mathematical 1.5.0 → 1.5.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (727) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +27 -0
  3. data/Rakefile +5 -9
  4. data/ext/README.md +21 -0
  5. data/ext/mathematical/CMakeLists.txt +76 -0
  6. data/ext/mathematical/FindNewerRubies.cmake +292 -0
  7. data/ext/mathematical/FindPackageHandleStandardArgs.cmake +58 -0
  8. data/ext/mathematical/extconf.rb +38 -18
  9. data/ext/mathematical/lasem/AUTHORS +1 -0
  10. data/ext/mathematical/lasem/COPYING +482 -0
  11. data/ext/mathematical/lasem/{docs/reference/lasem/lasem-overrides.txt → ChangeLog} +0 -0
  12. data/ext/mathematical/lasem/MAINTAINERS +3 -0
  13. data/ext/mathematical/lasem/Makefile.am +34 -0
  14. data/ext/mathematical/lasem/Makefile.decl +57 -0
  15. data/ext/mathematical/lasem/NEWS +117 -0
  16. data/ext/mathematical/lasem/README +28 -0
  17. data/ext/mathematical/lasem/RELEASING +85 -0
  18. data/ext/mathematical/lasem/TODO +50 -0
  19. data/ext/mathematical/lasem/autogen.sh +177 -0
  20. data/ext/mathematical/lasem/configure.ac +139 -0
  21. data/ext/mathematical/lasem/docs/Makefile.am +14 -0
  22. data/ext/mathematical/lasem/docs/lasem-render-0.6.1 +106 -0
  23. data/ext/mathematical/lasem/docs/reference/Makefile.am +3 -0
  24. data/ext/mathematical/lasem/docs/reference/lasem/Makefile.am +205 -0
  25. data/ext/mathematical/lasem/docs/reference/lasem/lasem-docs.xml +75 -0
  26. data/ext/mathematical/lasem/docs/reference/lasem/lasem-overview.xml +64 -0
  27. data/ext/mathematical/lasem/docs/reference/lasem/lasem.types +110 -0
  28. data/ext/mathematical/lasem/itex2mml/COPYING.itex2MML +3 -0
  29. data/ext/mathematical/lasem/itex2mml/Makefile.am +37 -0
  30. data/ext/mathematical/lasem/itex2mml/README.itex2MML +13 -0
  31. data/ext/mathematical/lasem/lasem.doap +21 -0
  32. data/ext/mathematical/lasem/m4/introspection.m4 +96 -0
  33. data/ext/mathematical/lasem/po/ChangeLog +0 -0
  34. data/ext/mathematical/lasem/po/LINGUAS +28 -0
  35. data/ext/mathematical/lasem/po/POTFILES.in +195 -0
  36. data/ext/mathematical/lasem/po/POTFILES.skip +1 -0
  37. data/ext/mathematical/lasem/po/bs.po +65 -0
  38. data/ext/mathematical/lasem/po/cs.po +70 -0
  39. data/ext/mathematical/lasem/po/de.po +68 -0
  40. data/ext/mathematical/lasem/po/el.po +73 -0
  41. data/ext/mathematical/lasem/po/es.po +78 -0
  42. data/ext/mathematical/lasem/po/eu.po +66 -0
  43. data/ext/mathematical/lasem/po/fr.po +65 -0
  44. data/ext/mathematical/lasem/po/gl.po +64 -0
  45. data/ext/mathematical/lasem/po/hu.po +76 -0
  46. data/ext/mathematical/lasem/po/id.po +69 -0
  47. data/ext/mathematical/lasem/po/it.po +64 -0
  48. data/ext/mathematical/lasem/po/lt.po +77 -0
  49. data/ext/mathematical/lasem/po/lv.po +66 -0
  50. data/ext/mathematical/lasem/po/nb.po +62 -0
  51. data/ext/mathematical/lasem/po/oc.po +65 -0
  52. data/ext/mathematical/lasem/po/pl.po +73 -0
  53. data/ext/mathematical/lasem/po/pt.po +77 -0
  54. data/ext/mathematical/lasem/po/pt_BR.po +64 -0
  55. data/ext/mathematical/lasem/po/ru.po +66 -0
  56. data/ext/mathematical/lasem/po/sl.po +68 -0
  57. data/ext/mathematical/lasem/po/sr.po +65 -0
  58. data/ext/mathematical/lasem/po/sr@latin.po +65 -0
  59. data/ext/mathematical/lasem/po/sv.po +72 -0
  60. data/ext/mathematical/lasem/po/tg.po +64 -0
  61. data/ext/mathematical/lasem/po/tr.po +65 -0
  62. data/ext/mathematical/lasem/po/zh_CN.po +63 -0
  63. data/ext/mathematical/lasem/src/Makefile.am +349 -0
  64. data/ext/mathematical/lasem/src/lsmdomenumtypes.c.template +39 -0
  65. data/ext/mathematical/lasem/src/lsmdomenumtypes.h.template +26 -0
  66. data/ext/mathematical/lasem/src/lsmitex.c +0 -1
  67. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.c.template +39 -0
  68. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.h.template +26 -0
  69. data/ext/mathematical/lasem/src/lsmsvgenumtypes.c.template +39 -0
  70. data/ext/mathematical/lasem/src/lsmsvgenumtypes.h.template +26 -0
  71. data/ext/mathematical/lasem/tests/Makefile.am +34 -0
  72. data/ext/mathematical/lasem/tests/data/mathml/gtkmathview/README +5 -0
  73. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-02.tex +1 -0
  74. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-03-inline.tex +1 -0
  75. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-03.tex +1 -0
  76. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction.tex +1 -0
  77. data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/closed.tex +1 -0
  78. data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/multiples.tex +1 -0
  79. data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/standard.tex +1 -0
  80. data/ext/mathematical/lasem/tests/data/mathml/tex/matrices/matrix-01.tex +5 -0
  81. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases-cr.tex +7 -0
  82. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases-space.tex +7 -0
  83. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases.tex +7 -0
  84. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/color.tex +1 -0
  85. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex-2.tex +1 -0
  86. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex-inline.tex +7 -0
  87. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex.tex +7 -0
  88. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/quadratic-inline.tex +1 -0
  89. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/quadratic.tex +1 -0
  90. data/ext/mathematical/lasem/tests/data/mathml/tex/radicals/radical-01.tex +1 -0
  91. data/ext/mathematical/lasem/tests/data/mathml/tex/radicals/radical-02.tex +1 -0
  92. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/accents.tex +1 -0
  93. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/script.tex +1 -0
  94. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/stack.tex +1 -0
  95. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/subscript.tex +1 -0
  96. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/sums-inline.tex +1 -0
  97. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/sums.tex +1 -0
  98. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/superscript-inline.tex +1 -0
  99. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/superscript.tex +1 -0
  100. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/bmpCursor.bmp +0 -0
  101. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/brushedMetal.jpg +0 -0
  102. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/jpeg.jpg +0 -0
  103. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/jpegCursor.jpg +0 -0
  104. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaBridge.jpg +0 -0
  105. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaSteps.jpg +0 -0
  106. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaWalk.jpg +0 -0
  107. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors.tif +0 -0
  108. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_pb.tif +0 -0
  109. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_pb_tile.tif +0 -0
  110. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_tile.tif +0 -0
  111. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/tde.jpg +0 -0
  112. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/tiffCursor.tif +0 -0
  113. data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/image1.jpg +0 -0
  114. data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/struct-image-01.jpg +0 -0
  115. data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/struct-image-02.jpg +0 -0
  116. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/CNN.3gp +0 -0
  117. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/SVG-1.1-monolithic-fixed.dtd +1622 -0
  118. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/TraitAccess.common.es +672 -0
  119. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/advice.wav +0 -0
  120. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/beep.wav +0 -0
  121. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/boing_x.wav +0 -0
  122. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/clock.mp4 +0 -0
  123. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud-ps411q4app.jpg +0 -0
  124. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q25s.jpg +0 -0
  125. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q65float.jpg +0 -0
  126. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75o.jpg +0 -0
  127. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75p.jpg +0 -0
  128. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75s.jpg +0 -0
  129. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud444q65o.jpg +0 -0
  130. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudgsq75s.jpg +0 -0
  131. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudoddq65o.jpg +0 -0
  132. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudqllo.jpg +0 -0
  133. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/copyright-documents-19990405.html +89 -0
  134. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/disco.jpg +0 -0
  135. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.3gp +0 -0
  136. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.jpg +0 -0
  137. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.mov +0 -0
  138. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/duckfeeding.3gp +0 -0
  139. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/duckfeeding.mov +0 -0
  140. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/excuse_me.wav +0 -0
  141. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/externalscript.js +1 -0
  142. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton.jpg +0 -0
  143. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton1.jpg +0 -0
  144. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton2.jpg +0 -0
  145. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton3.jpg +0 -0
  146. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton4.jpg +0 -0
  147. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/heroesLanding.3gp +0 -0
  148. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/image1.jpg +0 -0
  149. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/image2_b.jpg +0 -0
  150. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/myimage.jpg +0 -0
  151. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pacman.wav +0 -0
  152. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/plant.jpg +0 -0
  153. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image0.jpg +0 -0
  154. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image1.jpg +0 -0
  155. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image2.jpg +0 -0
  156. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image3.jpg +0 -0
  157. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image4.jpg +0 -0
  158. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image5.jpg +0 -0
  159. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image6.jpg +0 -0
  160. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image7.jpg +0 -0
  161. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image8.jpg +0 -0
  162. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image9.jpg +0 -0
  163. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script1.js +1 -0
  164. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script10.js +1 -0
  165. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script2.js +1 -0
  166. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script3.js +1 -0
  167. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script4.js +1 -0
  168. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script5.js +1 -0
  169. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script6.js +1 -0
  170. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script7.js +1 -0
  171. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script8.js +1 -0
  172. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script9.js +1 -0
  173. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/skier.3gp +0 -0
  174. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/skier.jpg +0 -0
  175. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/struct-image-01.jpg +0 -0
  176. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/struct-image-02.jpg +0 -0
  177. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/svgRef4.css +4 -0
  178. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/welcome.wav +0 -0
  179. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/xmltree.xml +4 -0
  180. data/ext/mathematical/lasem/tests/fuzztest.sh +12 -0
  181. data/ext/mathematical/lasem/tests/suite.ini +27 -0
  182. data/ext/mathematical/lasem/tools/change-license +3 -0
  183. data/ext/mathematical/lasem/tools/charlist.dtd +73 -0
  184. data/ext/mathematical/lasem/tools/entities-to-c.xsl +1067 -0
  185. data/ext/mathematical/lasem/tools/fuzzxml +243 -0
  186. data/ext/mathematical/lasem/tools/unicode.xml +44303 -0
  187. data/ext/mathematical/lasem_overrides.c +25 -4
  188. data/ext/mathematical/lasem_overrides.h +5 -0
  189. data/ext/mathematical/lib/liblasem.dylib +0 -0
  190. data/ext/mathematical/mtex2MML/CONTRIBUTING.md +22 -0
  191. data/ext/mathematical/mtex2MML/README.md +143 -0
  192. data/ext/mathematical/mtex2MML/SUPPORTED.md +1214 -0
  193. data/ext/mathematical/mtex2MML/appveyor.yml +25 -0
  194. data/ext/mathematical/mtex2MML/build.ps1 +2 -0
  195. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_C.bin +0 -0
  196. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_CXX.bin +0 -0
  197. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdC/a.out +0 -0
  198. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/CMakeCXXCompilerId.cpp +375 -0
  199. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/a.out +0 -0
  200. data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeOutput.log +208 -0
  201. data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/build.make +69 -0
  202. data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/progress.make +1 -0
  203. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/build.make +69 -0
  204. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/progress.make +1 -0
  205. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/build.make +69 -0
  206. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/progress.make +1 -0
  207. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/build.make +69 -0
  208. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/progress.make +1 -0
  209. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/build.make +69 -0
  210. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/progress.make +1 -0
  211. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/build.make +69 -0
  212. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/progress.make +1 -0
  213. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/build.make +69 -0
  214. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/progress.make +1 -0
  215. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/build.make +69 -0
  216. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/progress.make +1 -0
  217. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/build.make +69 -0
  218. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/progress.make +1 -0
  219. data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/build.make +69 -0
  220. data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/progress.make +1 -0
  221. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/build.make +69 -0
  222. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/progress.make +1 -0
  223. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/build.make +69 -0
  224. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/progress.make +1 -0
  225. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/build.make +69 -0
  226. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/progress.make +1 -0
  227. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/build.make +69 -0
  228. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/progress.make +1 -0
  229. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/build.make +69 -0
  230. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/progress.make +1 -0
  231. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/build.make +69 -0
  232. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/progress.make +1 -0
  233. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/build.make +69 -0
  234. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/progress.make +1 -0
  235. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/build.make +69 -0
  236. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/progress.make +1 -0
  237. data/ext/mathematical/mtex2MML/build/CMakeFiles/Makefile2 +1137 -0
  238. data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/build.make +69 -0
  239. data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/progress.make +1 -0
  240. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/build.make +69 -0
  241. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/progress.make +1 -0
  242. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/build.make +69 -0
  243. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/progress.make +1 -0
  244. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/build.make +69 -0
  245. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/progress.make +1 -0
  246. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/build.make +69 -0
  247. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/progress.make +1 -0
  248. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/build.make +69 -0
  249. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/progress.make +1 -0
  250. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/build.make +69 -0
  251. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/progress.make +1 -0
  252. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/build.make +69 -0
  253. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/progress.make +1 -0
  254. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/build.make +69 -0
  255. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/progress.make +1 -0
  256. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/build.make +69 -0
  257. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/progress.make +1 -0
  258. data/ext/mathematical/mtex2MML/build/CMakeFiles/cmake.check_cache +1 -0
  259. data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/build.make +69 -0
  260. data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/progress.make +1 -0
  261. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/build.make +253 -0
  262. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/depend.make +2 -0
  263. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/flags.make +8 -0
  264. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/progress.make +9 -0
  265. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/C.includecache +148 -0
  266. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/build.make +251 -0
  267. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.internal +48 -0
  268. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.make +48 -0
  269. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/flags.make +8 -0
  270. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/progress.make +9 -0
  271. data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/build.make +69 -0
  272. data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/progress.make +1 -0
  273. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/build.make +276 -0
  274. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/depend.make +2 -0
  275. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/flags.make +8 -0
  276. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/progress.make +10 -0
  277. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/build.make +683 -0
  278. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/depend.make +2 -0
  279. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/flags.make +8 -0
  280. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/progress.make +26 -0
  281. data/ext/mathematical/mtex2MML/build/CMakeFiles/progress.marks +1 -0
  282. data/ext/mathematical/mtex2MML/build/DartConfiguration.tcl +94 -0
  283. data/ext/mathematical/mtex2MML/build/libmtex2MML.pc +10 -0
  284. data/ext/mathematical/mtex2MML/build/parser.output +117661 -0
  285. data/ext/mathematical/mtex2MML/deps/strdup/package.json +12 -0
  286. data/ext/mathematical/mtex2MML/deps/uthash/package.json +26 -0
  287. data/ext/mathematical/mtex2MML/script/bootstrap +30 -0
  288. data/ext/mathematical/mtex2MML/script/cibuild +11 -0
  289. data/ext/mathematical/mtex2MML/script/release +27 -0
  290. data/ext/mathematical/mtex2MML/src/y.output +117655 -0
  291. data/ext/mathematical/mtex2MML/tests/debug/mtex2MML_debug.cc +21 -0
  292. data/ext/mathematical/mtex2MML/tests/deps/file2str/package.json +9 -0
  293. data/ext/mathematical/mtex2MML/tests/deps/trim/package.json +7 -0
  294. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-1.html +86 -0
  295. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-2.html +148 -0
  296. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-3.html +188 -0
  297. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/arrows-2.html +156 -0
  298. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/min-1.html +45 -0
  299. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/min-2.html +35 -0
  300. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-1.html +16 -0
  301. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-2.html +3 -0
  302. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-3.html +5 -0
  303. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/buildrel-1.html +3 -0
  304. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue490.html +0 -0
  305. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue877.html +3 -0
  306. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue937.html +3 -0
  307. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overbrace-1.html +3 -0
  308. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overbracket-1.html +3 -0
  309. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overset-1.html +3 -0
  310. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/sideset-1.html +5 -0
  311. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/stackrel-1.html +3 -0
  312. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/subarray-1.html +1 -0
  313. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/substack-1.html +3 -0
  314. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underbrace-1.html +3 -0
  315. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underbracket-1.html +3 -0
  316. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underset-1.html +3 -0
  317. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/mathtip-1.html +6 -0
  318. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/texttip-1.html +6 -0
  319. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/toggle-1.html +7 -0
  320. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/Newextarrow-1.html +10 -0
  321. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-1.html +34 -0
  322. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-2.html +30 -0
  323. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-3.html +9 -0
  324. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-4.html +13 -0
  325. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-5.html +7 -0
  326. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathbin-1.html +7 -0
  327. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathinner-1.html +3 -0
  328. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-1a.html +3 -0
  329. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-1b.html +5 -0
  330. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-2.html +5 -0
  331. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathopenclose-1.html +3 -0
  332. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathord-1.html +3 -0
  333. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathpunct-1.html +3 -0
  334. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathrel-1.html +3 -0
  335. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/backslashed-1.html +16 -0
  336. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/basic-operators-1.html +3 -0
  337. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/basic-operators-2.html +25 -0
  338. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/remap-1.html +5 -0
  339. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/color-1.html +3 -0
  340. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/colorbox-1.html +3 -0
  341. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/definecolor-1.html +37 -0
  342. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/definecolor-2.html +79 -0
  343. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/fcolorbox-1.html +7 -0
  344. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/issue446.html +5 -0
  345. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/namedcolors-1.html +70 -0
  346. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-1.html +3 -0
  347. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-2.html +3 -0
  348. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-3.html +3 -0
  349. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/delimiters-1.html +3 -0
  350. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/delimiters-2.html +4 -0
  351. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue775.html +3 -0
  352. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-1a.html +6 -0
  353. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-1b.html +6 -0
  354. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-2.html +6 -0
  355. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-3.html +6 -0
  356. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-4.html +6 -0
  357. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-5.html +6 -0
  358. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/left-right-1.html +3 -0
  359. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/align-1a.html +7 -0
  360. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/align-1b.html +7 -0
  361. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignat-1a.html +6 -0
  362. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignat-1b.html +6 -0
  363. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/aligned-1.html +9 -0
  364. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/aligned-2.html +14 -0
  365. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignedat-1.html +8 -0
  366. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqalign-1.html +8 -0
  367. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqalignno-1.html +8 -0
  368. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-1a.html +7 -0
  369. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-1b.html +7 -0
  370. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-2.html +64 -0
  371. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/equation-1.html +5 -0
  372. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/equation-2.html +5 -0
  373. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gather-1a.html +7 -0
  374. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gather-1b.html +7 -0
  375. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gathered-1.html +7 -0
  376. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gathered-2.html +12 -0
  377. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-1a.html +5 -0
  378. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-1b.html +5 -0
  379. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-2a.html +5 -0
  380. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-2b.html +5 -0
  381. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-3a.html +5 -0
  382. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-3b.html +5 -0
  383. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/leqalignno-1.html +11 -0
  384. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/multline-1a.html +7 -0
  385. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/multline-1b.html +7 -0
  386. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/split-1.html +9 -0
  387. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/errors/noErrors-1.html +5 -0
  388. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/errors/noUndefined-1.html +3 -0
  389. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/above-1.html +3 -0
  390. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/abovewithdelims-1.html +3 -0
  391. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/atop-1.html +3 -0
  392. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/atopwithdelims-1.html +3 -0
  393. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/binom-1.html +3 -0
  394. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/brace-1.html +3 -0
  395. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/brack-1.html +3 -0
  396. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/cfrac-1.html +3 -0
  397. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/choose-1.html +3 -0
  398. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/dbinom-1.html +3 -0
  399. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/dfrac-1.html +3 -0
  400. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/frac-1a.html +3 -0
  401. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/frac-1b.html +3 -0
  402. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/genfrac-1.html +3 -0
  403. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/issue969.html +3 -0
  404. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/overwithdelims-1.html +3 -0
  405. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/tbinom-1.html +3 -0
  406. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/tfrac-1.html +3 -0
  407. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue1152-1.html +1 -0
  408. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue1152-2.html +4 -0
  409. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue375.html +3 -0
  410. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue856.html +3 -0
  411. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1a.html +5 -0
  412. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1b.html +5 -0
  413. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1c.html +5 -0
  414. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1d.html +5 -0
  415. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/boxes-1.html +5 -0
  416. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/kern-1a.html +3 -0
  417. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/kern-1b.html +3 -0
  418. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/llap-1.html +3 -0
  419. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/lower-1.html +4 -0
  420. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/mathstrut-1.html +3 -0
  421. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/moveleft-1.html +3 -0
  422. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/moveright-1.html +3 -0
  423. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/newline-1.html +3 -0
  424. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/phantom-1.html +4 -0
  425. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/raise-1.html +3 -0
  426. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/rlap-1.html +3 -0
  427. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/shove-1.html +19 -0
  428. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/skip-1a.html +3 -0
  429. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/skip-1b.html +3 -0
  430. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/smash-1.html +3 -0
  431. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/spaces-1.html +18 -0
  432. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/strut-1.html +3 -0
  433. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/vcenter-1.html +3 -0
  434. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-1.html +32 -0
  435. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-2.html +13 -0
  436. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-3.html +6 -0
  437. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-4.html +13 -0
  438. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/hebrew-1.html +6 -0
  439. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/begingroup-1.html +15 -0
  440. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/def-1.html +5 -0
  441. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/let-1.html +14 -0
  442. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-1.html +7 -0
  443. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-2.html +25 -0
  444. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-3.html +50 -0
  445. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-5.html +5 -0
  446. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-6.html +7 -0
  447. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-7.html +7 -0
  448. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/Bbb-1.html +3 -0
  449. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/bf-1.html +3 -0
  450. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/boldsymbol-1.html +9 -0
  451. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/cal-1.html +3 -0
  452. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/frak-1.html +3 -0
  453. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/it-1.html +3 -0
  454. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbb-1.html +3 -0
  455. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-1a.html +3 -0
  456. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-1b.html +3 -0
  457. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-2.html +3 -0
  458. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathcal-1.html +3 -0
  459. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathfrak-1.html +3 -0
  460. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathit-1.html +3 -0
  461. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathrm-1.html +3 -0
  462. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathscr-1.html +3 -0
  463. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathsf-1.html +3 -0
  464. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathtt-1.html +3 -0
  465. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mit-1.html +3 -0
  466. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/pmb-1.html +3 -0
  467. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/rm-1.html +3 -0
  468. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/scr-1.html +3 -0
  469. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/sf-1.html +3 -0
  470. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/text-1.html +3 -0
  471. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textbf-1.html +3 -0
  472. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textit-1.html +3 -0
  473. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textrm-1.html +3 -0
  474. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textsf-1.html +3 -0
  475. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/texttt-1.html +3 -0
  476. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/tt-1.html +3 -0
  477. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-1a.html +7 -0
  478. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-1b.html +7 -0
  479. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-2.html +3 -0
  480. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-3.html +3 -0
  481. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/bmatrix-1.html +7 -0
  482. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/bmatrix-2.html +7 -0
  483. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/matrix-1.html +7 -0
  484. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/matrix-2.html +7 -0
  485. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/pmatrix-1.html +7 -0
  486. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/pmatrix-2.html +8 -0
  487. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/smallmatrix-1.html +3 -0
  488. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/vmatrix-1.html +7 -0
  489. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/vmatrix-2.html +7 -0
  490. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-1.html +120 -0
  491. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-2.html +35 -0
  492. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-3.html +138 -0
  493. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/amounts-1.html +46 -0
  494. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/arrows-1.html +235 -0
  495. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/arrows-2.html +159 -0
  496. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/basics-1.html +139 -0
  497. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/bonds-1.html +256 -0
  498. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/environments-1.html +81 -0
  499. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/isotopes-1.html +30 -0
  500. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/math-1.html +101 -0
  501. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/special_symbols-1.html +176 -0
  502. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/Rule-1.html +5 -0
  503. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/Tiny-1.html +3 -0
  504. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/class-1.html +3 -0
  505. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/cssId-1.html +3 -0
  506. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/href-1.html +3 -0
  507. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/href-2.html +3 -0
  508. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/require-1.html +3 -0
  509. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/style-1.html +3 -0
  510. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/unicode-1.html +8 -0
  511. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/LaTeX-1.html +4 -0
  512. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/bbox-1.html +6 -0
  513. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/boxed-1.html +3 -0
  514. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/cancel-1.html +6 -0
  515. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/cases-1.html +3 -0
  516. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/displaylines-1.html +7 -0
  517. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/enclose-1.html +8 -0
  518. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/functions-1.html +34 -0
  519. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-1.html +5 -0
  520. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-2.html +8 -0
  521. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-3.html +3 -0
  522. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/mathsize-1.html +11 -0
  523. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/mod-1.html +5 -0
  524. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/not-1.html +5 -0
  525. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/pod-1.html +3 -0
  526. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-1.html +8 -0
  527. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-2.html +4 -0
  528. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-3.html +3 -0
  529. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/style-1.html +7 -0
  530. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/style-2.html +0 -0
  531. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/verb-1.html +3 -0
  532. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/verb-2.html +3 -0
  533. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/eqref-1.html +5 -0
  534. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/label-1.html +7 -0
  535. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/label-2.html +1 -0
  536. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/notag-1.html +5 -0
  537. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-1.html +5 -0
  538. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-2.html +5 -0
  539. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-3.html +5 -0
  540. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-1.html +3 -0
  541. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-2.html +3 -0
  542. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-3.html +3 -0
  543. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/sqrt-1.html +3 -0
  544. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/sqrt-2.html +3 -0
  545. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/binaryops-1.html +32 -0
  546. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/dots-1.html +26 -0
  547. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/largeops-1.html +4 -0
  548. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/largeops-2.html +3 -0
  549. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/relations-1.html +39 -0
  550. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-1.html +25 -0
  551. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-2.html +31 -0
  552. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-3.html +40 -0
  553. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-4.html +39 -0
  554. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-5.html +56 -0
  555. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-6.html +49 -0
  556. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-1.no_tex +8 -0
  557. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-2.no_tex +13 -0
  558. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-3.no_tex +23 -0
  559. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/arrows-1.no_tex +23 -0
  560. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/arrows-2.no_tex +26 -0
  561. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/min-1.no_tex +14 -0
  562. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/min-2.no_tex +14 -0
  563. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/above-below/issue490.no_tex +3 -0
  564. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/mathtip-1.no_tex +2 -0
  565. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/texttip-1.no_tex +2 -0
  566. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/toggle-1.no_tex +3 -0
  567. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/arrows/Newextarrow-1.xtex +4 -0
  568. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/atoms/mathbin-1.no_tex +3 -0
  569. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/atoms/mathop-2.xtex +3 -0
  570. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/basic-operators/basic-operators-2.xtex +5 -0
  571. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1a.xtex +7 -0
  572. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1b.xtex +7 -0
  573. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1c.xtex +7 -0
  574. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-2.xtex +13 -0
  575. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/fcolorbox-1.xtex +3 -0
  576. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/issue446.xtex +5 -0
  577. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/eqnarray-1c.no_tex +7 -0
  578. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/eqnarray-2a.no_tex +8 -0
  579. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/leqalignno-1.xtex +8 -0
  580. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/errors/noErrors-1.no_tex +3 -0
  581. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/errors/noUndefined-1.no_tex +2 -0
  582. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue1151.no_tex +3 -0
  583. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue1152-1.xtex +1 -0
  584. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue903-1.xtex +6 -0
  585. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue903-2.xtex +16 -0
  586. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/layout/shove-1.xtex +7 -0
  587. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/begingroup-1.no_tex +8 -0
  588. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/def-1.no_tex +4 -0
  589. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/let-1.no_tex +5 -0
  590. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-1a.no_tex +3 -0
  591. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-1b.no_tex +3 -0
  592. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-2.no_tex +3 -0
  593. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-3.no_tex +5 -0
  594. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-5.no_tex +3 -0
  595. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-6.no_tex +5 -0
  596. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-7.no_tex +11 -0
  597. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-1.no_tex +8 -0
  598. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-2.no_tex +3 -0
  599. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-3.no_tex +7 -0
  600. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/amounts-1.no_tex +4 -0
  601. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/arrows-1.no_tex +10 -0
  602. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/arrows-2.no_tex +9 -0
  603. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/basics-1.no_tex +13 -0
  604. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/bonds-1.no_tex +11 -0
  605. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/environments-1.no_tex +6 -0
  606. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/isotopes-1.no_tex +3 -0
  607. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/math-1.no_tex +4 -0
  608. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/special_symbols-1.no_tex +7 -0
  609. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/Rule-1.no_tex +3 -0
  610. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/class-1.no_tex +3 -0
  611. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/cssId-1.no_tex +3 -0
  612. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/href-1.no_tex +3 -0
  613. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/href-2.no_tex +3 -0
  614. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/require-1.no_tex +5 -0
  615. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/style-1.no_tex +3 -0
  616. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/unicode-1.no_tex +3 -0
  617. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/other/displaylines-1.xtex +8 -0
  618. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/other/style-2.no_tex +10 -0
  619. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/eqref-1.no_tex +7 -0
  620. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/label-1.no_tex +3 -0
  621. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/label-2.no_tex +2 -0
  622. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-1a.no_tex +2 -0
  623. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-1b.no_tex +2 -0
  624. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-2.no_tex +2 -0
  625. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-3.no_tex +2 -0
  626. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-1.no_tex +1 -0
  627. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-2.no_tex +1 -0
  628. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-3.no_tex +3 -0
  629. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-4.no_tex +3 -0
  630. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/TODO.md +3 -0
  631. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_nesting.html +32 -0
  632. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_pos_alignment.html +8 -0
  633. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_pos_alignment_with_hline.html +12 -0
  634. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_vertical_column.html +5 -0
  635. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_vertical_column_with_align.html +5 -0
  636. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_hline.html +9 -0
  637. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_hline_and_hdashline.html +10 -0
  638. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_vertical_and_horizontal_dashes.html +10 -0
  639. data/ext/mathematical/mtex2MML/tests/fixtures/array/augmented_matrix.html +6 -0
  640. data/ext/mathematical/mtex2MML/tests/fixtures/array/basic_array.html +5 -0
  641. data/ext/mathematical/mtex2MML/tests/fixtures/array/strip_excess_whitespace_in_array_attributes.html +7 -0
  642. data/ext/mathematical/mtex2MML/tests/fixtures/basic/block.html +1 -0
  643. data/ext/mathematical/mtex2MML/tests/fixtures/basic/comments.html +6 -0
  644. data/ext/mathematical/mtex2MML/tests/fixtures/basic/filter.html +1 -0
  645. data/ext/mathematical/mtex2MML/tests/fixtures/basic/inline.html +1 -0
  646. data/ext/mathematical/mtex2MML/tests/fixtures/basic/strict_filter.html +3 -0
  647. data/ext/mathematical/mtex2MML/tests/fixtures/basic/text_filter.html +3 -0
  648. data/ext/mathematical/mtex2MML/tests/fixtures/cornercases/broken_up_inline_env.html +3 -0
  649. data/ext/mathematical/mtex2MML/tests/fixtures/cornercases/some_crazy_alignment.html +24 -0
  650. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/brackets.html +1 -0
  651. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_filter.html +2 -0
  652. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_text_filter.html +27 -0
  653. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/double_dollar.html +1 -0
  654. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_brackets.html +35 -0
  655. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_dollars.html +35 -0
  656. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_parens.html +35 -0
  657. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed.html +1 -0
  658. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/parens.html +1 -0
  659. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/single_dollar.html +1 -0
  660. data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_ex_spacing.html +6 -0
  661. data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_no_ex_spacing.html +6 -0
  662. data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_no_lines.html +5 -0
  663. data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_ex_spacing.html +5 -0
  664. data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_no_ex_spacing.html +5 -0
  665. data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_no_lines.html +4 -0
  666. data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_ex_spacing.html +5 -0
  667. data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_no_ex_spacing.html +5 -0
  668. data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_no_lines.html +4 -0
  669. data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_ex_spacing.html +7 -0
  670. data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_no_ex_spacing.html +7 -0
  671. data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_no_lines.html +6 -0
  672. data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_ex_spacing.html +6 -0
  673. data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_no_ex_spacing.html +6 -0
  674. data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_no_lines.html +5 -0
  675. data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_ex_spacing.html +7 -0
  676. data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_no_ex_spacing.html +7 -0
  677. data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_no_lines.html +6 -0
  678. data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_ex_spacing.html +5 -0
  679. data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_no_ex_spacing.html +5 -0
  680. data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_no_lines.html +4 -0
  681. data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_ex_spacing.html +8 -0
  682. data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_no_ex_spacing.html +7 -0
  683. data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_no_lines.html +5 -0
  684. data/ext/mathematical/mtex2MML/tests/fixtures/env/spaces_after_rowsep.html +7 -0
  685. data/ext/mathematical/mtex2MML/tests/fixtures/env/split_ex_spacing.html +6 -0
  686. data/ext/mathematical/mtex2MML/tests/fixtures/env/split_no_ex_spacing.html +6 -0
  687. data/ext/mathematical/mtex2MML/tests/fixtures/env/split_no_lines.html +5 -0
  688. data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_ex_spacing.html +5 -0
  689. data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_no_ex_spacing.html +5 -0
  690. data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_no_lines.html +4 -0
  691. data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_ex_spacing.html +6 -0
  692. data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_no_ex_spacing.html +6 -0
  693. data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_no_lines.html +5 -0
  694. data/ext/mathematical/mtex2MML/tests/fixtures/functions/max_limits.html +1 -0
  695. data/ext/mathematical/mtex2MML/tests/fixtures/functions/min_limits.html +1 -0
  696. data/ext/mathematical/mtex2MML/tests/fixtures/maliciousness/just_enough_parsing.html +1 -0
  697. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/multiple_equations.html +11 -0
  698. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/multiple_notag_nonumber.html +7 -0
  699. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_equation.html +5 -0
  700. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_nonumber.html +6 -0
  701. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_notag.html +6 -0
  702. data/ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.html +12 -0
  703. data/ext/mathematical/mtex2MML/tests/generate.py +244 -0
  704. data/ext/mathematical/mtex2MML/tests/mathjax_generate.py +72 -0
  705. data/lib/mathematical/version.rb +1 -1
  706. data/mathematical.gemspec +1 -3
  707. metadata +699 -23
  708. data/ext/mathematical/lasem/Makefile +0 -1037
  709. data/ext/mathematical/lasem/config.h +0 -87
  710. data/ext/mathematical/lasem/docs/Makefile +0 -793
  711. data/ext/mathematical/lasem/docs/reference/Makefile +0 -735
  712. data/ext/mathematical/lasem/docs/reference/lasem/Makefile +0 -1029
  713. data/ext/mathematical/lasem/docs/reference/lasem/lasem-decl-list.txt +0 -245
  714. data/ext/mathematical/lasem/docs/reference/lasem/lasem-decl.txt +0 -856
  715. data/ext/mathematical/lasem/itex2mml/Makefile +0 -742
  716. data/ext/mathematical/lasem/itex2mml/lex.yy.c +0 -6294
  717. data/ext/mathematical/lasem/itex2mml/y.tab.c +0 -5796
  718. data/ext/mathematical/lasem/itex2mml/y.tab.h +0 -378
  719. data/ext/mathematical/lasem/po/Makefile +0 -413
  720. data/ext/mathematical/lasem/src/Makefile +0 -1343
  721. data/ext/mathematical/lasem/src/lsmdomenumtypes.c +0 -99
  722. data/ext/mathematical/lasem/src/lsmdomenumtypes.h +0 -26
  723. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.c +0 -793
  724. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.h +0 -96
  725. data/ext/mathematical/lasem/src/lsmsvgenumtypes.c +0 -1254
  726. data/ext/mathematical/lasem/src/lsmsvgenumtypes.h +0 -129
  727. data/ext/mathematical/lasem/tests/Makefile +0 -776
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="2.49201em" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{aligned}
3
+ 2x &#x2d; 5y &amp;= 8 \\[2.49201em]
4
+ 3x + 9y &amp;= &#x2d;12
5
+ \end{aligned}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="3pt" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{aligned}
3
+ 2x &#x2d; 5y &amp;= 8 \\
4
+ 3x + 9y &amp;= &#x2d;12
5
+ \end{aligned}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{aligned}
3
+ 3x + 9y &amp;= &#x2d;12
4
+ \end{aligned}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="100cm" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[100cm]
4
+ 4 &amp; 5 &amp; 6 \end{Bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{Bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Bmatrix}
3
+ 4 &amp; 5 &amp; 6 \end{Bmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="2.5in" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[2.5in]
4
+ 4 &amp; 5 &amp; 6 \end{bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{bmatrix}
3
+ 4 &amp; 5 &amp; 6 \end{bmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="20ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even} \\[20ex]
5
+ 3n+1, &amp; \text{if n is odd}
6
+ \end{cases}
7
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even} \\
5
+ 3n+1, &amp; \text{if n is odd}
6
+ \end{cases}
7
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even}
5
+ \end{cases}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="2pt" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{gathered}
3
+ 2x &#x2d; 5y = 8 \\[2pt]
4
+ 3x^2 + 9y = 3a + c
5
+ \end{gathered}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="1.0ex" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{gathered}
3
+ 2x &#x2d; 5y = 8 \\
4
+ 3x^2 + 9y = 3a + c
5
+ \end{gathered}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="1.0ex" rowlines="none"><mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{gathered}
3
+ 3x^2 + 9y = 3a + c
4
+ \end{gathered}
5
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="40ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \left\{
3
+ \begin{matrix} 1 &amp; 2 &amp; 3 \\[40ex]
4
+ 4 &amp; 5 &amp; 6
5
+ \end{matrix}
6
+ \right)
7
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \left\{
3
+ \begin{matrix} 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6
5
+ \end{matrix}
6
+ \right)
7
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \left\{
3
+ \begin{matrix} 1 &amp; 2 &amp; 3
4
+ \end{matrix}
5
+ \right)
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="30mu" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{pmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[30mu]
4
+ 4 &amp; 5 &amp; 6 \end{pmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{pmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{pmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{pmatrix}
3
+ 1 &amp; 2 &amp; 3 \end{pmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,8 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em 100.342832em" rowlines="solid none none"><mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{smallmatrix}
3
+ \circ &amp; \circ &amp; \bullet \\
4
+ \hline
5
+ \circ &amp; \circ &amp;\bullet \\[100.342832em]
6
+ \circ &amp; \circ &amp; \circ
7
+ \end{smallmatrix}
8
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em 0.2em" rowlines="none none none"><mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{smallmatrix}
3
+ \circ &amp; \circ &amp; \bullet \\
4
+ \circ &amp; \circ &amp;\bullet \\
5
+ \circ &amp; \circ &amp; \circ
6
+ \end{smallmatrix}
7
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em" rowlines="none"><mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{smallmatrix}
3
+ \circ &amp; \bullet &amp; \bullet
4
+ \end{smallmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even} \\ [2ex]
5
+ 3n+1, &amp; \text{if n is odd}
6
+ \end{cases}
7
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="22.2ex" rowlines="none none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{split}
3
+ A &amp; = \frac{\pi r^2}{2} \\[22.2ex]
4
+ &amp; = \frac{1}{2} \pi r^2
5
+ \end{split}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{split}
3
+ A &amp; = \frac{\pi r^2}{2} \\
4
+ &amp; = \frac{1}{2} \pi r^2
5
+ \end{split}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{split}
3
+ A &amp; = \frac{\pi r^2}{2}
4
+ \end{split}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&VerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="1000mm" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&VerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[1000mm]
4
+ 4 &amp; 5 &amp; 6 \end{vmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&VerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&VerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{vmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&VerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&VerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{vmatrix}
3
+ 4 &amp; 5 &amp; 6 \end{vmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&DoubleVerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="9.452pc" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&DoubleVerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[9.452pc]
4
+ 4 &amp; 5 &amp; 6
5
+ \end{Vmatrix}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&DoubleVerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&DoubleVerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6
5
+ \end{Vmatrix}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&DoubleVerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>&DoubleVerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Vmatrix}
3
+ 1 &amp; 2 &amp; 3
4
+ \end{Vmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>max</mi> <mrow><mn>1</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mi>n</mi></mrow></munder></mrow><annotation encoding='application/x-tex'>\max\limits_{1\leq j\leq n}</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>min</mi> <mrow><mn>1</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mi>n</mi></mrow></munder></mrow><annotation encoding='application/x-tex'>\min\limits_{1\leq j\leq n}</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathsize="2.49em"><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><mrow/></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></mstyle></mrow><annotation encoding='application/x-tex'>\Huge \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}</annotation></semantics></math>
@@ -0,0 +1,11 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>B</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mo>&Del;</mo><mo>&times;</mo><mi>E</mi><mo>,</mo></mtd></mlabeledtr> <mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd><mi>E</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&Del;</mo><mo>&times;</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>4</mn><mi>&pi;</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{align}
3
+ B&apos;&amp;=&#x2d;\nabla \times E,\\
4
+ E&apos;&amp;=\nabla \times B &#x2d; 4\pi j,
5
+ \end{align}
6
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mlabeledtr><mtd><mtext>(3)</mtext></mtd><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mi>t</mi></msub><mi>X</mi><mi>X</mi><mi>X</mi></mrow><mtext>&#xA0;</mtext></mtd> <mtd><mspace width="2em"/><mrow><mpadded width="0"><mphantom><mrow><msub><mo>&Integral;</mo> <mi>t</mi></msub></mrow></mphantom></mpadded><mi>Y</mi><mi>Y</mi><mi>Y</mi><mi>&hellip;</mi><mo>)</mo></mrow></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
7
+ \begin{align}
8
+ A &amp;= \left(\int_t XXX \right. \
9
+ &amp;\qquad \left.\vphantom{\int_t} YYY \dots \right)
10
+ \end{align}
11
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex 0.5ex" rowlines="none none none"><mtr><mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>c</mi></mtd> <mtd><mi>d</mi></mtd></mlabeledtr> <mtr><mtd><mi>e</mi></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{align}
3
+ a &amp; b \notag \\ % no number is shown
4
+ c &amp; d \\ % there is a number
5
+ e &amp; f \nonumber % no number
6
+ \end{align}
7
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>b</mi><mo stretchy="false">)</mo></mtd></mlabeledtr></mtable></mrow><annotation encoding='application/x-tex'>
2
+ \begin{equation}
3
+ f(x)=(x+a)(x+b)
4
+ \end{equation}
5
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable><mtr><mtd><mi>B</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mo>&Del;</mo><mo>&times;</mo><mi>E</mi><mo>,</mo></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>E</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&Del;</mo><mo>&times;</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>4</mn><mi>&pi;</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow><annotation encoding='application/x-tex'>
2
+ \begin{equation}
3
+ B&apos;&amp;=&#x2d;\nabla \times E, \nonumber \\
4
+ E&apos;&amp;=\nabla \times B &#x2d; 4\pi j,
5
+ \end{equation}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mi>B</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mo>&Del;</mo><mo>&times;</mo><mi>E</mi><mo>,</mo></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>E</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&Del;</mo><mo>&times;</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>4</mn><mi>&pi;</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{align}
3
+ B&apos;&amp;=&#x2d;\nabla \times E, \notag \\
4
+ E&apos;&amp;=\nabla \times B &#x2d; 4\pi j,
5
+ \end{align}
6
+ </annotation></semantics></math>
@@ -0,0 +1,12 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times Orth(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>=</mo><mi>&pfr;</mi><mo>&oplus;</mo><mi>&kfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D= G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mi>q</mi></mrow><annotation encoding='application/x-tex'>pq</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mi>&Theta;</mi> <mi>&Lscr;</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta=\Theta_{\mathcal{L}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>&ell;</mi><mo>&Element;</mo><mi>&Lscr;</mi></mrow></msub><msub><mi>&delta;</mi> <mi>&ell;</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mo stretchy="false">(</mo><mi>&Lscr;</mi><mo stretchy="false">)</mo><mo>&subset;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\G = \Stab(\mathcal{L}) \subset G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mi>&Gamma;</mi><mo>&bsol;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \Gamma \backslash D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \subset SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\G&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mi>q</mi><mo>&minus;</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(pq&#x2d;r)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>&otimes;</mo><msup><mo>&wedge;</mo> <mi>q</mi></msup><msup><mi>&pfr;</mi> <mo>&ast;</mo></msup><msup><mo stretchy="false">)</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>(p+q)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(3,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>+</mo><mi>q</mi><merror><mtext>Unknown character</mtext></merror><mn>6</mn></mrow><annotation encoding='application/x-tex'>p+q&gt;6</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>&geq;</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>p \geq q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_q^V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^q(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>=</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial \overline{X} = e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">N</mo></mrow><annotation encoding='application/x-tex'>n \in \N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X, \partial X,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>i</mi><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>q = e^{2\pi i \tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup></mrow><annotation encoding='application/x-tex'>k^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>k^{\ast} \theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\partial {X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X}, \partial {X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{q}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_c \theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><mo>&geq;</mo><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo stretchy="false">]</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n \geq 0} [T_n^c] q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>+</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>F(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi><mo>=</mo><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>C=C_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\underline{G} = \SO(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><munder><mi>G</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G=\underline{G}_0(R) \simeq \SO_0(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>D= D_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>dim</mi><mi>z</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\dim z =2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo><msub><mo stretchy="false">&vert;</mo> <mi>z</mi></msub><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(\,,\,)|_z &lt; 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">{</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\{e_1,e_2,e_3,e_4\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_1,e_1)=(e_2,e_2)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>4</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_3,e_3)=(e_4,e_4)=&#x2d;1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>x_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub><mo>=</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z_0=[e_3,e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>4</mn></msub></mrow><annotation encoding='application/x-tex'>e_4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K \simeq \SO(2)\times \SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D \simeq G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">H</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \H \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><msub><munder><mi>P</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P= \underline{P}_0(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N = \underline{N}(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u =(e_1+e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>&minus;</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u&apos; =(e_1&#x2d;e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(u,u&apos;)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell = \Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\ell&apos;=\Q u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo>&cap;</mo><msup><mrow><mi>&ell;</mi><mo>&prime;</mo></mrow> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>W = \ell^{\perp} \cap {\ell&apos;}^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">Span</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>W_{R} = \Span_{R}(e_2,e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,e_2,e_3,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>&simeq;</mo><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>N \simeq W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>u</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u_2,u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>e</mi> <mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>m(s) = m&apos;(e^s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M \simeq \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&nfr;</mi><mo>,</mo><mi>&afr;</mi><mo>,</mo><mi>&mfr;</mi></mrow><annotation encoding='application/x-tex'>\frak{n},\frak{a},\frak{m}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>&alpha;</mi><mi>&mu;</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{\alpha\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&sigma;</mi><mo>:</mo><mi>&nfr;</mi><mi>&afr;</mi><mi>&mfr;</mi><mo>&rightarrow;</mo><mi>&gfr;</mi><mo>&rightarrow;</mo><mi>&gfr;</mi><mo stretchy="false">/</mo><mi>&kfr;</mi><mo>&simeq;</mo><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><msub><mi>u</mi> <mn>2</mn></msub><mo>+</mo><mi>w</mi><mo>&prime;</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>w= wu_2+w&apos;u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V_{R} \simeq M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u = \kzxz{1}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn></mrow><annotation encoding='application/x-tex'>u&apos; = \kzxz{0}{0}{0}{1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>q(x) = (x,x)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>q(x) = \det(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{&#x2d;1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mn>1</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>g</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><msub><mi>g</mi> <mn>1</mn></msub><mi>x</mi><mspace width="thinmathspace"/><mrow><msup><mo/><mi>t</mi></msup><msub><mi>g</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding='application/x-tex'>(g_1,g_2)x = g_1x\, {^{t}g_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Spin</mo><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Spin(2,2) \simeq SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>z</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>&subseteq;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>L \subseteq L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&Element;</mo><mn>2</mn><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>(x,x) \in 2 \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>x \in L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><msup><mi>L</mi> <mo>#</mo></msup><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>N</mi></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>q(L^{\#}) \Z = \tfrac1{N}\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>h \in L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&subseteq;</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\Gamma \subseteq \Stab{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}:=L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell =\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>d&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">(</mo><msqrt><mi>d</mi></msqrt><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K = \Q(\sqrt{d})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&map;</mo><mi>x</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x \mapsto x&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo>&subset;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V \subset M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo/><mi>t</mi></msup><mi>x</mi><mo>&prime;</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>^tx&apos; =&#x2d;x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>g</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g \mapsto (g,g&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>&Oscr;</mi> <mi>K</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\mathcal{O}_K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>.</mo><mi>x</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">g</mo><mi>x</mi><mrow><msup><mo/><mi>t</mi></msup><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&prime;</mo></mrow></mrow><annotation encoding='application/x-tex'>\g.x = \g x{^t\g&apos;}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&cap;</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>\G_P = \G \cap P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N = \G_P \cap N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo stretchy="false">/</mo><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell^{\perp}/\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\G_P/\G_N \simeq \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>g \in \G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>g</mi><mo stretchy="false">&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\bar{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\G_M :=\G_P \cap M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P = NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P=NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>M</mi><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq M \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \G \back D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\underline{P}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mi>W</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>X_W := \G_M \back D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><mn>&infin;</mn><mo stretchy="false">]</mo><mo>&times;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[(T,\infty] \times e&apos;(P)]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><merror><mtext>Unknown character</mtext></merror><mi>T</mi></mrow><annotation encoding='application/x-tex'>t&gt;T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>&rightarrow;</mo><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\pi:\tilde{X} \to X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in} \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>N</mi></msub><mo>=</mo><msub><mi>&pi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Gamma_N =\pi_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Gamma_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a_P \in H_1(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa:e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>b_P \in H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi></mrow><annotation encoding='application/x-tex'>\kappa</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W_{R} \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>T^2=\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>H_3(\tilde{X}) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(X^{out})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial \overline{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>i</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>i^*</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>a</mi><mo>,</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>a</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d(a,b) = (da, i^*a &#x2d; db)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X) \to C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c \mapsto (c,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>V</mi><mo>&rightarrow;</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\pi:V \to \partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><mi>b</mi></mrow><annotation encoding='application/x-tex'>\pi^{\ast} b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t \leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>i</mi></msup></mrow><annotation encoding='application/x-tex'>C^i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi></mrow><annotation encoding='application/x-tex'>\mu</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mi>i</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^i_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>&map;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]] \mapsto [a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>&eta;</mi><mo stretchy="false">]</mo><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>X</mi><mo>&#x000AF;</mo></mover></msub><mi>a</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow></msub><mi>b</mi><mo>&wedge;</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>&eta;</mi><mo>,</mo><mtext>&#xA0;</mtext><mtext>and</mtext><mtext>&#xA0;</mtext><mtext>&#xA0;</mtext><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mi>C</mi></msub><mi>a</mi><mo>&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mi>C</mi></mrow></msub><mi>b</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
2
+ \langle[a, b], [\eta]\rangle
3
+ = \int_{\overline{X}}a\wedge \eta &#x2d; \int_{\partial \overline{X}} b \wedge i^*\eta, \ \text{and} \ \
4
+ \langle [a,b],C \rangle = \int_{C}a &#x2d; \int_{\partial C} b.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>x</mi></msub><mo>&subset;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_x \subset \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mi>&Lscr;</mi><mo>;</mo><mspace width="thinmathspace"/><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">(</mo></mfrac></mstyle><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\partial X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>U_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><msub><mi>U</mi> <mn>&infin;</mn></msub><mo>=</mo><mi>&emptyv;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
5
+ D_x \cap U_{\infty} = \emptyset.
6
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi></mrow><annotation encoding='application/x-tex'>p</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub><mo>&subset;</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x \subset \partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P) \to e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL_V=\calL = L +h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&subset;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>L_{W,k} \subset W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&Element;</mo><msubsup><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow> <mo>#</mo></msubsup></mrow><annotation encoding='application/x-tex'>h_{W,k} \in L^{\#}_{W,k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><mi>N</mi><mo>&cap;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_N = N \cap \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(w) x= x + (w,x)u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \in u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>{\calL}_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_{n,P} := \partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup><mo>;</mo><mspace width="thinmathspace"/><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi></mrow><annotation encoding='application/x-tex'>\Gamma</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub></mrow><annotation encoding='application/x-tex'>\sim_{\Gamma}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>p</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>\G_p \back \calL_{n,u} \subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><msub><mo stretchy="false">]</mo> <mi>P</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>[x_i]= [x_i]_P, 1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msubsup><mo>&coprod;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>k</mi></msubsup><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>y \in [x_i]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>D_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>C_{x_i}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msub><mo>&coprod;</mo> <mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow></msub><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&coprod;</mo> <mrow><mtable columnalign="center" rowspacing="0.5ex"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>&Lscr;</mi> <mi>W</mi></msub></mtd></mlabeledtr> <mtr><mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi></mtd></mtr></mtable></mrow></msub><msub><mo>&coprod;</mo> <mrow><mn>0</mn><mo>&leq;</mo><mi>k</mi><merror><mtext>Unknown character</mtext></merror><mi>min</mi><msub><mo>&prime;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo></mrow></msub><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k &lt; \min&apos;_{\la \in \Lambda_W} |(\la,x)|} x+ku</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mi>&Lscr;</mi> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>x \in \mathcal{L}_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>a</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial a_x = c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P = \sum_{y \in [x]} a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_x)_P = \sum_{y \in [x]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X}) = H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>+</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>T_n = T_n \cap X^{in} + T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>j_{\ast} \overline{C}_n = T_n \cap X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>B_n = T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>=</mo><mo>&minus;</mo><mo>&PartialD;</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n = &#x2d; \partial B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_{\ast} C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_*C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&oplus;</mo><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X}) = j_*H_2(X) \oplus S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c = j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>+</mo><mi>T</mi><mo>+</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P+ T +\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>S</mi><mo stretchy="false">&vert;</mo></mrow><annotation encoding='application/x-tex'>|S|</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_k(Y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><mi>W</mi><mo stretchy="false">/</mo><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2 = W/ \Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&rightarrow;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\pi: R\times T^2 \to M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&alpha;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\alpha]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo stretchy="false">&rarr;</mo></mover></mrow><annotation encoding='application/x-tex'>\overrightarrow{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>W \to T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>P</mi></msub><mi>&Omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>P</mi><mo>&tilde;</mo></mover></msub><mi>&Omega;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\gamma_0 \subset T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">]</mo><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&times;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\gamma_0 \times [0,1] \subset T^2 \times R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><merror><mtext>Unknown character</mtext></merror><mn>2</mn></mrow><annotation encoding='application/x-tex'>|\tr(f^{&#x2d;1})| &gt;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>t</mi><mo stretchy="false">(</mo><mi>I</mi><mo>&minus;</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mn>2</mn><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\det(f^{&#x2d;1} &#x2d;I)= det( I &#x2d; f) = \tr(f) &#x2d;2 \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N= \det(f^{&#x2d;1} &#x2d;I)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mi>N</mi><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo stretchy="false">[</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] = N \{(f^{&#x2d;1} &#x2d; I)^{&#x2d;1} ([\alpha_0]) \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>\gamma_0 \in [\gamma_0]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>h_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\gamma_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>c_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>c_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>=</mo><mi>N</mi><msub><mi>h</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_1 = Nh_1(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub><mo>=</mo><msub><mi>h</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_2=h_2(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>d \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d =f^{&#x2d;1}(c_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub><mo>,</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>0,c_2,d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mover><mi>T</mi><mo>&tilde;</mo></mover><mo>=</mo><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>2</mn></msub></mrow><mo>&#x000AF;</mo></mover><mo>+</mo><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>&minus;</mo><mover><mrow><mn>0</mn><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>.</mo></mrow><annotation encoding='application/x-tex'>
7
+ \partial \widetilde{T} = \overline{0c_2} + \overline{c_2d} &#x2d; \overline{0d}.
8
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>1</mn></msub></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{0c_1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mo stretchy="false">(</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>&minus;</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>
9
+ \partial (\mathcal{M}(\gamma_0) + T ) = f^{&#x2d;1}(\gamma_0) &#x2d;\gamma_0 +\gamma_0 + \alpha_0 &#x2d; f^{&#x2d;1}(\gamma_0)= N\alpha_0.
10
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mn>0</mn></msub><mo>=</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>A_0 = \mathcal{M}(\gamma_0) +T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mo stretchy="false">(</mo><mi>N</mi><mi>P</mi><mo>+</mo><msub><mi>A</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>T</mi><mo>+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>&alpha;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
11
+ \partial A = \alpha.
12
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">&langle;</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\Lk(a,b) = \langle A,b \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a,b \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>R \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>&times;</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>a=a(0)=0 \times a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&times;</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>b=b(\eps)= \eps \times b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(a, b(\epsilon))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>(f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial M(c) = (f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&epsi;</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\epsilon \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo>&sdot;</mo><mo>,</mo><mo>&sdot;</mo><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle \cdot, \cdot \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2, \Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(\partial C_n, \partial C_m)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>J</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>Jx</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(Jx,x)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><msqrt><mi>p</mi></msqrt><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u= \kzxz{\sqrt{p}}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo></mrow><mn>0</mn><mo>;</mo><mspace width="thickmathspace"/><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><mi>K</mi><mo stretchy="false">}</mo><mo>&simeq;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>W = \{ \kzxz{0}{\la}{&#x2d;\la&apos;}{0};\; \la \in K \} \simeq K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mi>p</mi></msqrt></mfrac><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mi>&mu;</mi><mo>&prime;</mo><mo>&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo><mi>&mu;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu&apos; &#x2d; \la&apos;\mu)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mrow><mo>{</mo><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mn>0</mn><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>\mu \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mi>&mu;</mi><mo>=</mo><mi>&mu;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(\la) \mu = \mu + \langle \la, \mu \rangle u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>&mu;</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_{\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mi>&mu;</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>K</mi> <mi>R</mi></msub><mo>;</mo><mspace width="thickmathspace"/><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo></mrow><annotation encoding='application/x-tex'>\eps</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>U_+</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\eps&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>m=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>C_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>x =1 \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>C_1 \simeq SL_2(\Z) \back \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle\,,\, \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>U=V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>U=W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D=G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z\in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi \in \calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><msub><mo>&prime;</mo> <mi>&tau;</mi></msub><mo>&Element;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g&apos;_{\tau} \in SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&#x03C6;</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi^0(x) = \varphi(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>g</mi> <mi>z</mi></msub><mo>&Element;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>g_z \in G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z \in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><mi>E</mi><msup><mo stretchy="false">]</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>\varphi \in [\calS(U_{R}) \otimes E]^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,\tau,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>U</mi><mo>,</mo><mi>z</mi><mo>&Element;</mo><mi>D</mi><mo>,</mo><mi>&tau;</mi><mo>&Element;</mo><mi>&Hopf;</mi></mrow><annotation encoding='application/x-tex'>x \in U, z \in D, \tau \in \mathbb{H}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>=</mo><mi>&kfr;</mi><mo>&oplus;</mo><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">wwedge</mo><mn>2</mn><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{g} \simeq \wwedge{2} V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>e</mi> <mi>i</mi></msub><mo>&wedge;</mo><msub><mi>e</mi> <mi>j</mi></msub><mo>&Element;</mo><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>X_{ij} = e_i \wedge e_j \in \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>X_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \leq i \leq 2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mn>4</mn></mrow><annotation encoding='application/x-tex'>3 \leq j \leq 4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calA^2(D)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi_0(x) := e^{&#x2d;\pi(x,x)_{0}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub><mo>=</mo><msubsup><mo>&Sum;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>4</mn></msubsup><msubsup><mi>x</mi> <mi>i</mi> <mn>2</mn></msubsup></mrow><annotation encoding='application/x-tex'>(x,x)_0= \sum_{i=1}^4 x_i^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(L)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(V_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x\ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&notin;</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><msup><mo stretchy="false">]</mo> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \notin \Span[e_3,e_4]^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&notin;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>z \notin D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&psi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi><mo>&minus;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>r&#x2d;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><mo>=</mo><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>d \tilde{\psi} = \varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mi>q</mi></msub></mrow><annotation encoding='application/x-tex'>\varphi_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mi>q</mi><mo>&minus;</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{q&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>W\subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mfr;</mi><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{m} \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M = \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo>=</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>&wedge;</mo><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23} = e_2 \wedge e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>{\bf s}_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mi>x</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>{\bf s} = \Span x(s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle></mrow><annotation encoding='application/x-tex'>{\bf s}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&Element;</mo><mi>D</mi><mo>;</mo><mspace width="thickmathspace"/><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&perp;</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s} = D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x({\bf s})) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s}(x)=D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>1</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>W</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>\calA^1(D_W) \otimes W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\psi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>&psi;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&minus;</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>&Lambda;</mi></mfrac></mstyle> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>&#x2d;\psi_{1,1} &#x2d; \tfrac12 \Lambda_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>w</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{w,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>&Integral;</mo> <mi>a</mi> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>u</mi></mrow></msup><msup><mi>u</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\G(\tfrac12,a) = \int_a^{\infty} e^{&#x2d;u} u^{&#x2d;1/2} du</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>s=1/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn><mo stretchy="false">)</mo><msub><mi>x</mi> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A(x)&#x2d; (1/2) x_2 \frac{x_3}{|x_3|} e^{&#x2d;\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>x</mi><mo stretchy="false">&vert;</mo><msup><mi>x</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>|x|x^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>C^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">&vert;</mo></mfrac></mstyle><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>B&apos;(x) + \tfrac12|x_3|e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>x</mi></mfrac></mstyle> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A&apos;(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}&apos;_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>v</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>m</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msqrt><mi>v</mi></msqrt><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mi>i</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x,\tau,s) = v^{&#x2d;1/2} m(s) \tilde{\psi}_{0,1}&apos;(m^{&#x2d;1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>&otimes;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>D_{W,x} \otimes x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x) + B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A(x) + A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>X_{23}(B + B&apos;) = &#x2d;(A + A&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K&apos;=\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&chi;</mi></mrow><annotation encoding='application/x-tex'>\chi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \simeq U(1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>L</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>L^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)(B+B&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><msup><mi>&chi;</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\omega(k&apos;)(B+B&apos;)] = \chi^2(k&apos;)[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>K&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_2^2&#x2d;x_3^2=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>i</mi></mrow><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><mo>&square;</mo><mo>+</mo><mi>&pi;</mi><mi>i</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\frac{&#x2d;i}{4\pi} \square + \pi i r^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mo>&PartialD;</mo><mrow><mo>&PartialD;</mo><msub><mi>x</mi> <mn>3</mn></msub></mrow></mfrac><mi>&Gamma;</mi><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>2</mn><msqrt><mrow><mn>2</mn><mi>&pi;</mi></mrow></msqrt><mo lspace="0em" rspace="thinmathspace">sgn</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = &#x2d; 2 \sqrt{2\pi} \sgn(x_3) e^{&#x2d;2 \pi x_3^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>|x_3|e^{&#x2d;\pi(x_2^2&#x2d;x_3^2)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><mn>2</mn><mi>i</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B+B&apos;] = [H(B+B&apos;)]= 2i[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&nfr;</mi><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&Element;</mo><msup><mo>&xwedge;</mo> <mn>2</mn></msup><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&nfr;</mi> <mo>&ast;</mo></msup><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\mathfrak{n}^{\ast} \simeq W \wedge R u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_2,w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi> <mn>2</mn></msub><msub><mi>e</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>w</mi> <mn>3</mn></msub><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w=w_2e_2+w_3e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>{\psi&apos;}_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_{1,1}}(\tau,{\calL_W})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}(\calL_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>A+A&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\psi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi&apos;}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>16</mn><mi>&pi;</mi></mrow></mfrac></mstyle><msubsup><mo>&Integral;</mo> <mn>1</mn> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>s</mi><mi>t</mi></mrow></msup><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></mrow><annotation encoding='application/x-tex'>\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{&#x2d;st}t^{&#x2d;3/2} dt</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Wscr;</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{W}(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>S^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>H^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mi>&beta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>d \beta = \eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M &#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial A = a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\eta_{M&#x2d;V}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo>,</mo><mo>&PartialD;</mo><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(M&#x2d;V, \partial (M&#x2d;V))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_n)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>D_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta =\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\Omega \wedge \tilde{\psi&apos;}_{0,1}(n) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>d</mi><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = d \omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&eta;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>=</mo><mo>&pm;</mo><msqrt><mrow><mn>2</mn><mi>n</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>\mu = \pm \sqrt{2n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub></mrow></msub><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi&apos;}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>U_\eps= (&#x2d;\eps,\eps) \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>&omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\eta \wedge \tilde{\psi&apos;}_{0,1}(x) = d(\omega \wedge \tilde{\psi&apos;}_{0,1}(x))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub></mrow><annotation encoding='application/x-tex'>U_{\eps}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&ne;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g \ne 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(s,w) \wedge \tilde{\psi&apos;}_{0,1}(\g^{&#x2d;1}x,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>T^2/ c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times S^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>dw_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega(0,w_2,w_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>w_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>d</mi><msub><mi>w</mi> <mn>2</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><msup><mi>&mu;</mi> <mn>2</mn></msup></mrow></msup></mrow><annotation encoding='application/x-tex'>\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{&#x2d; \pi \mu^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>A</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>W \to R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>w \mapsto (w,e_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub><mo>&simeq;</mo><mi>R</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msub><mi>min</mi> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo>&prime;</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}&apos;|(\la,e_2)|)\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>&eta;</mi> <mi>c</mi></msub><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\int_{e&apos;(P)} \eta_c \wedge \tilde{\psi&apos;}_{0,1}(n)= \int_{e&apos;(P)} \tilde{\psi&apos;}_{0,1}(n) \wedge \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta = \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub><mo>&supset;</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><mo stretchy="false">(</mo><msub><mi>&eta;</mi> <mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n \supset \supp (\eta_c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>PD(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d;V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>e_3 \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s(x )=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,R e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>&gamma;</mi><mo>&Element;</mo><msub><mi>&Gamma;</mi> <mi>M</mi></msub></mrow></msub><msup><mi>&gamma;</mi> <mo>*</mo></msup><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\epsilon)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&subset;</mo><msub><mi>F</mi> <mi>x</mi></msub><mo>&subset;</mo><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>c \subset F_x \subset F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>&ctdot;</mi><mo>,</mo><msub><mi>c</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>c_1,\cdots,c_k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>c_i,1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>=</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>c_i = c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(c,c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\eps)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>c \times [0,\eps]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mtext>&#xA0;</mtext><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(c_i, c(\eps)) =\ Lk(c_i, c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL = L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi><mo>=</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L} = L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G_0(d)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\delta_{h0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>+</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subset SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lambda(C,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>C_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\frac{1}{2\pi}\delta_{h0} [\omega]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>i</mi> <mi>P</mi> <mo>&ast;</mo></msubsup></mrow><annotation encoding='application/x-tex'>i_P^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>+</mo><msub><mi>L</mi> <mi>W</mi></msub><mo>+</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>L = \Z u + L_W + \Z u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>h=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,0,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">[</mo><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn></mrow></msup><msubsup><mi>y</mi> <mn>1</mn> <mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><msup><mi>t</mi> <mn>2</mn></msup><msub><mi>y</mi> <mn>1</mn></msub><msup><mo>&prime;</mo> <mn>2</mn></msup><mo stretchy="false">]</mo><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>\varphi_0(x,z) = \exp\left(&#x2d;\pi[ t^{&#x2d;2}y_1^2+ 2q(x&apos;)+t^2y_1&apos;^2]\right)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>y</mi> <mn>1</mn></msub><mi>u</mi><mo>+</mo><mi>x</mi><mo>&prime;</mo><mo>+</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>&prime;</mo><mi>u</mi><mo>&prime;</mo><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x = y_1u+x&apos;+y_1&apos;u&apos; \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&theta;</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msubsup><mi>&psi;</mi> <mn>1</mn> <mi>V</mi></msubsup><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta(\tau,\psi_1^V,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&prime;</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>y&apos;=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>L_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{ \tilde{\psi}_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{2,0}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{1}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell=\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mi>b</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x = au + x_W + bu&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=(w,t,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><msub><mo stretchy="false">)</mo> <mi>s</mi></msub></mrow><annotation encoding='application/x-tex'>(\,,\,)_s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>b \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x_W \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x_W +(a+h)u \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">/</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>h \in \Q/\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>\calL_V \cap u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow></msub><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>w=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_W=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03D5;</mi></mrow><annotation encoding='application/x-tex'>\phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi},\theta_{\phi})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi},\theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(C^{\bullet})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\overline{X}) = H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi}, \theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}](\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subseteq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subseteq SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X},\partial \overline{X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub><mo>:</mo><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\#}: H_c^2(X) \to H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\omega] = \PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>M = \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi></mrow><annotation encoding='application/x-tex'>\Lambda</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow></mrow><annotation encoding='application/x-tex'>{\partial C_y}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(C^c_n \cdot C_y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>,</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_n^c \cdot C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T^c_n \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>C</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X = (C_n \cdot C_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&xi;</mi></mrow><annotation encoding='application/x-tex'>\xi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub></mrow></msub><mi>&xi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n) = \sum_{x\in\calL_n} \xi(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>dd^c \xi = \varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi><mi>i</mi></mrow></mfrac></mstyle><mo stretchy="false">(</mo><mo>&PartialD;</mo><mo>&minus;</mo><mover><mo>&PartialD;</mo><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d^c = \tfrac{1}{4\pi i}(\partial &#x2d; \overline{\partial})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \xi = \tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo>=</mo><mo>&minus;</mo><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \varphi_0 = &#x2d;\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\pi^{\ast} \phi^P_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><mi>&emptyv;</mi></mrow><annotation encoding='application/x-tex'>C_n^c = \emptyset</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub></mrow><annotation encoding='application/x-tex'>\rho_{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calF</mo></mrow><annotation encoding='application/x-tex'>\calF</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t\leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>T+1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\rho_T\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow></msub><mi>&eta;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\left(\int_{C_n} \eta\right)e^{&#x2d;2\pi n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>T \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>d</mi><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>d(\rho_T \eta) = \rho_T&apos;(t) dt \wedge \eta + \rho_T d\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\rho_T&apos;(t)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[T,T+1]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&equiv;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>f \equiv 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>C</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{&#x2d;Ct})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}&apos;_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mi>f</mi><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) &#x2d; f \pi^{\ast}\phi_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\pi^{\ast} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = \Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&coprod;</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>A</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_n^c = C_n \coprod (&#x2d;A_n)</annotation></semantics></math>
@@ -0,0 +1,244 @@
1
+ #!/usr/bin/env python
2
+ #
3
+ # Copyright (c) Vicent Marti. All rights reserved.
4
+ #
5
+ # This file is part of clar, distributed under the ISC license.
6
+ # For full terms see the included COPYING file.
7
+ #
8
+
9
+ from __future__ import with_statement
10
+ from string import Template
11
+ import re, fnmatch, os, codecs, pickle
12
+
13
+ class Module(object):
14
+ class Template(object):
15
+ def __init__(self, module):
16
+ self.module = module
17
+
18
+ def _render_callback(self, cb):
19
+ if not cb:
20
+ return ' { NULL, NULL }'
21
+ return ' { "%s", &%s }' % (cb['short_name'], cb['symbol'])
22
+
23
+ class DeclarationTemplate(Template):
24
+ def render(self):
25
+ out = "\n".join("extern %s;" % cb['declaration'] for cb in self.module.callbacks) + "\n"
26
+
27
+ if self.module.initialize:
28
+ out += "extern %s;\n" % self.module.initialize['declaration']
29
+
30
+ if self.module.cleanup:
31
+ out += "extern %s;\n" % self.module.cleanup['declaration']
32
+
33
+ return out
34
+
35
+ class CallbacksTemplate(Template):
36
+ def render(self):
37
+ out = "static const struct clar_func _clar_cb_%s[] = {\n" % self.module.name
38
+ out += ",\n".join(self._render_callback(cb) for cb in self.module.callbacks)
39
+ out += "\n};\n"
40
+ return out
41
+
42
+ class InfoTemplate(Template):
43
+ def render(self):
44
+ return Template(
45
+ r"""
46
+ {
47
+ "${clean_name}",
48
+ ${initialize},
49
+ ${cleanup},
50
+ ${cb_ptr}, ${cb_count}, ${enabled}
51
+ }"""
52
+ ).substitute(
53
+ clean_name = self.module.clean_name(),
54
+ initialize = self._render_callback(self.module.initialize),
55
+ cleanup = self._render_callback(self.module.cleanup),
56
+ cb_ptr = "_clar_cb_%s" % self.module.name,
57
+ cb_count = len(self.module.callbacks),
58
+ enabled = int(self.module.enabled)
59
+ )
60
+
61
+ def __init__(self, name):
62
+ self.name = name
63
+
64
+ self.mtime = 0
65
+ self.enabled = True
66
+ self.modified = False
67
+
68
+ def clean_name(self):
69
+ return self.name.replace("_", "::")
70
+
71
+ def _skip_comments(self, text):
72
+ SKIP_COMMENTS_REGEX = re.compile(
73
+ r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
74
+ re.DOTALL | re.MULTILINE)
75
+
76
+ def _replacer(match):
77
+ s = match.group(0)
78
+ return "" if s.startswith('/') else s
79
+
80
+ return re.sub(SKIP_COMMENTS_REGEX, _replacer, text)
81
+
82
+ def parse(self, contents):
83
+ TEST_FUNC_REGEX = r"^(void\s+(test_%s__(\w+))\s*\(\s*void\s*\))\s*\{"
84
+
85
+ contents = self._skip_comments(contents)
86
+ regex = re.compile(TEST_FUNC_REGEX % self.name, re.MULTILINE)
87
+
88
+ self.callbacks = []
89
+ self.initialize = None
90
+ self.cleanup = None
91
+
92
+ for (declaration, symbol, short_name) in regex.findall(contents):
93
+ data = {
94
+ "short_name" : short_name,
95
+ "declaration" : declaration,
96
+ "symbol" : symbol
97
+ }
98
+
99
+ if short_name == 'initialize':
100
+ self.initialize = data
101
+ elif short_name == 'cleanup':
102
+ self.cleanup = data
103
+ else:
104
+ self.callbacks.append(data)
105
+
106
+ return self.callbacks != []
107
+
108
+ def refresh(self, path):
109
+ self.modified = False
110
+
111
+ try:
112
+ st = os.stat(path)
113
+
114
+ # Not modified
115
+ if st.st_mtime == self.mtime:
116
+ return True
117
+
118
+ self.modified = True
119
+ self.mtime = st.st_mtime
120
+
121
+ with codecs.open(path, encoding='utf-8') as fp:
122
+ raw_content = fp.read()
123
+
124
+ except IOError:
125
+ return False
126
+
127
+ return self.parse(raw_content)
128
+
129
+ class TestSuite(object):
130
+
131
+ def __init__(self, path):
132
+ self.path = path
133
+
134
+ def should_generate(self, path):
135
+ if not os.path.isfile(path):
136
+ return True
137
+
138
+ if any(module.modified for module in self.modules.values()):
139
+ return True
140
+
141
+ return False
142
+
143
+ def find_modules(self):
144
+ modules = []
145
+ for root, _, files in os.walk(self.path):
146
+ module_root = root[len(self.path):]
147
+ module_root = [c for c in module_root.split(os.sep) if c]
148
+
149
+ tests_in_module = fnmatch.filter(files, "*.c")
150
+
151
+ for test_file in tests_in_module:
152
+ full_path = os.path.join(root, test_file)
153
+ module_name = "_".join(module_root + [test_file[:-2]]).replace("-", "_")
154
+
155
+ modules.append((full_path, module_name))
156
+
157
+ return modules
158
+
159
+ def load_cache(self):
160
+ path = os.path.join(self.path, '.clarcache')
161
+ cache = {}
162
+
163
+ try:
164
+ fp = open(path, 'rb')
165
+ cache = pickle.load(fp)
166
+ fp.close()
167
+ except (IOError, ValueError):
168
+ pass
169
+
170
+ return cache
171
+
172
+ def save_cache(self):
173
+ path = os.path.join(self.path, '.clarcache')
174
+ with open(path, 'wb') as cache:
175
+ pickle.dump(self.modules, cache)
176
+
177
+ def load(self, force = False):
178
+ module_data = self.find_modules()
179
+ self.modules = {} if force else self.load_cache()
180
+
181
+ for path, name in module_data:
182
+ if name not in self.modules:
183
+ self.modules[name] = Module(name)
184
+
185
+ if not self.modules[name].refresh(path):
186
+ del self.modules[name]
187
+
188
+ def disable(self, excluded):
189
+ for exclude in excluded:
190
+ for module in self.modules.values():
191
+ name = module.clean_name()
192
+ if name.startswith(exclude):
193
+ module.enabled = False
194
+ module.modified = True
195
+
196
+ def suite_count(self):
197
+ return len(self.modules)
198
+
199
+ def callback_count(self):
200
+ return sum(len(module.callbacks) for module in self.modules.values())
201
+
202
+ def write(self):
203
+ output = os.path.join(self.path, 'clar.suite')
204
+
205
+ if not self.should_generate(output):
206
+ return False
207
+
208
+ with open(output, 'w') as data:
209
+ for module in self.modules.values():
210
+ t = Module.DeclarationTemplate(module)
211
+ data.write(t.render())
212
+
213
+ for module in self.modules.values():
214
+ t = Module.CallbacksTemplate(module)
215
+ data.write(t.render())
216
+
217
+ suites = "static struct clar_suite _clar_suites[] = {" + ','.join(
218
+ Module.InfoTemplate(module).render() for module in sorted(self.modules.values(), key=lambda module: module.name)
219
+ ) + "\n};\n"
220
+
221
+ data.write(suites)
222
+
223
+ data.write("static const size_t _clar_suite_count = %d;\n" % self.suite_count())
224
+ data.write("static const size_t _clar_callback_count = %d;\n" % self.callback_count())
225
+
226
+ self.save_cache()
227
+ return True
228
+
229
+ if __name__ == '__main__':
230
+ from optparse import OptionParser
231
+
232
+ parser = OptionParser()
233
+ parser.add_option('-f', '--force', action="store_true", dest='force', default=False)
234
+ parser.add_option('-x', '--exclude', dest='excluded', action='append', default=[])
235
+
236
+ options, args = parser.parse_args()
237
+
238
+ for path in args or ['.']:
239
+ suite = TestSuite(path)
240
+ suite.load(options.force)
241
+ suite.disable(options.excluded)
242
+ if suite.write():
243
+ print("Written `clar.suite` (%d tests in %d suites)" % (suite.callback_count(), suite.suite_count()))
244
+