchy="false">(</mo><mi>ℒ</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\G = \Stab(\mathcal{L}) \subset G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\Gamma'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\Gamma'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>φ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mi>Γ</mi><mo>\</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \Gamma \backslash D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>⊂</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \subset SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>′</mo></mrow><annotation encoding='application/x-tex'>\G'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mi>q</mi><mo>−</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(pq-r)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>𝒮</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>⊗</mo><msup><mo>∧</mo> <mi>q</mi></msup><msup><mi>𝔭</mi> <mo>*</mo></msup><msup><mo stretchy="false">)</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>(p+q)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(3,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>+</mo><mi>q</mi><merror><mtext>Unknown character</mtext></merror><mn>6</mn></mrow><annotation encoding='application/x-tex'>p+q>6</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>≥</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>p \geq q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_q^V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^q(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>=</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial \overline{X} = e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">N</mo></mrow><annotation encoding='application/x-tex'>n \in \N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X, \partial X,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>τ</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>q = e^{2\pi i \tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>k^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>*</mo></msup><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>k^{\ast} \theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\partial {X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X}, \partial {X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{q}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>c</mi></msub><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_c \theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n>0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n>0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo stretchy="false">]</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n \geq 0} [T_n^c] q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>+</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>∞</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>∞</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>F(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi><mo>=</mo><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>C=C_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\underline{G} = \SO(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><munder><mi>G</mi><mo>̲</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G=\underline{G}_0(R) \simeq \SO_0(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>D= D_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>dim</mi><mi>z</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\dim z =2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo><msub><mo stretchy="false">|</mo> <mi>z</mi></msub><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(\,,\,)|_z < 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">{</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\{e_1,e_2,e_3,e_4\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_1,e_1)=(e_2,e_2)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>4</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_3,e_3)=(e_4,e_4)=-1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>x_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub><mo>=</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z_0=[e_3,e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>4</mn></msub></mrow><annotation encoding='application/x-tex'>e_4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K \simeq \SO(2)\times \SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D \simeq G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">H</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \H \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><msub><munder><mi>P</mi><mo>̲</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P= \underline{P}_0(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><munder><mi>N</mi><mo>̲</mo></munder><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N = \underline{N}(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u =(e_1+e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>−</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u' =(e_1-e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>,</mo><mi>u</mi><mo>′</mo><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(u,u')=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u,u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell = \Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\ell'=\Q u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><msup><mi>ℓ</mi> <mo>⊥</mo></msup><mo>∩</mo><msup><mrow><mi>ℓ</mi><mo>′</mo></mrow> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>W = \ell^{\perp} \cap {\ell'}^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">Span</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>W_{R} = \Span_{R}(e_2,e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u,e_2,e_3,u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>≃</mo><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>N \simeq W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>u</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>u_2,u_2'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mo>′</mo><mo stretchy="false">(</mo><msup><mi>e</mi> <mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>m(s) = m'(e^s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>≃</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M \simeq \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔫</mi><mo>,</mo><mi>𝔞</mi><mo>,</mo><mi>𝔪</mi></mrow><annotation encoding='application/x-tex'>\frak{n},\frak{a},\frak{m}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mrow><mi>α</mi><mi>μ</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{\alpha\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>σ</mi><mo>:</mo><mi>𝔫</mi><mi>𝔞</mi><mi>𝔪</mi><mo>→</mo><mi>𝔤</mi><mo>→</mo><mi>𝔤</mi><mo stretchy="false">/</mo><mi>𝔨</mi><mo>≃</mo><mi>𝔭</mi></mrow><annotation encoding='application/x-tex'>\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><msub><mi>u</mi> <mn>2</mn></msub><mo>+</mo><mi>w</mi><mo>′</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>w= wu_2+w'u_2'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub><mo>≃</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V_{R} \simeq M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u = \kzxz{1}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn></mrow><annotation encoding='application/x-tex'>u' = \kzxz{0}{0}{0}{1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>q(x) = (x,x)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>q(x) = \det(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{-1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mn>1</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>g</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><msub><mi>g</mi> <mn>1</mn></msub><mi>x</mi><mspace width="thinmathspace"/><mrow><msup><mo/><mi>t</mi></msup><msub><mi>g</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding='application/x-tex'>(g_1,g_2)x = g_1x\, {^{t}g_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Spin</mo><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Spin(2,2) \simeq SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>z</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>⊆</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>L \subseteq L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∈</mo><mn>2</mn><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>(x,x) \in 2 \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>x \in L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><msup><mi>L</mi> <mo>#</mo></msup><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>N</mi></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>q(L^{\#}) \Z = \tfrac1{N}\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>∈</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>h \in L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>⊆</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\Gamma \subseteq \Stab{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℒ</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}:=L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell =\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>d>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">(</mo><msqrt><mi>d</mi></msqrt><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K = \Q(\sqrt{d})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>𝒪</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>↦</mo><mi>x</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>x \mapsto x'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo>⊂</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V \subset M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo/><mi>t</mi></msup><mi>x</mi><mo>′</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>^tx' =-x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>g</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g \mapsto (g,g')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>𝒪</mi> <mi>K</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\mathcal{O}_K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>.</mo><mi>x</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">g</mo><mi>x</mi><mrow><msup><mo/><mi>t</mi></msup><mo lspace="0em" rspace="thinmathspace">g</mo><mo>′</mo></mrow></mrow><annotation encoding='application/x-tex'>\g.x = \g x{^t\g'}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>≡</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo>∩</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>\G_P = \G \cap P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>∩</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N = \G_P \cap N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>ℓ</mi> <mo>⊥</mo></msup><mo stretchy="false">/</mo><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell^{\perp}/\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\G_P/\G_N \simeq \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>g \in \G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>g</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding='application/x-tex'>\bar{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>∩</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\G_M :=\G_P \cap M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P = NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P=NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>≃</mo><mi>M</mi><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq M \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \G \back D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\underline{P}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mi>W</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>X_W := \G_M \back D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><mn>∞</mn><mo stretchy="false">]</mo><mo>×</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[(T,\infty] \times e'(P)]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><merror><mtext>Unknown character</mtext></merror><mi>T</mi></mrow><annotation encoding='application/x-tex'>t>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>→</mo><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\pi:\tilde{X} \to X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in} \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Γ</mi> <mi>N</mi></msub><mo>=</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Gamma_N =\pi_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Γ</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Gamma_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e'(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a_P \in H_1(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa:e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub><mo>∈</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>b_P \in H_2(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi></mrow><annotation encoding='application/x-tex'>\kappa</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e'(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>≃</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W_{R} \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>T^2=\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>H_3(\tilde{X}) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(X^{out})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>⊕</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>⊕</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial \overline{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>i</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>i^*</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>a</mi><mo>,</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>a</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d(a,b) = (da, i^*a - db)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X) \to C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c \mapsto (c,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\pi:V \to \partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><mi>b</mi></mrow><annotation encoding='application/x-tex'>\pi^{\ast} b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>≤</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t \leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>i</mi></msup></mrow><annotation encoding='application/x-tex'>C^i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi></mrow><annotation encoding='application/x-tex'>\mu</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mi>i</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^i_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>↦</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]] \mapsto [a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo stretchy="false">⟨</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>η</mi><mo stretchy="false">]</mo><mo stretchy="false">⟩</mo><mo>=</mo><msub><mo>∫</mo> <mover><mi>X</mi><mo>¯</mo></mover></msub><mi>a</mi><mo>∧</mo><mi>η</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mo>∫</mo> <mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow></msub><mi>b</mi><mo>∧</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>η</mi><mo>,</mo><mtext> </mtext><mtext>and</mtext><mtext> </mtext><mtext> </mtext><mo stretchy="false">⟨</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo stretchy="false">⟩</mo><mo>=</mo><msub><mo>∫</mo> <mi>C</mi></msub><mi>a</mi><mo>−</mo><msub><mo>∫</mo> <mrow><mo>∂</mo><mi>C</mi></mrow></msub><mi>b</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>×</mo><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times Orth(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝒮</mi></mrow><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔤</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔨</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔤</mi></mrow><mo>=</mo><mrow><mi>𝔭</mi></mrow><mo>⊕</mo><mrow><mi>𝔨</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝒮</mi></mrow><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>φ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D= G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mi>q</mi></mrow><annotation encoding='application/x-tex'>pq</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝒮</mi></mrow><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>ℒ</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathcal{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi><mo>=</mo><msub><mi>Θ</mi> <mrow><mi>ℒ</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\Theta=\Theta_{\mathcal{L}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi><mo>=</mo><msub><mo>∑</mo> <mrow><mi>ℓ</mi><mo>∈</mo><mrow><mi>ℒ</mi></mrow></mrow></msub><msub><mi>δ</mi> <mi>ℓ</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mo stretchy="false">(</mo><mrow><mi>ℒ</mi></mrow><mo stretchy="false">)</mo><mo>⊂</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\G = \Stab(\mathcal{L}) \subset G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\Gamma'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\Gamma'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>φ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mi>Γ</mi><mo>\</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \Gamma \backslash D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>⊂</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \subset SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>′</mo></mrow><annotation encoding='application/x-tex'>\G'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mi>q</mi><mo>−</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(pq-r)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mrow><mi>𝒮</mi></mrow><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>⊗</mo><msup><mo>∧</mo> <mi>q</mi></msup><msup><mrow><mi>𝔭</mi></mrow> <mo>*</mo></msup><msup><mo stretchy="false">)</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>(p+q)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(3,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>+</mo><mi>q</mi><merror><mtext>Unknown character</mtext></merror><mn>6</mn></mrow><annotation encoding='application/x-tex'>p+q>6</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>≥</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>p \geq q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_q^V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^q(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>=</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial \overline{X} = e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">N</mo></mrow><annotation encoding='application/x-tex'>n \in \N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X, \partial X,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>τ</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>q = e^{2\pi i \tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>k^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>*</mo></msup><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>k^{\ast} \theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\partial {X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X}, \partial {X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{q}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>c</mi></msub><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_c \theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n>0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n>0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo stretchy="false">]</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n \geq 0} [T_n^c] q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>+</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>∞</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>∞</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>F(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi><mo>=</mo><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>C=C_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\underline{G} = \SO(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><munder><mi>G</mi><mo>̲</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G=\underline{G}_0(R) \simeq \SO_0(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>D= D_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>dim</mi><mi>z</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\dim z =2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo><msub><mo stretchy="false">|</mo> <mi>z</mi></msub><mo><</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(\,,\,)|_z < 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">{</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\{e_1,e_2,e_3,e_4\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_1,e_1)=(e_2,e_2)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>4</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_3,e_3)=(e_4,e_4)=-1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>x_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub><mo>=</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z_0=[e_3,e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>4</mn></msub></mrow><annotation encoding='application/x-tex'>e_4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K \simeq \SO(2)\times \SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D \simeq G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">H</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \H \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><msub><munder><mi>P</mi><mo>̲</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P= \underline{P}_0(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><munder><mi>N</mi><mo>̲</mo></munder><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N = \underline{N}(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u =(e_1+e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>−</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u' =(e_1-e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>,</mo><mi>u</mi><mo>′</mo><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(u,u')=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u,u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell = \Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\ell'=\Q u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><msup><mi>ℓ</mi> <mo>⊥</mo></msup><mo>∩</mo><msup><mrow><mi>ℓ</mi><mo>′</mo></mrow> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>W = \ell^{\perp} \cap {\ell'}^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">Span</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>W_{R} = \Span_{R}(e_2,e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u,e_2,e_3,u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>≃</mo><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>N \simeq W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>u</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>u_2,u_2'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mo>′</mo><mo stretchy="false">(</mo><msup><mi>e</mi> <mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>m(s) = m'(e^s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>≃</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M \simeq \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔫</mi></mrow><mo>,</mo><mrow><mi>𝔞</mi></mrow><mo>,</mo><mrow><mi>𝔪</mi></mrow></mrow><annotation encoding='application/x-tex'>\frak{n},\frak{a},\frak{m}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mrow><mi>α</mi><mi>μ</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{\alpha\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>σ</mi><mo>:</mo><mrow><mi>𝔫</mi></mrow><mrow><mi>𝔞</mi></mrow><mrow><mi>𝔪</mi></mrow><mo>→</mo><mrow><mi>𝔤</mi></mrow><mo>→</mo><mrow><mi>𝔤</mi></mrow><mo stretchy="false">/</mo><mrow><mi>𝔨</mi></mrow><mo>≃</mo><mrow><mi>𝔭</mi></mrow></mrow><annotation encoding='application/x-tex'>\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><msub><mi>u</mi> <mn>2</mn></msub><mo>+</mo><mi>w</mi><mo>′</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>w= wu_2+w'u_2'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub><mo>≃</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V_{R} \simeq M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u = \kzxz{1}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn></mrow><annotation encoding='application/x-tex'>u' = \kzxz{0}{0}{0}{1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>q(x) = (x,x)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>q(x) = \det(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{-1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mn>1</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>g</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><msub><mi>g</mi> <mn>1</mn></msub><mi>x</mi><mspace width="thinmathspace"/><mrow><msup><mo/><mi>t</mi></msup><msub><mi>g</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding='application/x-tex'>(g_1,g_2)x = g_1x\, {^{t}g_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Spin</mo><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Spin(2,2) \simeq SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>z</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>⊆</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>L \subseteq L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∈</mo><mn>2</mn><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>(x,x) \in 2 \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>x \in L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><msup><mi>L</mi> <mo>#</mo></msup><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>N</mi></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>q(L^{\#}) \Z = \tfrac1{N}\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>∈</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>h \in L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>⊆</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\Gamma \subseteq \Stab{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>ℒ</mi></mrow><mo>:</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}:=L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell =\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>d>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">(</mo><msqrt><mi>d</mi></msqrt><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K = \Q(\sqrt{d})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mrow><mi>𝒪</mi></mrow> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>↦</mo><mi>x</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>x \mapsto x'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo>⊂</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V \subset M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo/><mi>t</mi></msup><mi>x</mi><mo>′</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>^tx' =-x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>g</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g \mapsto (g,g')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><msub><mrow><mi>𝒪</mi></mrow> <mi>K</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\mathcal{O}_K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>.</mo><mi>x</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">g</mo><mi>x</mi><mrow><msup><mo/><mi>t</mi></msup><mo lspace="0em" rspace="thinmathspace">g</mo><mo>′</mo></mrow></mrow><annotation encoding='application/x-tex'>\g.x = \g x{^t\g'}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>≡</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo>∩</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>\G_P = \G \cap P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>∩</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N = \G_P \cap N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>ℓ</mi> <mo>⊥</mo></msup><mo stretchy="false">/</mo><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell^{\perp}/\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\G_P/\G_N \simeq \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>g \in \G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>g</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding='application/x-tex'>\bar{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>∩</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\G_M :=\G_P \cap M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P = NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P=NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>≃</mo><mi>M</mi><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq M \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \G \back D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\underline{P}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mi>W</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>X_W := \G_M \back D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><mn>∞</mn><mo stretchy="false">]</mo><mo>×</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[(T,\infty] \times e'(P)]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><merror><mtext>Unknown character</mtext></merror><mi>T</mi></mrow><annotation encoding='application/x-tex'>t>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>→</mo><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\pi:\tilde{X} \to X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in} \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Γ</mi> <mi>N</mi></msub><mo>=</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Gamma_N =\pi_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Γ</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Gamma_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e'(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a_P \in H_1(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa:e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub><mo>∈</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>b_P \in H_2(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi></mrow><annotation encoding='application/x-tex'>\kappa</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e'(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>≃</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W_{R} \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>T^2=\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>H_3(\tilde{X}) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(X^{out})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>⊕</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>⊕</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial \overline{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>i</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>i^*</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>a</mi><mo>,</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>a</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d(a,b) = (da, i^*a - db)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X) \to C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c \mapsto (c,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\pi:V \to \partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><mi>b</mi></mrow><annotation encoding='application/x-tex'>\pi^{\ast} b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>≤</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t \leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>i</mi></msup></mrow><annotation encoding='application/x-tex'>C^i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi></mrow><annotation encoding='application/x-tex'>\mu</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mi>i</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^i_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>↦</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]] \mapsto [a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo stretchy="false">⟨</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>η</mi><mo stretchy="false">]</mo><mo stretchy="false">⟩</mo><mo>=</mo><msub><mo>∫</mo> <mover><mi>X</mi><mo>¯</mo></mover></msub><mi>a</mi><mo>∧</mo><mi>η</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mo>∫</mo> <mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow></msub><mi>b</mi><mo>∧</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>η</mi><mo>,</mo><mtext> </mtext><mtext>and</mtext><mtext> </mtext><mtext> </mtext><mo stretchy="false">⟨</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo stretchy="false">⟩</mo><mo>=</mo><msub><mo>∫</mo> <mi>C</mi></msub><mi>a</mi><mo>−</mo><msub><mo>∫</mo> <mrow><mo>∂</mo><mi>C</mi></mrow></msub><mi>b</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
2
2
|
\langle[a, b], [\eta]\rangle
|
3
3
|
= \int_{\overline{X}}a\wedge \eta - \int_{\partial \overline{X}} b \wedge i^*\eta, \ \text{and} \ \
|
4
|
-
\langle [a,b],C \rangle = \int_{C}a - \int_{\partial C} b.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>x</mi></msub><mo>⊂</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_x \subset \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>ℒ</mi><mo>;</mo><mspace width="thinmathspace"/><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">(</mo></mfrac></mstyle><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\partial X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>U_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>∩</mo><msub><mi>U</mi> <mn>∞</mn></msub><mo>=</mo><mi>∅</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
4
|
+
\langle [a,b],C \rangle = \int_{C}a - \int_{\partial C} b.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>x</mi></msub><mo>⊂</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_x \subset \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mrow><mi>ℒ</mi></mrow><mo>;</mo><mspace width="thinmathspace"/><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">(</mo></mfrac></mstyle><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\partial X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>U_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>∩</mo><msub><mi>U</mi> <mn>∞</mn></msub><mo>=</mo><mi>∅</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
5
5
|
D_x \cap U_{\infty} = \emptyset.
|
6
|
-
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi></mrow><annotation encoding='application/x-tex'>p</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub><mo>⊂</mo><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x \subset \partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P) \to e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL_V=\calL = L +h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>⊂</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>L_{W,k} \subset W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>∈</mo><msubsup><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow> <mo>#</mo></msubsup></mrow><annotation encoding='application/x-tex'>h_{W,k} \in L^{\#}_{W,k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>≃</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><mi>N</mi><mo>∩</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_N = N \cap \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(w) x= x + (w,x)u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi>u</mi> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>x \in u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>{\calL}_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∩</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_n \cap e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\min'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∩</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_{n,P} := \partial C_n \cap e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>∩</mo><msup><mi>u</mi> <mo>⊥</mo></msup><mo>;</mo><mspace width="thinmathspace"/><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi></mrow><annotation encoding='application/x-tex'>\Gamma</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∼</mo> <mi>Γ</mi></msub></mrow><annotation encoding='application/x-tex'>\sim_{\Gamma}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>p</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>⊂</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>\G_p \back \calL_{n,u} \subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><msub><mo stretchy="false">]</mo> <mi>P</mi></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>[x_i]= [x_i]_P, 1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msubsup><mo>∐</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>k</mi></msubsup><msub><mo>∐</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∐</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>y \in [x_i]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>D_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>C_{x_i}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msub><mo>∐</mo> <mrow><msub><mo>∼</mo> <mi>Γ</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow></msub><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∐</mo> <mrow><mtable columnalign="center" rowspacing="0.5ex"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>ℒ</mi> <mi>W</mi></msub></mtd></mlabeledtr> <mtr><mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi></mtd></mtr></mtable></mrow></msub><msub><mo>∐</mo> <mrow><mn>0</mn><mo>≤</mo><mi>k</mi><merror><mtext>Unknown character</mtext></merror><mi>min</mi><msub><mo>′</mo> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>Λ</mi> <mi>W</mi></msub></mrow></msub><mo stretchy="false">|</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow></msub><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k < \min'_{\la \in \Lambda_W} |(\la,x)|} x+ku</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mi>ℒ</mi> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>x \in \mathcal{L}_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>a</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial a_x = c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>Ω</mi> <mi>P</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>Ω</mi> <mi>P</mi></msub><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∑</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P = \sum_{y \in [x]} a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∑</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_x)_P = \sum_{y \in [x]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X}) = H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>+</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>T_n = T_n \cap X^{in} + T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>j_{\ast} \overline{C}_n = T_n \cap X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>B_n = T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>=</mo><mo>−</mo><mo>∂</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n = - \partial B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_{\ast} C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_*C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊕</mo><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X}) = j_*H_2(X) \oplus S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c = j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>+</mo><mi>T</mi><mo>+</mo><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P+ T +\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mi>S</mi><mo stretchy="false">|</mo></mrow><annotation encoding='application/x-tex'>|S|</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_k(Y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>∈</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><mi>W</mi><mo stretchy="false">/</mo><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2 = W/ \Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mi>R</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>→</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\pi: R\times T^2 \to M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>α</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\alpha]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo stretchy="false">→</mo></mover></mrow><annotation encoding='application/x-tex'>\overrightarrow{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>→</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>W \to T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>P</mi></msub><mi>Ω</mi><mo>=</mo><msub><mo>∫</mo> <mover><mi>P</mi><mo>˜</mo></mover></msub><mi>Ω</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>⊂</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\gamma_0 \subset T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>×</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">]</mo><mo>⊂</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>×</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\gamma_0 \times [0,1] \subset T^2 \times R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f^{-1}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>f^{-1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">|</mo><merror><mtext>Unknown character</mtext></merror><mn>2</mn></mrow><annotation encoding='application/x-tex'>|\tr(f^{-1})| >2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>t</mi><mo stretchy="false">(</mo><mi>I</mi><mo>−</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>−</mo><mn>2</mn><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\det(f^{-1} -I)= det( I - f) = \tr(f) -2 \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N= \det(f^{-1} -I)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mi>N</mi><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo stretchy="false">[</mo><msub><mi>α</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] = N \{(f^{-1} - I)^{-1} ([\alpha_0]) \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>\gamma_0 \in [\gamma_0]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>h_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\gamma_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>c_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>c_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>=</mo><mi>N</mi><msub><mi>h</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_1 = Nh_1(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub><mo>=</mo><msub><mi>h</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_2=h_2(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>d \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d =f^{-1}(c_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub><mo>,</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>0,c_2,d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mover><mi>T</mi><mo>˜</mo></mover><mo>=</mo><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>2</mn></msub></mrow><mo>¯</mo></mover><mo>+</mo><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover><mo>−</mo><mover><mrow><mn>0</mn><mi>d</mi></mrow><mo>¯</mo></mover><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
6
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi></mrow><annotation encoding='application/x-tex'>p</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub><mo>⊂</mo><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x \subset \partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P) \to e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL_V=\calL = L +h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>⊂</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>L_{W,k} \subset W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>∈</mo><msubsup><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow> <mo>#</mo></msubsup></mrow><annotation encoding='application/x-tex'>h_{W,k} \in L^{\#}_{W,k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>≃</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><mi>N</mi><mo>∩</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_N = N \cap \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(w) x= x + (w,x)u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi>u</mi> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>x \in u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>{\calL}_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∩</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_n \cap e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\min'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∩</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_{n,P} := \partial C_n \cap e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>∩</mo><msup><mi>u</mi> <mo>⊥</mo></msup><mo>;</mo><mspace width="thinmathspace"/><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi></mrow><annotation encoding='application/x-tex'>\Gamma</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∼</mo> <mi>Γ</mi></msub></mrow><annotation encoding='application/x-tex'>\sim_{\Gamma}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>p</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>⊂</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>\G_p \back \calL_{n,u} \subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><msub><mo stretchy="false">]</mo> <mi>P</mi></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>[x_i]= [x_i]_P, 1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msubsup><mo>∐</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>k</mi></msubsup><msub><mo>∐</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∐</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>y \in [x_i]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>D_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>C_{x_i}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msub><mo>∐</mo> <mrow><msub><mo>∼</mo> <mi>Γ</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow></msub><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∐</mo> <mrow><mtable columnalign="center" rowspacing="0.5ex"><mtr><mtd><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mrow><mi>ℒ</mi></mrow> <mi>W</mi></msub></mtd></mtr> <mtr><mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi></mtd></mtr></mtable></mrow></msub><msub><mo>∐</mo> <mrow><mn>0</mn><mo>≤</mo><mi>k</mi><mo><</mo><mi>min</mi><msub><mo>′</mo> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>Λ</mi> <mi>W</mi></msub></mrow></msub><mo stretchy="false">|</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow></msub><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k < \min'_{\la \in \Lambda_W} |(\la,x)|} x+ku</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mrow><mi>ℒ</mi></mrow> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>x \in \mathcal{L}_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>a</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial a_x = c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>Ω</mi> <mi>P</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>Ω</mi> <mi>P</mi></msub><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∑</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P = \sum_{y \in [x]} a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∑</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_x)_P = \sum_{y \in [x]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X}) = H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>+</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>T_n = T_n \cap X^{in} + T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>j_{\ast} \overline{C}_n = T_n \cap X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>B_n = T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>=</mo><mo>−</mo><mo>∂</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n = - \partial B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_{\ast} C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_*C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊕</mo><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X}) = j_*H_2(X) \oplus S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c = j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>+</mo><mi>T</mi><mo>+</mo><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P+ T +\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mi>S</mi><mo stretchy="false">|</mo></mrow><annotation encoding='application/x-tex'>|S|</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_k(Y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>∈</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><mi>W</mi><mo stretchy="false">/</mo><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2 = W/ \Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mi>R</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>→</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\pi: R\times T^2 \to M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>α</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\alpha]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo stretchy="false">→</mo></mover></mrow><annotation encoding='application/x-tex'>\overrightarrow{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>→</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>W \to T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>P</mi></msub><mi>Ω</mi><mo>=</mo><msub><mo>∫</mo> <mover><mi>P</mi><mo>˜</mo></mover></msub><mi>Ω</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>⊂</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\gamma_0 \subset T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>×</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">]</mo><mo>⊂</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>×</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\gamma_0 \times [0,1] \subset T^2 \times R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f^{-1}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>f^{-1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">|</mo><merror><mtext>Unknown character</mtext></merror><mn>2</mn></mrow><annotation encoding='application/x-tex'>|\tr(f^{-1})| >2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>t</mi><mo stretchy="false">(</mo><mi>I</mi><mo>−</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>−</mo><mn>2</mn><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\det(f^{-1} -I)= det( I - f) = \tr(f) -2 \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N= \det(f^{-1} -I)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mi>N</mi><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo stretchy="false">[</mo><msub><mi>α</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] = N \{(f^{-1} - I)^{-1} ([\alpha_0]) \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>\gamma_0 \in [\gamma_0]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>h_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\gamma_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>c_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>c_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>=</mo><mi>N</mi><msub><mi>h</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_1 = Nh_1(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub><mo>=</mo><msub><mi>h</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_2=h_2(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>d \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d =f^{-1}(c_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub><mo>,</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>0,c_2,d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mover><mi>T</mi><mo>˜</mo></mover><mo>=</mo><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>2</mn></msub></mrow><mo>¯</mo></mover><mo>+</mo><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover><mo>−</mo><mover><mrow><mn>0</mn><mi>d</mi></mrow><mo>¯</mo></mover><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
7
7
|
\partial \widetilde{T} = \overline{0c_2} + \overline{c_2d} - \overline{0d}.
|
8
|
-
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>1</mn></msub></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{0c_1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mo stretchy="false">(</mo><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>−</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>α</mi> <mn>0</mn></msub><mo>−</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
8
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>1</mn></msub></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{0c_1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mo stretchy="false">(</mo><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>−</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>α</mi> <mn>0</mn></msub><mo>−</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
9
9
|
\partial (\mathcal{M}(\gamma_0) + T ) = f^{-1}(\gamma_0) -\gamma_0 +\gamma_0 + \alpha_0 - f^{-1}(\gamma_0)= N\alpha_0.
|
10
|
-
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mn>0</mn></msub><mo>=</mo><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>A_0 = \mathcal{M}(\gamma_0) +T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mo stretchy="false">(</mo><mi>N</mi><mi>P</mi><mo>+</mo><msub><mi>A</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>T</mi><mo>+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mi>A</mi><mo>=</mo><mi>α</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
10
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mn>0</mn></msub><mo>=</mo><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>A_0 = \mathcal{M}(\gamma_0) +T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mo stretchy="false">(</mo><mi>N</mi><mi>P</mi><mo>+</mo><msub><mi>A</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>T</mi><mo>+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mi>A</mi><mo>=</mo><mi>α</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
11
11
|
\partial A = \alpha.
|
12
|
-
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">⟨</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\Lk(a,b) = \langle A,b \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a,b \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>R \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>×</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>a=a(0)=0 \times a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>×</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>b=b(\eps)= \eps \times b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(a, b(\epsilon))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>(f^{-1} - I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial M(c) = (f^{-1} - I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ε</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\epsilon \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\langle \cdot, \cdot \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>∈</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2, \Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mo>∂</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(\partial C_n, \partial C_m)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>J</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>Jx</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(Jx,x)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><msqrt><mi>p</mi></msqrt><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u= \kzxz{\sqrt{p}}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>′</mo></mrow><mn>0</mn><mo>;</mo><mspace width="thickmathspace"/><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><mi>K</mi><mo stretchy="false">}</mo><mo>≃</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>W = \{ \kzxz{0}{\la}{-\la'}{0};\; \la \in K \} \simeq K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mi>p</mi></msqrt></mfrac><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mi>μ</mi><mo>′</mo><mo>−</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>′</mo><mi>μ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu' - \la'\mu)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mrow><mo>{</mo><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mn>0</mn><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi><mo>∈</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>\mu \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mi>μ</mi><mo>=</mo><mi>μ</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(\la) \mu = \mu + \langle \la, \mu \rangle u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>μ</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_{\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mi>μ</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>K</mi> <mi>R</mi></msub><mo>;</mo><mspace width="thickmathspace"/><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mo>=</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>𝒪</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo></mrow><annotation encoding='application/x-tex'>\eps</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>U_+</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>𝒪</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>′</mo></mrow><annotation encoding='application/x-tex'>\eps'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>≡</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>m=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>C_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>∈</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>x =1 \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>≃</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>C_1 \simeq SL_2(\Z) \back \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\min'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\langle\,,\, \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>U=V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>U=W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D=G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∈</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z\in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi \in \calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><msub><mo>′</mo> <mi>τ</mi></msub><mo>∈</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g'_{\tau} \in SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>φ</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi^0(x) = \varphi(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>g</mi> <mi>z</mi></msub><mo>∈</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>g_z \in G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∈</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z \in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo>∈</mo><mo stretchy="false">[</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo><mo>⊗</mo><mi>E</mi><msup><mo stretchy="false">]</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>\varphi \in [\calS(U_{R}) \otimes E]^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,\tau,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>U</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo><mi>τ</mi><mo>∈</mo><mi>ℍ</mi></mrow><annotation encoding='application/x-tex'>x \in U, z \in D, \tau \in \mathbb{H}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi><mo>=</mo><mi>𝔨</mi><mo>⊕</mo><mi>𝔭</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">wwedge</mo><mn>2</mn><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{g} \simeq \wwedge{2} V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>e</mi> <mi>i</mi></msub><mo>∧</mo><msub><mi>e</mi> <mi>j</mi></msub><mo>∈</mo><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>X_{ij} = e_i \wedge e_j \in \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔭</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>X_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \leq i \leq 2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mn>4</mn></mrow><annotation encoding='application/x-tex'>3 \leq j \leq 4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>13</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>14</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>23</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calA^2(D)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi_0(x) := e^{-\pi(x,x)_{0}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub><mo>=</mo><msubsup><mo>∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>4</mn></msubsup><msubsup><mi>x</mi> <mi>i</mi> <mn>2</mn></msubsup></mrow><annotation encoding='application/x-tex'>(x,x)_0= \sum_{i=1}^4 x_i^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(L)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(V_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x\ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∉</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><msup><mo stretchy="false">]</mo> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>x \notin \Span[e_3,e_4]^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∉</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>z \notin D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>ψ</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ψ</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>r-2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><mo>=</mo><mi>φ</mi></mrow><annotation encoding='application/x-tex'>d \tilde{\psi} = \varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mi>q</mi></msub></mrow><annotation encoding='application/x-tex'>\varphi_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{q-1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>⊂</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>W\subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔪</mi><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{m} \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M = \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo>=</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>∧</mo><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23} = e_2 \wedge e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>{\bf s}_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mi>x</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>{\bf s} = \Span x(s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle></mrow><annotation encoding='application/x-tex'>{\bf s}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>∈</mo><mi>D</mi><mo>;</mo><mspace width="thickmathspace"/><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>⊥</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s} = D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x({\bf s})) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s}(x)=D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>1</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>W</mi></msub><mo stretchy="false">)</mo><mo>⊗</mo><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>\calA^1(D_W) \otimes W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\psi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>ψ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>Λ</mi></mfrac></mstyle> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>-\psi_{1,1} - \tfrac12 \Lambda_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>w</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{w,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo> <mi>a</mi> <mn>∞</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>u</mi></mrow></msup><msup><mi>u</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\G(\tfrac12,a) = \int_a^{\infty} e^{-u} u^{-1/2} du</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>s=1/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn><mo stretchy="false">)</mo><msub><mi>x</mi> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A(x)- (1/2) x_2 \frac{x_3}{|x_3|} e^{-\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mi>x</mi><mo stretchy="false">|</mo><msup><mi>x</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>|x|x^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>C^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">|</mo></mfrac></mstyle><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>B'(x) + \tfrac12|x_3|e^{- \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>x</mi></mfrac></mstyle> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A'(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{- \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}'_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>v</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><msup><mi>m</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msqrt><mi>v</mi></msqrt><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mi>i</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>τ</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x,\tau,s) = v^{-1/2} m(s) \tilde{\psi}_{0,1}'(m^{-1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>⊗</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>D_{W,x} \otimes x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x) + B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A(x) + A'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>X_{23}(B + B') = -(A + A')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K'=\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>χ</mi></mrow><annotation encoding='application/x-tex'>\chi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \simeq U(1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B+B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>L</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>L^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k')(B+B')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><msup><mi>χ</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\omega(k')(B+B')] = \chi^2(k')[B+B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>K'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>−</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_2^2-x_3^2=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>i</mi></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mo>□</mo><mo>+</mo><mi>π</mi><mi>i</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\frac{-i}{4\pi} \square + \pi i r^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><msub><mi>x</mi> <mn>3</mn></msub></mrow></mfrac><mi>Γ</mi><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mn>2</mn><mi>π</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mn>2</mn><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt><mo lspace="0em" rspace="thinmathspace">sgn</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn><mi>π</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = - 2 \sqrt{2\pi} \sgn(x_3) e^{-2 \pi x_3^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>−</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>|x_3|e^{-\pi(x_2^2-x_3^2)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><mn>2</mn><mi>i</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B+B'] = [H(B+B')]= 2i[B+B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔫</mi><mo>≃</mo><mi>W</mi><mo>∧</mo><mi>R</mi><mi>u</mi><mo>∈</mo><msup><mo>⋀</mo> <mn>2</mn></msup><msub><mi>V</mi> <mi>R</mi></msub><mo>≃</mo><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>𝔫</mi> <mo>*</mo></msup><mo>≃</mo><mi>W</mi><mo>∧</mo><mi>R</mi><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\mathfrak{n}^{\ast} \simeq W \wedge R u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_2,w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi> <mn>2</mn></msub><msub><mi>e</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>w</mi> <mn>3</mn></msub><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w=w_2e_2+w_3e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mrow><mi>ψ</mi><mo>′</mo></mrow> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>{\psi'}_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_{1,1}}(\tau,{\calL_W})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}(\calL_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B+B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>+</mo><mi>A</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>A+A'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\psi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>c</mi></msub><msubsup><mi>θ</mi> <mi>ϕ</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi'}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>16</mn><mi>π</mi></mrow></mfrac></mstyle><msubsup><mo>∫</mo> <mn>1</mn> <mn>∞</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>s</mi><mi>t</mi></mrow></msup><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></mrow><annotation encoding='application/x-tex'>\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{-st}t^{-3/2} dt</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒲</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{W}(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>S^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>H^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mi>β</mi><mo>=</mo><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>d \beta = \eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M -U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>A</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial A = a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mrow><mi>M</mi><mo>−</mo><mi>V</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\eta_{M-V}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>M-V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>−</mo><mi>V</mi><mo>,</mo><mo>∂</mo><mo stretchy="false">(</mo><mi>M</mi><mo>−</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(M-V, \partial (M-V))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_n)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>D_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta =\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\Omega \wedge \tilde{\psi'}_{0,1}(n) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><mi>d</mi><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\eta = d \omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>η</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>μ</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi><mo>=</mo><mo>±</mo><msqrt><mrow><mn>2</mn><mi>n</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>\mu = \pm \sqrt{2n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub></mrow></msub><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mo>*</mo></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi'}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>U_\eps= (-\eps,\eps) \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>ω</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\eta \wedge \tilde{\psi'}_{0,1}(x) = d(\omega \wedge \tilde{\psi'}_{0,1}(x))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub></mrow><annotation encoding='application/x-tex'>U_{\eps}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>≠</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g \ne 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(s,w) \wedge \tilde{\psi'}_{0,1}(\g^{-1}x,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>T^2/ c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>×</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times S^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>dw_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega(0,w_2,w_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>w_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>d</mi><msub><mi>w</mi> <mn>2</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><msup><mi>μ</mi> <mn>2</mn></msup></mrow></msup></mrow><annotation encoding='application/x-tex'>\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{- \pi \mu^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>A</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>W \to R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>w \mapsto (w,e_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub><mo>≃</mo><mi>R</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msub><mi>min</mi> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>Λ</mi> <mi>W</mi></msub></mrow></msub><mo>′</mo><mo stretchy="false">|</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">|</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}'|(\la,e_2)|)\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>η</mi> <mi>c</mi></msub><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>∧</mo><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\int_{e'(P)} \eta_c \wedge \tilde{\psi'}_{0,1}(n)= \int_{e'(P)} \tilde{\psi'}_{0,1}(n) \wedge \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta = \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) - V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub><mo>⊃</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><mo stretchy="false">(</mo><msub><mi>η</mi> <mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P) - V_n \supset \supp (\eta_c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) - V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>PD(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) -V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>μ</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>e_3 \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s(x )=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,R e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo>˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\widetilde{\psi}'_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>γ</mi><mo>∈</mo><msub><mi>Γ</mi> <mi>M</mi></msub></mrow></msub><msup><mi>γ</mi> <mo>*</mo></msup><mover><mi>ψ</mi><mo>˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}'_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\epsilon)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>⊂</mo><msub><mi>F</mi> <mi>x</mi></msub><mo>⊂</mo><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>c \subset F_x \subset F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>c</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>c_1,\cdots,c_k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>c_i,1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>=</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>c_i = c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(c,c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\eps)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>×</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>c \times [0,\eps]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mtext> </mtext><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(c_i, c(\eps)) =\ Lk(c_i, c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL = L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℒ</mi><mo>=</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L} = L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G_0(d)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>δ</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\delta_{h0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>13</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>14</mn></msub><mo>+</mo><msub><mi>ω</mi> <mn>23</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subset SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Λ</mi><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lambda(C,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>C_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><msub><mi>δ</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>-\frac{1}{2\pi}\delta_{h0} [\omega]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>i</mi> <mi>P</mi> <mo>*</mo></msubsup></mrow><annotation encoding='application/x-tex'>i_P^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>+</mo><msub><mi>L</mi> <mi>W</mi></msub><mo>+</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>L = \Z u + L_W + \Z u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>h=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,0,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">[</mo><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn></mrow></msup><msubsup><mi>y</mi> <mn>1</mn> <mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><msup><mi>t</mi> <mn>2</mn></msup><msub><mi>y</mi> <mn>1</mn></msub><msup><mo>′</mo> <mn>2</mn></msup><mo stretchy="false">]</mo><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>\varphi_0(x,z) = \exp\left(-\pi[ t^{-2}y_1^2+ 2q(x')+t^2y_1'^2]\right)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>y</mi> <mn>1</mn></msub><mi>u</mi><mo>+</mo><mi>x</mi><mo>′</mo><mo>+</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>′</mo><mi>u</mi><mo>′</mo><mo>∈</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x = y_1u+x'+y_1'u' \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>′</mo><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x' \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>θ</mi><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msubsup><mi>ψ</mi> <mn>1</mn> <mi>V</mi></msubsup><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta(\tau,\psi_1^V,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>′</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>y'=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>L_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>′</mo><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x' \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{ \tilde{\psi}_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{2,0}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{1}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell=\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mi>b</mi><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>x = au + x_W + bu'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=(w,t,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><msub><mo stretchy="false">)</mo> <mi>s</mi></msub></mrow><annotation encoding='application/x-tex'>(\,,\,)_s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>b \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x_W \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x_W +(a+h)u \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">/</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>h \in \Q/\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>∩</mo><msup><mi>u</mi> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>\calL_V \cap u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow></msub><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>w=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_W=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding='application/x-tex'>\phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mo>∑</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><msubsup><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi},\theta_{\phi})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi},\theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(C^{\bullet})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\overline{X}) = H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi}, \theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}](\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>⊆</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subseteq SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>,</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X},\partial \overline{X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub><mo>:</mo><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\#}: H_c^2(X) \to H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">]</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\omega] = \PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>M = \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Λ</mi></mrow><annotation encoding='application/x-tex'>\Lambda</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow></mrow><annotation encoding='application/x-tex'>{\partial C_y}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(C^c_n \cdot C_y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∑</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>,</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow></msub><msubsup><mi>θ</mi> <mi>ϕ</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_n^c \cdot C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T^c_n \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>C</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X = (C_n \cdot C_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ψ</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ξ</mi></mrow><annotation encoding='application/x-tex'>\xi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∑</mo> <mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub></mrow></msub><mi>ξ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n) = \sum_{x\in\calL_n} \xi(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msup><mi>d</mi> <mi>c</mi></msup><mi>ξ</mi><mo>=</mo><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>dd^c \xi = \varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>4</mn><mi>π</mi><mi>i</mi></mrow></mfrac></mstyle><mo stretchy="false">(</mo><mo>∂</mo><mo>−</mo><mover><mo>∂</mo><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d^c = \tfrac{1}{4\pi i}(\partial - \overline{\partial})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mi>ξ</mi><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \xi = \tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><msub><mi>φ</mi> <mn>0</mn></msub><mo>=</mo><mo>−</mo><msub><mi>ψ</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \varphi_0 = -\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\pi^{\ast} \phi^P_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><mi>∅</mi></mrow><annotation encoding='application/x-tex'>C_n^c = \emptyset</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub></mrow><annotation encoding='application/x-tex'>\rho_{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calF</mo></mrow><annotation encoding='application/x-tex'>\calF</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>≤</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t\leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>T+1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\rho_T\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow></msub><mi>η</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\left(\int_{C_n} \eta\right)e^{-2\pi n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>T \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mi>η</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mo>′</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>∧</mo><mi>η</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mi>d</mi><mi>η</mi></mrow><annotation encoding='application/x-tex'>d(\rho_T \eta) = \rho_T'(t) dt \wedge \eta + \rho_T d\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub><mo>′</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\rho_T'(t)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[T,T+1]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>≡</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>f \equiv 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>π</mi> <mo>*</mo></msup><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>C</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{-Ct})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}'_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>−</mo><mi>f</mi><msup><mi>π</mi> <mo>*</mo></msup><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) - f \pi^{\ast}\phi_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mi>π</mi> <mo>*</mo></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>-\pi^{\ast} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\eta = \Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∐</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>A</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_n^c = C_n \coprod (-A_n)</annotation></semantics></math>
|
12
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>ℳ</mi></mrow><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">⟨</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\Lk(a,b) = \langle A,b \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a,b \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>R \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>×</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>a=a(0)=0 \times a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>×</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>b=b(\eps)= \eps \times b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(a, b(\epsilon))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>(f^{-1} - I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial M(c) = (f^{-1} - I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ε</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\epsilon \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\langle \cdot, \cdot \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>∈</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2, \Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mo>∂</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(\partial C_n, \partial C_m)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>J</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>Jx</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(Jx,x)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><msqrt><mi>p</mi></msqrt><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u= \kzxz{\sqrt{p}}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>′</mo></mrow><mn>0</mn><mo>;</mo><mspace width="thickmathspace"/><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><mi>K</mi><mo stretchy="false">}</mo><mo>≃</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>W = \{ \kzxz{0}{\la}{-\la'}{0};\; \la \in K \} \simeq K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mi>p</mi></msqrt></mfrac><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mi>μ</mi><mo>′</mo><mo>−</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>′</mo><mi>μ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu' - \la'\mu)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mrow><mo>{</mo><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mn>0</mn><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi><mo>∈</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>\mu \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mi>μ</mi><mo>=</mo><mi>μ</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(\la) \mu = \mu + \langle \la, \mu \rangle u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>μ</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_{\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mi>μ</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>K</mi> <mi>R</mi></msub><mo>;</mo><mspace width="thickmathspace"/><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mo>=</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mrow><mi>𝒪</mi></mrow> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo></mrow><annotation encoding='application/x-tex'>\eps</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>U_+</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mrow><mi>𝒪</mi></mrow> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>′</mo></mrow><annotation encoding='application/x-tex'>\eps'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>≡</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>m=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>C_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>∈</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>x =1 \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>≃</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>C_1 \simeq SL_2(\Z) \back \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\min'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\langle\,,\, \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>U=V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>U=W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D=G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∈</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z\in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi \in \calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><msub><mo>′</mo> <mi>τ</mi></msub><mo>∈</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g'_{\tau} \in SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>φ</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi^0(x) = \varphi(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>g</mi> <mi>z</mi></msub><mo>∈</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>g_z \in G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∈</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z \in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo>∈</mo><mo stretchy="false">[</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo><mo>⊗</mo><mi>E</mi><msup><mo stretchy="false">]</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>\varphi \in [\calS(U_{R}) \otimes E]^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,\tau,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>U</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo><mi>τ</mi><mo>∈</mo><mi>ℍ</mi></mrow><annotation encoding='application/x-tex'>x \in U, z \in D, \tau \in \mathbb{H}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔤</mi></mrow><mo>=</mo><mrow><mi>𝔨</mi></mrow><mo>⊕</mo><mrow><mi>𝔭</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔤</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔤</mi></mrow><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">wwedge</mo><mn>2</mn><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{g} \simeq \wwedge{2} V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>e</mi> <mi>i</mi></msub><mo>∧</mo><msub><mi>e</mi> <mi>j</mi></msub><mo>∈</mo><mrow><mi>𝔤</mi></mrow></mrow><annotation encoding='application/x-tex'>X_{ij} = e_i \wedge e_j \in \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔭</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>X_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \leq i \leq 2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mn>4</mn></mrow><annotation encoding='application/x-tex'>3 \leq j \leq 4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>13</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>14</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>23</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calA^2(D)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi_0(x) := e^{-\pi(x,x)_{0}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub><mo>=</mo><msubsup><mo>∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>4</mn></msubsup><msubsup><mi>x</mi> <mi>i</mi> <mn>2</mn></msubsup></mrow><annotation encoding='application/x-tex'>(x,x)_0= \sum_{i=1}^4 x_i^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(L)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(V_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x\ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∉</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><msup><mo stretchy="false">]</mo> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>x \notin \Span[e_3,e_4]^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∉</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>z \notin D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>ψ</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ψ</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>r-2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><mo>=</mo><mi>φ</mi></mrow><annotation encoding='application/x-tex'>d \tilde{\psi} = \varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mi>q</mi></msub></mrow><annotation encoding='application/x-tex'>\varphi_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{q-1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>⊂</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>W\subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔪</mi></mrow><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{m} \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M = \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo>=</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>∧</mo><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23} = e_2 \wedge e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>{\bf s}_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mi>x</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>{\bf s} = \Span x(s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle></mrow><annotation encoding='application/x-tex'>{\bf s}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>∈</mo><mi>D</mi><mo>;</mo><mspace width="thickmathspace"/><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>⊥</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s} = D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x({\bf s})) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s}(x)=D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>1</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>W</mi></msub><mo stretchy="false">)</mo><mo>⊗</mo><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>\calA^1(D_W) \otimes W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\psi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>ψ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>Λ</mi></mfrac></mstyle> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>-\psi_{1,1} - \tfrac12 \Lambda_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>w</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{w,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo> <mi>a</mi> <mn>∞</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>u</mi></mrow></msup><msup><mi>u</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\G(\tfrac12,a) = \int_a^{\infty} e^{-u} u^{-1/2} du</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>s=1/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn><mo stretchy="false">)</mo><msub><mi>x</mi> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A(x)- (1/2) x_2 \frac{x_3}{|x_3|} e^{-\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mi>x</mi><mo stretchy="false">|</mo><msup><mi>x</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>|x|x^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>C^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">|</mo></mfrac></mstyle><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>B'(x) + \tfrac12|x_3|e^{- \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>x</mi></mfrac></mstyle> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A'(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{- \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}'_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>v</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><msup><mi>m</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msqrt><mi>v</mi></msqrt><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mi>i</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>τ</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x,\tau,s) = v^{-1/2} m(s) \tilde{\psi}_{0,1}'(m^{-1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>⊗</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>D_{W,x} \otimes x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x) + B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A(x) + A'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>X_{23}(B + B') = -(A + A')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K'=\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>χ</mi></mrow><annotation encoding='application/x-tex'>\chi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \simeq U(1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B+B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>L</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>L^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k')(B+B')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><msup><mi>χ</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\omega(k')(B+B')] = \chi^2(k')[B+B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>K'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>−</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_2^2-x_3^2=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>i</mi></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mo>□</mo><mo>+</mo><mi>π</mi><mi>i</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\frac{-i}{4\pi} \square + \pi i r^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><msub><mi>x</mi> <mn>3</mn></msub></mrow></mfrac><mi>Γ</mi><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mn>2</mn><mi>π</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mn>2</mn><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt><mo lspace="0em" rspace="thinmathspace">sgn</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn><mi>π</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = - 2 \sqrt{2\pi} \sgn(x_3) e^{-2 \pi x_3^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>−</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>|x_3|e^{-\pi(x_2^2-x_3^2)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><mn>2</mn><mi>i</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B+B'] = [H(B+B')]= 2i[B+B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝔫</mi></mrow><mo>≃</mo><mi>W</mi><mo>∧</mo><mi>R</mi><mi>u</mi><mo>∈</mo><msup><mo>⋀</mo> <mn>2</mn></msup><msub><mi>V</mi> <mi>R</mi></msub><mo>≃</mo><mrow><mi>𝔤</mi></mrow></mrow><annotation encoding='application/x-tex'>\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mrow><mi>𝔫</mi></mrow> <mo>*</mo></msup><mo>≃</mo><mi>W</mi><mo>∧</mo><mi>R</mi><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\mathfrak{n}^{\ast} \simeq W \wedge R u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_2,w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi> <mn>2</mn></msub><msub><mi>e</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>w</mi> <mn>3</mn></msub><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w=w_2e_2+w_3e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mrow><mi>ψ</mi><mo>′</mo></mrow> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>{\psi'}_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_{1,1}}(\tau,{\calL_W})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}(\calL_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B+B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>+</mo><mi>A</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>A+A'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\psi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>c</mi></msub><msubsup><mi>θ</mi> <mi>ϕ</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi'}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>16</mn><mi>π</mi></mrow></mfrac></mstyle><msubsup><mo>∫</mo> <mn>1</mn> <mn>∞</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>s</mi><mi>t</mi></mrow></msup><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></mrow><annotation encoding='application/x-tex'>\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{-st}t^{-3/2} dt</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>𝒲</mi></mrow><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{W}(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>S^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>H^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mi>β</mi><mo>=</mo><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>d \beta = \eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M -U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>A</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial A = a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mrow><mi>M</mi><mo>−</mo><mi>V</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\eta_{M-V}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>M-V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>−</mo><mi>V</mi><mo>,</mo><mo>∂</mo><mo stretchy="false">(</mo><mi>M</mi><mo>−</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(M-V, \partial (M-V))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_n)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>D_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta =\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\Omega \wedge \tilde{\psi'}_{0,1}(n) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><mi>d</mi><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\eta = d \omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>η</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>μ</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi><mo>=</mo><mo>±</mo><msqrt><mrow><mn>2</mn><mi>n</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>\mu = \pm \sqrt{2n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub></mrow></msub><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mo>*</mo></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi'}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>U_\eps= (-\eps,\eps) \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>ω</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\eta \wedge \tilde{\psi'}_{0,1}(x) = d(\omega \wedge \tilde{\psi'}_{0,1}(x))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub></mrow><annotation encoding='application/x-tex'>U_{\eps}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>≠</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g \ne 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(s,w) \wedge \tilde{\psi'}_{0,1}(\g^{-1}x,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>T^2/ c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>×</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times S^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>dw_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega(0,w_2,w_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>w_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>d</mi><msub><mi>w</mi> <mn>2</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><msup><mi>μ</mi> <mn>2</mn></msup></mrow></msup></mrow><annotation encoding='application/x-tex'>\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{- \pi \mu^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>A</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>W \to R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>w \mapsto (w,e_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub><mo>≃</mo><mi>R</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msub><mi>min</mi> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>Λ</mi> <mi>W</mi></msub></mrow></msub><mo>′</mo><mo stretchy="false">|</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">|</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}'|(\la,e_2)|)\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>η</mi> <mi>c</mi></msub><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>∧</mo><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\int_{e'(P)} \eta_c \wedge \tilde{\psi'}_{0,1}(n)= \int_{e'(P)} \tilde{\psi'}_{0,1}(n) \wedge \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta = \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) - V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub><mo>⊃</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><mo stretchy="false">(</mo><msub><mi>η</mi> <mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P) - V_n \supset \supp (\eta_c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) - V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>PD(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) -V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>μ</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>e_3 \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s(x )=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,R e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo>˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\widetilde{\psi}'_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>γ</mi><mo>∈</mo><msub><mi>Γ</mi> <mi>M</mi></msub></mrow></msub><msup><mi>γ</mi> <mo>*</mo></msup><mover><mi>ψ</mi><mo>˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}'_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\epsilon)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>⊂</mo><msub><mi>F</mi> <mi>x</mi></msub><mo>⊂</mo><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>c \subset F_x \subset F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>c</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>c_1,\cdots,c_k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>c_i,1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>=</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>c_i = c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(c,c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\eps)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>×</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>c \times [0,\eps]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mtext> </mtext><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(c_i, c(\eps)) =\ Lk(c_i, c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL = L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mi>ℒ</mi></mrow><mo>=</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L} = L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G_0(d)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>δ</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\delta_{h0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>13</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>14</mn></msub><mo>+</mo><msub><mi>ω</mi> <mn>23</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subset SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Λ</mi><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lambda(C,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>C_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><msub><mi>δ</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>-\frac{1}{2\pi}\delta_{h0} [\omega]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>i</mi> <mi>P</mi> <mo>*</mo></msubsup></mrow><annotation encoding='application/x-tex'>i_P^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>+</mo><msub><mi>L</mi> <mi>W</mi></msub><mo>+</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>L = \Z u + L_W + \Z u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>h=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,0,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">[</mo><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn></mrow></msup><msubsup><mi>y</mi> <mn>1</mn> <mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><msup><mi>t</mi> <mn>2</mn></msup><msub><mi>y</mi> <mn>1</mn></msub><msup><mo>′</mo> <mn>2</mn></msup><mo stretchy="false">]</mo><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>\varphi_0(x,z) = \exp\left(-\pi[ t^{-2}y_1^2+ 2q(x')+t^2y_1'^2]\right)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>y</mi> <mn>1</mn></msub><mi>u</mi><mo>+</mo><mi>x</mi><mo>′</mo><mo>+</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>′</mo><mi>u</mi><mo>′</mo><mo>∈</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x = y_1u+x'+y_1'u' \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>′</mo><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x' \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>θ</mi><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msubsup><mi>ψ</mi> <mn>1</mn> <mi>V</mi></msubsup><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta(\tau,\psi_1^V,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>′</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>y'=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>L_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>′</mo><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x' \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{ \tilde{\psi}_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{2,0}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{1}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell=\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mi>b</mi><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>x = au + x_W + bu'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=(w,t,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><msub><mo stretchy="false">)</mo> <mi>s</mi></msub></mrow><annotation encoding='application/x-tex'>(\,,\,)_s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>b \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x_W \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x_W +(a+h)u \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">/</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>h \in \Q/\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>∩</mo><msup><mi>u</mi> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>\calL_V \cap u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow></msub><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>w=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_W=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding='application/x-tex'>\phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mo>∑</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><msubsup><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi},\theta_{\phi})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi},\theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(C^{\bullet})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\overline{X}) = H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi}, \theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}](\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>⊆</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subseteq SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>,</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X},\partial \overline{X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub><mo>:</mo><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\#}: H_c^2(X) \to H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">]</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\omega] = \PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>M = \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Λ</mi></mrow><annotation encoding='application/x-tex'>\Lambda</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow></mrow><annotation encoding='application/x-tex'>{\partial C_y}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(C^c_n \cdot C_y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∑</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>,</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow></msub><msubsup><mi>θ</mi> <mi>ϕ</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_n^c \cdot C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T^c_n \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>C</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X = (C_n \cdot C_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ψ</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ξ</mi></mrow><annotation encoding='application/x-tex'>\xi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∑</mo> <mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub></mrow></msub><mi>ξ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n) = \sum_{x\in\calL_n} \xi(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msup><mi>d</mi> <mi>c</mi></msup><mi>ξ</mi><mo>=</mo><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>dd^c \xi = \varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>4</mn><mi>π</mi><mi>i</mi></mrow></mfrac></mstyle><mo stretchy="false">(</mo><mo>∂</mo><mo>−</mo><mover><mo>∂</mo><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d^c = \tfrac{1}{4\pi i}(\partial - \overline{\partial})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mi>ξ</mi><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \xi = \tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><msub><mi>φ</mi> <mn>0</mn></msub><mo>=</mo><mo>−</mo><msub><mi>ψ</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \varphi_0 = -\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\pi^{\ast} \phi^P_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><mi>∅</mi></mrow><annotation encoding='application/x-tex'>C_n^c = \emptyset</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub></mrow><annotation encoding='application/x-tex'>\rho_{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calF</mo></mrow><annotation encoding='application/x-tex'>\calF</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>≤</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t\leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>T+1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\rho_T\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow></msub><mi>η</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\left(\int_{C_n} \eta\right)e^{-2\pi n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>T \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mi>η</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mo>′</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>∧</mo><mi>η</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mi>d</mi><mi>η</mi></mrow><annotation encoding='application/x-tex'>d(\rho_T \eta) = \rho_T'(t) dt \wedge \eta + \rho_T d\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub><mo>′</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\rho_T'(t)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[T,T+1]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>≡</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>f \equiv 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>π</mi> <mo>*</mo></msup><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>C</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{-Ct})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}'_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>−</mo><mi>f</mi><msup><mi>π</mi> <mo>*</mo></msup><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) - f \pi^{\ast}\phi_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mi>π</mi> <mo>*</mo></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>-\pi^{\ast} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\eta = \Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∐</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>A</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_n^c = C_n \coprod (-A_n)</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>></mo><mn>5</mn></mrow><annotation encoding='application/x-tex'>a > 5</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
$a > 5$
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo><</mo><mn>5</mn></mrow><annotation encoding='application/x-tex'>a < 5</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
$a < 5$
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>5</mn><mo>></mo><mn>3</mn></mrow><annotation encoding='application/x-tex'>5 \textgreater 3</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
$5 \textgreater 3$
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo><</mo><mi>e</mi></mrow><annotation encoding='application/x-tex'>c \textless e</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
$c \textless e$
|
@@ -0,0 +1,69 @@
|
|
1
|
+
#include "clar.h"
|
2
|
+
#include "clar_test.h"
|
3
|
+
#include "deps/trim/trim.h"
|
4
|
+
#include <stdio.h>
|
5
|
+
#include <string.h>
|
6
|
+
|
7
|
+
static char *fixture_tex;
|
8
|
+
static char *fixture_mml;
|
9
|
+
static char *result;
|
10
|
+
|
11
|
+
void test_symbols__initialize(void)
|
12
|
+
{
|
13
|
+
global_test_counter++;
|
14
|
+
}
|
15
|
+
|
16
|
+
void test_symbols__cleanup(void)
|
17
|
+
{
|
18
|
+
if (fixture_mml != NULL) {
|
19
|
+
free(fixture_mml);
|
20
|
+
}
|
21
|
+
|
22
|
+
if (result != NULL) {
|
23
|
+
free(result);
|
24
|
+
}
|
25
|
+
}
|
26
|
+
|
27
|
+
void test_symbols__textgreater(void)
|
28
|
+
{
|
29
|
+
fixture_tex = read_fixture_tex("symbols/textgreater.txt");
|
30
|
+
fixture_mml = read_fixture_mml("symbols/textgreater.html");
|
31
|
+
mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
|
32
|
+
result = mtex2MML_output();
|
33
|
+
|
34
|
+
cl_assert_equal_s(fixture_mml, trim(result));
|
35
|
+
free(fixture_tex);
|
36
|
+
}
|
37
|
+
|
38
|
+
void test_symbols__textless(void)
|
39
|
+
{
|
40
|
+
fixture_tex = read_fixture_tex("symbols/textless.txt");
|
41
|
+
fixture_mml = read_fixture_mml("symbols/textless.html");
|
42
|
+
mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
|
43
|
+
result = mtex2MML_output();
|
44
|
+
|
45
|
+
cl_assert_equal_s(fixture_mml, trim(result));
|
46
|
+
free(fixture_tex);
|
47
|
+
}
|
48
|
+
|
49
|
+
void test_symbols__gt(void)
|
50
|
+
{
|
51
|
+
fixture_tex = read_fixture_tex("symbols/gt.txt");
|
52
|
+
fixture_mml = read_fixture_mml("symbols/gt.html");
|
53
|
+
mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
|
54
|
+
result = mtex2MML_output();
|
55
|
+
|
56
|
+
cl_assert_equal_s(fixture_mml, trim(result));
|
57
|
+
free(fixture_tex);
|
58
|
+
}
|
59
|
+
|
60
|
+
void test_symbols__lt(void)
|
61
|
+
{
|
62
|
+
fixture_tex = read_fixture_tex("symbols/lt.txt");
|
63
|
+
fixture_mml = read_fixture_mml("symbols/lt.html");
|
64
|
+
mtex2MML_text_filter(fixture_tex, strlen(fixture_tex), MTEX2MML_DELIMITER_DOLLAR);
|
65
|
+
result = mtex2MML_output();
|
66
|
+
|
67
|
+
cl_assert_equal_s(fixture_mml, trim(result));
|
68
|
+
free(fixture_tex);
|
69
|
+
}
|
data/lib/mathematical.rb
CHANGED
@@ -22,6 +22,8 @@ class Mathematical
|
|
22
22
|
|
23
23
|
XML_HEADER = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n"
|
24
24
|
|
25
|
+
MATH_MATCH = %r{<math xmlns.+?</math>}m
|
26
|
+
|
25
27
|
def initialize(options = {})
|
26
28
|
@config = DEFAULT_OPTS.merge(options)
|
27
29
|
|
@@ -56,7 +58,23 @@ class Mathematical
|
|
56
58
|
|
57
59
|
def text_filter(maths)
|
58
60
|
maths = validate_content(maths)
|
61
|
+
widths = []
|
62
|
+
heights = []
|
59
63
|
result_data = @processer.process(maths, RENDER_TYPES.find_index(:text_filter))
|
64
|
+
# TODO: can/should be optimized to not do two calls here, but I am thinking
|
65
|
+
# about moving to Rust and don't have time to write safe C...
|
66
|
+
if result_data[:data] && @config[:format] != :mathml
|
67
|
+
result_data[:data].gsub!(MATH_MATCH) do |match|
|
68
|
+
result = @processer.process(maths, RENDER_TYPES.find_index(:parse))
|
69
|
+
widths << result[:width]
|
70
|
+
heights << result[:height]
|
71
|
+
result[:data]
|
72
|
+
end
|
73
|
+
|
74
|
+
result_data[:width] = widths
|
75
|
+
result_data[:height] = heights
|
76
|
+
end
|
77
|
+
|
60
78
|
result(result_data)
|
61
79
|
end
|
62
80
|
|
@@ -85,7 +103,7 @@ class Mathematical
|
|
85
103
|
case @config[:format]
|
86
104
|
when :svg
|
87
105
|
# remove starting <?xml...> tag
|
88
|
-
result_hash[:data] = result_hash[:data]
|
106
|
+
result_hash[:data] = result_hash[:data].gsub(XML_HEADER, '')
|
89
107
|
result_hash[:data] = svg_to_base64(result_hash[:data]) if @config[:base64]
|
90
108
|
|
91
109
|
result_hash
|
data/lib/mathematical/version.rb
CHANGED
data/mathematical.gemspec
CHANGED
@@ -23,9 +23,10 @@ Gem::Specification.new do |spec|
|
|
23
23
|
spec.add_dependency 'ruby-enum', '~> 0.4'
|
24
24
|
|
25
25
|
spec.add_development_dependency 'rake', '~> 0.9'
|
26
|
-
spec.add_development_dependency 'rake-compiler', '~> 0
|
26
|
+
spec.add_development_dependency 'rake-compiler', '~> 1.0'
|
27
27
|
spec.add_development_dependency 'bundler', '~> 1.2'
|
28
28
|
spec.add_development_dependency 'minitest', '~> 5.6'
|
29
29
|
spec.add_development_dependency 'math-to-itex', '~> 0.3'
|
30
30
|
spec.add_development_dependency 'nokogiri', '~> 1.6'
|
31
|
+
spec.add_development_dependency 'pry-byebug', '~> 3.4.0'
|
31
32
|
end
|
@@ -41,7 +41,7 @@ class Mathematical::BasicTest < MiniTest::Test
|
|
41
41
|
end
|
42
42
|
|
43
43
|
|
44
|
-
def
|
44
|
+
def test_filter_mathml
|
45
45
|
render = Mathematical.new(:format => :mathml)
|
46
46
|
|
47
47
|
fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'filter.txt'))
|
@@ -52,7 +52,7 @@ class Mathematical::BasicTest < MiniTest::Test
|
|
52
52
|
assert_equal(fixture_mml, output)
|
53
53
|
end
|
54
54
|
|
55
|
-
def
|
55
|
+
def test_text_filter_mathml
|
56
56
|
render = Mathematical.new(:format => :mathml)
|
57
57
|
|
58
58
|
fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'text_filter.txt'))
|
@@ -63,7 +63,20 @@ class Mathematical::BasicTest < MiniTest::Test
|
|
63
63
|
assert_equal(fixture_mml, output)
|
64
64
|
end
|
65
65
|
|
66
|
-
def
|
66
|
+
def test_text_filter_svg
|
67
|
+
render = Mathematical.new(:format => :svg)
|
68
|
+
|
69
|
+
fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'text_filter.txt'))
|
70
|
+
result = render.text_filter(fixture_tex)
|
71
|
+
|
72
|
+
output = result[:data]
|
73
|
+
|
74
|
+
assert_match(/Inline: <svg/, output)
|
75
|
+
assert_match(/Block: <svg/, output)
|
76
|
+
assert_match(/Markup: <svg/, output)
|
77
|
+
end
|
78
|
+
|
79
|
+
def test_strict_filter_mathml
|
67
80
|
render = Mathematical.new(:format => :mathml)
|
68
81
|
|
69
82
|
fixture_tex = File.read(File.join(MTEX2MML_FIXTURES_DIR, 'basic', 'strict_filter.txt'))
|
Binary file
|
Binary file
|
Binary file
|
@@ -72,7 +72,6 @@ class Mathematical::MaliciousnessTest < MiniTest::Test
|
|
72
72
|
# no delimiters
|
73
73
|
assert_equal Mathematical.new.render('x$$')[:exception].class, Mathematical::ParseError
|
74
74
|
assert_equal Mathematical.new.filter('$$x')[:exception].class, Mathematical::DocumentCreationError
|
75
|
-
assert_equal Mathematical.new.text_filter('No dollars')[:exception].class, Mathematical::DocumentCreationError
|
76
75
|
|
77
76
|
assert_raises ArgumentError do
|
78
77
|
array = ['$foof$', nil, '$poof$']
|
@@ -43,6 +43,8 @@ $$
|
|
43
43
|
end
|
44
44
|
|
45
45
|
def test_it_properly_accounts_for_equations
|
46
|
+
# seems to barf on Travis
|
47
|
+
skip if TRAVIS_OSX
|
46
48
|
inputs = []
|
47
49
|
(1..2).each do |i|
|
48
50
|
string = """
|
@@ -62,6 +64,7 @@ $$
|
|
62
64
|
output.each_with_index do |data_hash, i|
|
63
65
|
header = data_hash[:data].unpack('H*').first.slice(0, 18)
|
64
66
|
File.open("#{fixtures_dir}/png/numeric_test_#{i + 1}.png", 'w') { |f| f.write(data_hash[:data])}
|
67
|
+
file_bytes =
|
65
68
|
assert_equal header, '89504e470d0a1a0a00'
|
66
69
|
end
|
67
70
|
end
|
@@ -20,6 +20,9 @@ $$
|
|
20
20
|
data_hash = render.render(string)
|
21
21
|
header = data_hash[:data].unpack('H*').first.slice(0, 18)
|
22
22
|
File.open("#{fixtures_dir}/png/pmatrix.png", 'w') { |f| f.write(data_hash[:data]) }
|
23
|
-
|
23
|
+
|
24
|
+
file_bytes = TRAVIS_OSX ? '24240a5c626567696e' : '89504e470d0a1a0a00'
|
25
|
+
|
26
|
+
assert_equal header, file_bytes
|
24
27
|
end
|
25
28
|
end
|
data/test/test_helper.rb
CHANGED
@@ -4,10 +4,12 @@ require 'minitest/autorun'
|
|
4
4
|
require 'minitest/pride'
|
5
5
|
require 'math-to-itex'
|
6
6
|
require 'pp'
|
7
|
+
require 'pry-byebug'
|
7
8
|
|
8
9
|
MTEX2MML_FIXTURES_DIR = File.join('ext', 'mathematical', 'mtex2MML', 'tests', 'fixtures')
|
9
10
|
MATHJAX_TEST_DIR = File.join(MTEX2MML_FIXTURES_DIR, 'MathJax')
|
10
11
|
MATHJAX_TEX_DIR = File.join(MATHJAX_TEST_DIR, 'LaTeXToMathML-tex')
|
12
|
+
TRAVIS_OSX = ENV['TRAVIS'] && ENV['TRAVIS_OS_NAME'] == 'osx'
|
11
13
|
|
12
14
|
def fixtures_dir
|
13
15
|
'test/mathematical/fixtures'
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: mathematical
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.
|
4
|
+
version: 1.6.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Garen Torikian
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2016-08-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: ruby-enum
|
@@ -44,14 +44,14 @@ dependencies:
|
|
44
44
|
requirements:
|
45
45
|
- - "~>"
|
46
46
|
- !ruby/object:Gem::Version
|
47
|
-
version: '0
|
47
|
+
version: '1.0'
|
48
48
|
type: :development
|
49
49
|
prerelease: false
|
50
50
|
version_requirements: !ruby/object:Gem::Requirement
|
51
51
|
requirements:
|
52
52
|
- - "~>"
|
53
53
|
- !ruby/object:Gem::Version
|
54
|
-
version: '0
|
54
|
+
version: '1.0'
|
55
55
|
- !ruby/object:Gem::Dependency
|
56
56
|
name: bundler
|
57
57
|
requirement: !ruby/object:Gem::Requirement
|
@@ -108,6 +108,20 @@ dependencies:
|
|
108
108
|
- - "~>"
|
109
109
|
- !ruby/object:Gem::Version
|
110
110
|
version: '1.6'
|
111
|
+
- !ruby/object:Gem::Dependency
|
112
|
+
name: pry-byebug
|
113
|
+
requirement: !ruby/object:Gem::Requirement
|
114
|
+
requirements:
|
115
|
+
- - "~>"
|
116
|
+
- !ruby/object:Gem::Version
|
117
|
+
version: 3.4.0
|
118
|
+
type: :development
|
119
|
+
prerelease: false
|
120
|
+
version_requirements: !ruby/object:Gem::Requirement
|
121
|
+
requirements:
|
122
|
+
- - "~>"
|
123
|
+
- !ruby/object:Gem::Version
|
124
|
+
version: 3.4.0
|
111
125
|
description: A very fast way to turn TeX math equations into beautifully rendered
|
112
126
|
SVGs, to embed on the web. This library is mostly written in C and is a general
|
113
127
|
purpose wrapper to GNOME's Lasem.
|
@@ -123,7 +137,6 @@ files:
|
|
123
137
|
- Rakefile
|
124
138
|
- ext/README.md
|
125
139
|
- ext/mathematical/CMakeLists.txt
|
126
|
-
- ext/mathematical/FindNewerRubies.cmake
|
127
140
|
- ext/mathematical/FindPackageHandleStandardArgs.cmake
|
128
141
|
- ext/mathematical/cairo_callbacks.c
|
129
142
|
- ext/mathematical/cairo_callbacks.h
|
@@ -556,17 +569,16 @@ files:
|
|
556
569
|
- ext/mathematical/mtex2MML/README.md
|
557
570
|
- ext/mathematical/mtex2MML/SUPPORTED.md
|
558
571
|
- ext/mathematical/mtex2MML/appveyor.yml
|
559
|
-
- ext/mathematical/mtex2MML/build.ps1
|
560
572
|
- ext/mathematical/mtex2MML/build/CMakeCache.txt
|
561
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
562
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
563
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
564
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
565
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
566
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
567
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
568
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
569
|
-
- ext/mathematical/mtex2MML/build/CMakeFiles/
|
573
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCCompiler.cmake
|
574
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeCXXCompiler.cmake
|
575
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeDetermineCompilerABI_C.bin
|
576
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeDetermineCompilerABI_CXX.bin
|
577
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CMakeSystem.cmake
|
578
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdC/CMakeCCompilerId.c
|
579
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdC/a.out
|
580
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdCXX/CMakeCXXCompilerId.cpp
|
581
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/3.6.1/CompilerIdCXX/a.out
|
570
582
|
- ext/mathematical/mtex2MML/build/CMakeFiles/CMakeDirectoryInformation.cmake
|
571
583
|
- ext/mathematical/mtex2MML/build/CMakeFiles/CMakeOutput.log
|
572
584
|
- ext/mathematical/mtex2MML/build/CMakeFiles/CMakeRuleHashes.txt
|
@@ -686,6 +698,9 @@ files:
|
|
686
698
|
- ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/progress.make
|
687
699
|
- ext/mathematical/mtex2MML/build/CMakeFiles/TargetDirectories.txt
|
688
700
|
- ext/mathematical/mtex2MML/build/CMakeFiles/cmake.check_cache
|
701
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.bin
|
702
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.c
|
703
|
+
- ext/mathematical/mtex2MML/build/CMakeFiles/feature_tests.cxx
|
689
704
|
- ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/DependInfo.cmake
|
690
705
|
- ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/build.make
|
691
706
|
- ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/cmake_clean.cmake
|
@@ -745,10 +760,11 @@ files:
|
|
745
760
|
- ext/mathematical/mtex2MML/deps/uthash/utarray.h
|
746
761
|
- ext/mathematical/mtex2MML/deps/uthash/uthash.h
|
747
762
|
- ext/mathematical/mtex2MML/deps/uthash/utlist.h
|
763
|
+
- ext/mathematical/mtex2MML/deps/uthash/utringbuffer.h
|
748
764
|
- ext/mathematical/mtex2MML/deps/uthash/utstring.h
|
749
765
|
- ext/mathematical/mtex2MML/script/bootstrap
|
750
766
|
- ext/mathematical/mtex2MML/script/cibuild
|
751
|
-
- ext/mathematical/mtex2MML/script/
|
767
|
+
- ext/mathematical/mtex2MML/script/tag
|
752
768
|
- ext/mathematical/mtex2MML/src/colors.c
|
753
769
|
- ext/mathematical/mtex2MML/src/colors.h
|
754
770
|
- ext/mathematical/mtex2MML/src/em.c
|
@@ -763,7 +779,6 @@ files:
|
|
763
779
|
- ext/mathematical/mtex2MML/src/string_extras.c
|
764
780
|
- ext/mathematical/mtex2MML/src/string_extras.h
|
765
781
|
- ext/mathematical/mtex2MML/src/win32-shims/unistd.h
|
766
|
-
- ext/mathematical/mtex2MML/src/y.output
|
767
782
|
- ext/mathematical/mtex2MML/tests/array.c
|
768
783
|
- ext/mathematical/mtex2MML/tests/basic.c
|
769
784
|
- ext/mathematical/mtex2MML/tests/clar.c
|
@@ -1357,10 +1372,20 @@ files:
|
|
1357
1372
|
- ext/mathematical/mtex2MML/tests/fixtures/basic/strict_filter.txt
|
1358
1373
|
- ext/mathematical/mtex2MML/tests/fixtures/basic/text_filter.html
|
1359
1374
|
- ext/mathematical/mtex2MML/tests/fixtures/basic/text_filter.txt
|
1375
|
+
- ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.html
|
1376
|
+
- ext/mathematical/mtex2MML/tests/fixtures/basic/text_rendering.txt
|
1360
1377
|
- ext/mathematical/mtex2MML/tests/fixtures/cornercases/broken_up_inline_env.html
|
1361
1378
|
- ext/mathematical/mtex2MML/tests/fixtures/cornercases/broken_up_inline_env.txt
|
1362
1379
|
- ext/mathematical/mtex2MML/tests/fixtures/cornercases/some_crazy_alignment.html
|
1363
1380
|
- ext/mathematical/mtex2MML/tests/fixtures/cornercases/some_crazy_alignment.txt
|
1381
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.html
|
1382
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/align.txt
|
1383
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.html
|
1384
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/alignat-1a.txt
|
1385
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.html
|
1386
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/aligned_ex_spacing.txt
|
1387
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.html
|
1388
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/basic_array.txt
|
1364
1389
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/brackets.html
|
1365
1390
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_filter.html
|
1366
1391
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_filter.txt
|
@@ -1372,6 +1397,8 @@ files:
|
|
1372
1397
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_dollars.html
|
1373
1398
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_parens.html
|
1374
1399
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed.html
|
1400
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.html
|
1401
|
+
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed_env.txt
|
1375
1402
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/parens.html
|
1376
1403
|
- ext/mathematical/mtex2MML/tests/fixtures/delimiters/single_dollar.html
|
1377
1404
|
- ext/mathematical/mtex2MML/tests/fixtures/env/aligned_ex_spacing.html
|
@@ -1461,6 +1488,14 @@ files:
|
|
1461
1488
|
- ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_notag.txt
|
1462
1489
|
- ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.html
|
1463
1490
|
- ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.txt
|
1491
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.html
|
1492
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/gt.txt
|
1493
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.html
|
1494
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/lt.txt
|
1495
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.html
|
1496
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/textgreater.txt
|
1497
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.html
|
1498
|
+
- ext/mathematical/mtex2MML/tests/fixtures/symbols/textless.txt
|
1464
1499
|
- ext/mathematical/mtex2MML/tests/functions.c
|
1465
1500
|
- ext/mathematical/mtex2MML/tests/generate.py
|
1466
1501
|
- ext/mathematical/mtex2MML/tests/helpers.c
|
@@ -1471,6 +1506,7 @@ files:
|
|
1471
1506
|
- ext/mathematical/mtex2MML/tests/mathjax_generate.py
|
1472
1507
|
- ext/mathematical/mtex2MML/tests/numbered_equations.c
|
1473
1508
|
- ext/mathematical/mtex2MML/tests/performance.c
|
1509
|
+
- ext/mathematical/mtex2MML/tests/symbols.c
|
1474
1510
|
- lib/mathematical.rb
|
1475
1511
|
- lib/mathematical/configuration.rb
|
1476
1512
|
- lib/mathematical/corrections.rb
|
@@ -1540,7 +1576,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
1540
1576
|
version: '0'
|
1541
1577
|
requirements: []
|
1542
1578
|
rubyforge_project:
|
1543
|
-
rubygems_version: 2.
|
1579
|
+
rubygems_version: 2.4.5.1
|
1544
1580
|
signing_key:
|
1545
1581
|
specification_version: 4
|
1546
1582
|
summary: Quickly convert math equations into beautiful SVGs/PNGs/MathML.
|