mathematical 1.5.0 → 1.5.12

Sign up to get free protection for your applications and to get access to all the features.
Files changed (727) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +27 -0
  3. data/Rakefile +5 -9
  4. data/ext/README.md +21 -0
  5. data/ext/mathematical/CMakeLists.txt +76 -0
  6. data/ext/mathematical/FindNewerRubies.cmake +292 -0
  7. data/ext/mathematical/FindPackageHandleStandardArgs.cmake +58 -0
  8. data/ext/mathematical/extconf.rb +38 -18
  9. data/ext/mathematical/lasem/AUTHORS +1 -0
  10. data/ext/mathematical/lasem/COPYING +482 -0
  11. data/ext/mathematical/lasem/{docs/reference/lasem/lasem-overrides.txt → ChangeLog} +0 -0
  12. data/ext/mathematical/lasem/MAINTAINERS +3 -0
  13. data/ext/mathematical/lasem/Makefile.am +34 -0
  14. data/ext/mathematical/lasem/Makefile.decl +57 -0
  15. data/ext/mathematical/lasem/NEWS +117 -0
  16. data/ext/mathematical/lasem/README +28 -0
  17. data/ext/mathematical/lasem/RELEASING +85 -0
  18. data/ext/mathematical/lasem/TODO +50 -0
  19. data/ext/mathematical/lasem/autogen.sh +177 -0
  20. data/ext/mathematical/lasem/configure.ac +139 -0
  21. data/ext/mathematical/lasem/docs/Makefile.am +14 -0
  22. data/ext/mathematical/lasem/docs/lasem-render-0.6.1 +106 -0
  23. data/ext/mathematical/lasem/docs/reference/Makefile.am +3 -0
  24. data/ext/mathematical/lasem/docs/reference/lasem/Makefile.am +205 -0
  25. data/ext/mathematical/lasem/docs/reference/lasem/lasem-docs.xml +75 -0
  26. data/ext/mathematical/lasem/docs/reference/lasem/lasem-overview.xml +64 -0
  27. data/ext/mathematical/lasem/docs/reference/lasem/lasem.types +110 -0
  28. data/ext/mathematical/lasem/itex2mml/COPYING.itex2MML +3 -0
  29. data/ext/mathematical/lasem/itex2mml/Makefile.am +37 -0
  30. data/ext/mathematical/lasem/itex2mml/README.itex2MML +13 -0
  31. data/ext/mathematical/lasem/lasem.doap +21 -0
  32. data/ext/mathematical/lasem/m4/introspection.m4 +96 -0
  33. data/ext/mathematical/lasem/po/ChangeLog +0 -0
  34. data/ext/mathematical/lasem/po/LINGUAS +28 -0
  35. data/ext/mathematical/lasem/po/POTFILES.in +195 -0
  36. data/ext/mathematical/lasem/po/POTFILES.skip +1 -0
  37. data/ext/mathematical/lasem/po/bs.po +65 -0
  38. data/ext/mathematical/lasem/po/cs.po +70 -0
  39. data/ext/mathematical/lasem/po/de.po +68 -0
  40. data/ext/mathematical/lasem/po/el.po +73 -0
  41. data/ext/mathematical/lasem/po/es.po +78 -0
  42. data/ext/mathematical/lasem/po/eu.po +66 -0
  43. data/ext/mathematical/lasem/po/fr.po +65 -0
  44. data/ext/mathematical/lasem/po/gl.po +64 -0
  45. data/ext/mathematical/lasem/po/hu.po +76 -0
  46. data/ext/mathematical/lasem/po/id.po +69 -0
  47. data/ext/mathematical/lasem/po/it.po +64 -0
  48. data/ext/mathematical/lasem/po/lt.po +77 -0
  49. data/ext/mathematical/lasem/po/lv.po +66 -0
  50. data/ext/mathematical/lasem/po/nb.po +62 -0
  51. data/ext/mathematical/lasem/po/oc.po +65 -0
  52. data/ext/mathematical/lasem/po/pl.po +73 -0
  53. data/ext/mathematical/lasem/po/pt.po +77 -0
  54. data/ext/mathematical/lasem/po/pt_BR.po +64 -0
  55. data/ext/mathematical/lasem/po/ru.po +66 -0
  56. data/ext/mathematical/lasem/po/sl.po +68 -0
  57. data/ext/mathematical/lasem/po/sr.po +65 -0
  58. data/ext/mathematical/lasem/po/sr@latin.po +65 -0
  59. data/ext/mathematical/lasem/po/sv.po +72 -0
  60. data/ext/mathematical/lasem/po/tg.po +64 -0
  61. data/ext/mathematical/lasem/po/tr.po +65 -0
  62. data/ext/mathematical/lasem/po/zh_CN.po +63 -0
  63. data/ext/mathematical/lasem/src/Makefile.am +349 -0
  64. data/ext/mathematical/lasem/src/lsmdomenumtypes.c.template +39 -0
  65. data/ext/mathematical/lasem/src/lsmdomenumtypes.h.template +26 -0
  66. data/ext/mathematical/lasem/src/lsmitex.c +0 -1
  67. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.c.template +39 -0
  68. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.h.template +26 -0
  69. data/ext/mathematical/lasem/src/lsmsvgenumtypes.c.template +39 -0
  70. data/ext/mathematical/lasem/src/lsmsvgenumtypes.h.template +26 -0
  71. data/ext/mathematical/lasem/tests/Makefile.am +34 -0
  72. data/ext/mathematical/lasem/tests/data/mathml/gtkmathview/README +5 -0
  73. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-02.tex +1 -0
  74. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-03-inline.tex +1 -0
  75. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-03.tex +1 -0
  76. data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction.tex +1 -0
  77. data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/closed.tex +1 -0
  78. data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/multiples.tex +1 -0
  79. data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/standard.tex +1 -0
  80. data/ext/mathematical/lasem/tests/data/mathml/tex/matrices/matrix-01.tex +5 -0
  81. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases-cr.tex +7 -0
  82. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases-space.tex +7 -0
  83. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases.tex +7 -0
  84. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/color.tex +1 -0
  85. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex-2.tex +1 -0
  86. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex-inline.tex +7 -0
  87. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex.tex +7 -0
  88. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/quadratic-inline.tex +1 -0
  89. data/ext/mathematical/lasem/tests/data/mathml/tex/misc/quadratic.tex +1 -0
  90. data/ext/mathematical/lasem/tests/data/mathml/tex/radicals/radical-01.tex +1 -0
  91. data/ext/mathematical/lasem/tests/data/mathml/tex/radicals/radical-02.tex +1 -0
  92. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/accents.tex +1 -0
  93. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/script.tex +1 -0
  94. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/stack.tex +1 -0
  95. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/subscript.tex +1 -0
  96. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/sums-inline.tex +1 -0
  97. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/sums.tex +1 -0
  98. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/superscript-inline.tex +1 -0
  99. data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/superscript.tex +1 -0
  100. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/bmpCursor.bmp +0 -0
  101. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/brushedMetal.jpg +0 -0
  102. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/jpeg.jpg +0 -0
  103. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/jpegCursor.jpg +0 -0
  104. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaBridge.jpg +0 -0
  105. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaSteps.jpg +0 -0
  106. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaWalk.jpg +0 -0
  107. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors.tif +0 -0
  108. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_pb.tif +0 -0
  109. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_pb_tile.tif +0 -0
  110. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_tile.tif +0 -0
  111. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/tde.jpg +0 -0
  112. data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/tiffCursor.tif +0 -0
  113. data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/image1.jpg +0 -0
  114. data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/struct-image-01.jpg +0 -0
  115. data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/struct-image-02.jpg +0 -0
  116. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/CNN.3gp +0 -0
  117. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/SVG-1.1-monolithic-fixed.dtd +1622 -0
  118. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/TraitAccess.common.es +672 -0
  119. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/advice.wav +0 -0
  120. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/beep.wav +0 -0
  121. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/boing_x.wav +0 -0
  122. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/clock.mp4 +0 -0
  123. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud-ps411q4app.jpg +0 -0
  124. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q25s.jpg +0 -0
  125. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q65float.jpg +0 -0
  126. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75o.jpg +0 -0
  127. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75p.jpg +0 -0
  128. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75s.jpg +0 -0
  129. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud444q65o.jpg +0 -0
  130. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudgsq75s.jpg +0 -0
  131. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudoddq65o.jpg +0 -0
  132. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudqllo.jpg +0 -0
  133. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/copyright-documents-19990405.html +89 -0
  134. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/disco.jpg +0 -0
  135. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.3gp +0 -0
  136. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.jpg +0 -0
  137. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.mov +0 -0
  138. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/duckfeeding.3gp +0 -0
  139. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/duckfeeding.mov +0 -0
  140. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/excuse_me.wav +0 -0
  141. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/externalscript.js +1 -0
  142. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton.jpg +0 -0
  143. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton1.jpg +0 -0
  144. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton2.jpg +0 -0
  145. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton3.jpg +0 -0
  146. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton4.jpg +0 -0
  147. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/heroesLanding.3gp +0 -0
  148. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/image1.jpg +0 -0
  149. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/image2_b.jpg +0 -0
  150. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/myimage.jpg +0 -0
  151. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pacman.wav +0 -0
  152. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/plant.jpg +0 -0
  153. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image0.jpg +0 -0
  154. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image1.jpg +0 -0
  155. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image2.jpg +0 -0
  156. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image3.jpg +0 -0
  157. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image4.jpg +0 -0
  158. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image5.jpg +0 -0
  159. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image6.jpg +0 -0
  160. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image7.jpg +0 -0
  161. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image8.jpg +0 -0
  162. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image9.jpg +0 -0
  163. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script1.js +1 -0
  164. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script10.js +1 -0
  165. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script2.js +1 -0
  166. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script3.js +1 -0
  167. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script4.js +1 -0
  168. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script5.js +1 -0
  169. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script6.js +1 -0
  170. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script7.js +1 -0
  171. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script8.js +1 -0
  172. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script9.js +1 -0
  173. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/skier.3gp +0 -0
  174. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/skier.jpg +0 -0
  175. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/struct-image-01.jpg +0 -0
  176. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/struct-image-02.jpg +0 -0
  177. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/svgRef4.css +4 -0
  178. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/welcome.wav +0 -0
  179. data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/xmltree.xml +4 -0
  180. data/ext/mathematical/lasem/tests/fuzztest.sh +12 -0
  181. data/ext/mathematical/lasem/tests/suite.ini +27 -0
  182. data/ext/mathematical/lasem/tools/change-license +3 -0
  183. data/ext/mathematical/lasem/tools/charlist.dtd +73 -0
  184. data/ext/mathematical/lasem/tools/entities-to-c.xsl +1067 -0
  185. data/ext/mathematical/lasem/tools/fuzzxml +243 -0
  186. data/ext/mathematical/lasem/tools/unicode.xml +44303 -0
  187. data/ext/mathematical/lasem_overrides.c +25 -4
  188. data/ext/mathematical/lasem_overrides.h +5 -0
  189. data/ext/mathematical/lib/liblasem.dylib +0 -0
  190. data/ext/mathematical/mtex2MML/CONTRIBUTING.md +22 -0
  191. data/ext/mathematical/mtex2MML/README.md +143 -0
  192. data/ext/mathematical/mtex2MML/SUPPORTED.md +1214 -0
  193. data/ext/mathematical/mtex2MML/appveyor.yml +25 -0
  194. data/ext/mathematical/mtex2MML/build.ps1 +2 -0
  195. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_C.bin +0 -0
  196. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_CXX.bin +0 -0
  197. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdC/a.out +0 -0
  198. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/CMakeCXXCompilerId.cpp +375 -0
  199. data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/a.out +0 -0
  200. data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeOutput.log +208 -0
  201. data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/build.make +69 -0
  202. data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/progress.make +1 -0
  203. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/build.make +69 -0
  204. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/progress.make +1 -0
  205. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/build.make +69 -0
  206. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/progress.make +1 -0
  207. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/build.make +69 -0
  208. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/progress.make +1 -0
  209. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/build.make +69 -0
  210. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/progress.make +1 -0
  211. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/build.make +69 -0
  212. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/progress.make +1 -0
  213. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/build.make +69 -0
  214. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/progress.make +1 -0
  215. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/build.make +69 -0
  216. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/progress.make +1 -0
  217. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/build.make +69 -0
  218. data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/progress.make +1 -0
  219. data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/build.make +69 -0
  220. data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/progress.make +1 -0
  221. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/build.make +69 -0
  222. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/progress.make +1 -0
  223. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/build.make +69 -0
  224. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/progress.make +1 -0
  225. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/build.make +69 -0
  226. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/progress.make +1 -0
  227. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/build.make +69 -0
  228. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/progress.make +1 -0
  229. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/build.make +69 -0
  230. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/progress.make +1 -0
  231. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/build.make +69 -0
  232. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/progress.make +1 -0
  233. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/build.make +69 -0
  234. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/progress.make +1 -0
  235. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/build.make +69 -0
  236. data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/progress.make +1 -0
  237. data/ext/mathematical/mtex2MML/build/CMakeFiles/Makefile2 +1137 -0
  238. data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/build.make +69 -0
  239. data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/progress.make +1 -0
  240. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/build.make +69 -0
  241. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/progress.make +1 -0
  242. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/build.make +69 -0
  243. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/progress.make +1 -0
  244. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/build.make +69 -0
  245. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/progress.make +1 -0
  246. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/build.make +69 -0
  247. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/progress.make +1 -0
  248. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/build.make +69 -0
  249. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/progress.make +1 -0
  250. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/build.make +69 -0
  251. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/progress.make +1 -0
  252. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/build.make +69 -0
  253. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/progress.make +1 -0
  254. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/build.make +69 -0
  255. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/progress.make +1 -0
  256. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/build.make +69 -0
  257. data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/progress.make +1 -0
  258. data/ext/mathematical/mtex2MML/build/CMakeFiles/cmake.check_cache +1 -0
  259. data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/build.make +69 -0
  260. data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/progress.make +1 -0
  261. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/build.make +253 -0
  262. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/depend.make +2 -0
  263. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/flags.make +8 -0
  264. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/progress.make +9 -0
  265. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/C.includecache +148 -0
  266. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/build.make +251 -0
  267. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.internal +48 -0
  268. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.make +48 -0
  269. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/flags.make +8 -0
  270. data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/progress.make +9 -0
  271. data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/build.make +69 -0
  272. data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/progress.make +1 -0
  273. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/build.make +276 -0
  274. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/depend.make +2 -0
  275. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/flags.make +8 -0
  276. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/progress.make +10 -0
  277. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/build.make +683 -0
  278. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/depend.make +2 -0
  279. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/flags.make +8 -0
  280. data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/progress.make +26 -0
  281. data/ext/mathematical/mtex2MML/build/CMakeFiles/progress.marks +1 -0
  282. data/ext/mathematical/mtex2MML/build/DartConfiguration.tcl +94 -0
  283. data/ext/mathematical/mtex2MML/build/libmtex2MML.pc +10 -0
  284. data/ext/mathematical/mtex2MML/build/parser.output +117661 -0
  285. data/ext/mathematical/mtex2MML/deps/strdup/package.json +12 -0
  286. data/ext/mathematical/mtex2MML/deps/uthash/package.json +26 -0
  287. data/ext/mathematical/mtex2MML/script/bootstrap +30 -0
  288. data/ext/mathematical/mtex2MML/script/cibuild +11 -0
  289. data/ext/mathematical/mtex2MML/script/release +27 -0
  290. data/ext/mathematical/mtex2MML/src/y.output +117655 -0
  291. data/ext/mathematical/mtex2MML/tests/debug/mtex2MML_debug.cc +21 -0
  292. data/ext/mathematical/mtex2MML/tests/deps/file2str/package.json +9 -0
  293. data/ext/mathematical/mtex2MML/tests/deps/trim/package.json +7 -0
  294. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-1.html +86 -0
  295. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-2.html +148 -0
  296. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-3.html +188 -0
  297. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/arrows-2.html +156 -0
  298. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/min-1.html +45 -0
  299. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/min-2.html +35 -0
  300. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-1.html +16 -0
  301. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-2.html +3 -0
  302. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-3.html +5 -0
  303. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/buildrel-1.html +3 -0
  304. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue490.html +0 -0
  305. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue877.html +3 -0
  306. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue937.html +3 -0
  307. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overbrace-1.html +3 -0
  308. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overbracket-1.html +3 -0
  309. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overset-1.html +3 -0
  310. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/sideset-1.html +5 -0
  311. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/stackrel-1.html +3 -0
  312. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/subarray-1.html +1 -0
  313. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/substack-1.html +3 -0
  314. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underbrace-1.html +3 -0
  315. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underbracket-1.html +3 -0
  316. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underset-1.html +3 -0
  317. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/mathtip-1.html +6 -0
  318. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/texttip-1.html +6 -0
  319. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/toggle-1.html +7 -0
  320. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/Newextarrow-1.html +10 -0
  321. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-1.html +34 -0
  322. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-2.html +30 -0
  323. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-3.html +9 -0
  324. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-4.html +13 -0
  325. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-5.html +7 -0
  326. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathbin-1.html +7 -0
  327. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathinner-1.html +3 -0
  328. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-1a.html +3 -0
  329. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-1b.html +5 -0
  330. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-2.html +5 -0
  331. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathopenclose-1.html +3 -0
  332. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathord-1.html +3 -0
  333. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathpunct-1.html +3 -0
  334. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathrel-1.html +3 -0
  335. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/backslashed-1.html +16 -0
  336. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/basic-operators-1.html +3 -0
  337. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/basic-operators-2.html +25 -0
  338. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/remap-1.html +5 -0
  339. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/color-1.html +3 -0
  340. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/colorbox-1.html +3 -0
  341. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/definecolor-1.html +37 -0
  342. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/definecolor-2.html +79 -0
  343. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/fcolorbox-1.html +7 -0
  344. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/issue446.html +5 -0
  345. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/namedcolors-1.html +70 -0
  346. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-1.html +3 -0
  347. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-2.html +3 -0
  348. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-3.html +3 -0
  349. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/delimiters-1.html +3 -0
  350. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/delimiters-2.html +4 -0
  351. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue775.html +3 -0
  352. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-1a.html +6 -0
  353. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-1b.html +6 -0
  354. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-2.html +6 -0
  355. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-3.html +6 -0
  356. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-4.html +6 -0
  357. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-5.html +6 -0
  358. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/left-right-1.html +3 -0
  359. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/align-1a.html +7 -0
  360. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/align-1b.html +7 -0
  361. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignat-1a.html +6 -0
  362. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignat-1b.html +6 -0
  363. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/aligned-1.html +9 -0
  364. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/aligned-2.html +14 -0
  365. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignedat-1.html +8 -0
  366. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqalign-1.html +8 -0
  367. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqalignno-1.html +8 -0
  368. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-1a.html +7 -0
  369. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-1b.html +7 -0
  370. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-2.html +64 -0
  371. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/equation-1.html +5 -0
  372. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/equation-2.html +5 -0
  373. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gather-1a.html +7 -0
  374. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gather-1b.html +7 -0
  375. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gathered-1.html +7 -0
  376. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gathered-2.html +12 -0
  377. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-1a.html +5 -0
  378. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-1b.html +5 -0
  379. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-2a.html +5 -0
  380. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-2b.html +5 -0
  381. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-3a.html +5 -0
  382. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-3b.html +5 -0
  383. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/leqalignno-1.html +11 -0
  384. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/multline-1a.html +7 -0
  385. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/multline-1b.html +7 -0
  386. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/split-1.html +9 -0
  387. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/errors/noErrors-1.html +5 -0
  388. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/errors/noUndefined-1.html +3 -0
  389. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/above-1.html +3 -0
  390. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/abovewithdelims-1.html +3 -0
  391. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/atop-1.html +3 -0
  392. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/atopwithdelims-1.html +3 -0
  393. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/binom-1.html +3 -0
  394. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/brace-1.html +3 -0
  395. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/brack-1.html +3 -0
  396. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/cfrac-1.html +3 -0
  397. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/choose-1.html +3 -0
  398. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/dbinom-1.html +3 -0
  399. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/dfrac-1.html +3 -0
  400. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/frac-1a.html +3 -0
  401. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/frac-1b.html +3 -0
  402. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/genfrac-1.html +3 -0
  403. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/issue969.html +3 -0
  404. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/overwithdelims-1.html +3 -0
  405. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/tbinom-1.html +3 -0
  406. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/tfrac-1.html +3 -0
  407. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue1152-1.html +1 -0
  408. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue1152-2.html +4 -0
  409. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue375.html +3 -0
  410. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue856.html +3 -0
  411. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1a.html +5 -0
  412. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1b.html +5 -0
  413. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1c.html +5 -0
  414. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1d.html +5 -0
  415. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/boxes-1.html +5 -0
  416. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/kern-1a.html +3 -0
  417. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/kern-1b.html +3 -0
  418. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/llap-1.html +3 -0
  419. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/lower-1.html +4 -0
  420. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/mathstrut-1.html +3 -0
  421. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/moveleft-1.html +3 -0
  422. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/moveright-1.html +3 -0
  423. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/newline-1.html +3 -0
  424. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/phantom-1.html +4 -0
  425. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/raise-1.html +3 -0
  426. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/rlap-1.html +3 -0
  427. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/shove-1.html +19 -0
  428. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/skip-1a.html +3 -0
  429. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/skip-1b.html +3 -0
  430. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/smash-1.html +3 -0
  431. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/spaces-1.html +18 -0
  432. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/strut-1.html +3 -0
  433. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/vcenter-1.html +3 -0
  434. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-1.html +32 -0
  435. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-2.html +13 -0
  436. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-3.html +6 -0
  437. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-4.html +13 -0
  438. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/hebrew-1.html +6 -0
  439. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/begingroup-1.html +15 -0
  440. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/def-1.html +5 -0
  441. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/let-1.html +14 -0
  442. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-1.html +7 -0
  443. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-2.html +25 -0
  444. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-3.html +50 -0
  445. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-5.html +5 -0
  446. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-6.html +7 -0
  447. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-7.html +7 -0
  448. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/Bbb-1.html +3 -0
  449. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/bf-1.html +3 -0
  450. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/boldsymbol-1.html +9 -0
  451. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/cal-1.html +3 -0
  452. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/frak-1.html +3 -0
  453. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/it-1.html +3 -0
  454. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbb-1.html +3 -0
  455. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-1a.html +3 -0
  456. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-1b.html +3 -0
  457. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-2.html +3 -0
  458. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathcal-1.html +3 -0
  459. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathfrak-1.html +3 -0
  460. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathit-1.html +3 -0
  461. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathrm-1.html +3 -0
  462. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathscr-1.html +3 -0
  463. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathsf-1.html +3 -0
  464. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathtt-1.html +3 -0
  465. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mit-1.html +3 -0
  466. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/pmb-1.html +3 -0
  467. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/rm-1.html +3 -0
  468. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/scr-1.html +3 -0
  469. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/sf-1.html +3 -0
  470. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/text-1.html +3 -0
  471. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textbf-1.html +3 -0
  472. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textit-1.html +3 -0
  473. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textrm-1.html +3 -0
  474. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textsf-1.html +3 -0
  475. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/texttt-1.html +3 -0
  476. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/tt-1.html +3 -0
  477. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-1a.html +7 -0
  478. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-1b.html +7 -0
  479. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-2.html +3 -0
  480. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-3.html +3 -0
  481. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/bmatrix-1.html +7 -0
  482. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/bmatrix-2.html +7 -0
  483. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/matrix-1.html +7 -0
  484. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/matrix-2.html +7 -0
  485. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/pmatrix-1.html +7 -0
  486. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/pmatrix-2.html +8 -0
  487. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/smallmatrix-1.html +3 -0
  488. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/vmatrix-1.html +7 -0
  489. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/vmatrix-2.html +7 -0
  490. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-1.html +120 -0
  491. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-2.html +35 -0
  492. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-3.html +138 -0
  493. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/amounts-1.html +46 -0
  494. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/arrows-1.html +235 -0
  495. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/arrows-2.html +159 -0
  496. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/basics-1.html +139 -0
  497. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/bonds-1.html +256 -0
  498. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/environments-1.html +81 -0
  499. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/isotopes-1.html +30 -0
  500. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/math-1.html +101 -0
  501. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/special_symbols-1.html +176 -0
  502. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/Rule-1.html +5 -0
  503. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/Tiny-1.html +3 -0
  504. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/class-1.html +3 -0
  505. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/cssId-1.html +3 -0
  506. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/href-1.html +3 -0
  507. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/href-2.html +3 -0
  508. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/require-1.html +3 -0
  509. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/style-1.html +3 -0
  510. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/unicode-1.html +8 -0
  511. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/LaTeX-1.html +4 -0
  512. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/bbox-1.html +6 -0
  513. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/boxed-1.html +3 -0
  514. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/cancel-1.html +6 -0
  515. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/cases-1.html +3 -0
  516. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/displaylines-1.html +7 -0
  517. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/enclose-1.html +8 -0
  518. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/functions-1.html +34 -0
  519. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-1.html +5 -0
  520. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-2.html +8 -0
  521. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-3.html +3 -0
  522. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/mathsize-1.html +11 -0
  523. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/mod-1.html +5 -0
  524. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/not-1.html +5 -0
  525. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/pod-1.html +3 -0
  526. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-1.html +8 -0
  527. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-2.html +4 -0
  528. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-3.html +3 -0
  529. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/style-1.html +7 -0
  530. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/style-2.html +0 -0
  531. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/verb-1.html +3 -0
  532. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/verb-2.html +3 -0
  533. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/eqref-1.html +5 -0
  534. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/label-1.html +7 -0
  535. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/label-2.html +1 -0
  536. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/notag-1.html +5 -0
  537. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-1.html +5 -0
  538. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-2.html +5 -0
  539. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-3.html +5 -0
  540. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-1.html +3 -0
  541. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-2.html +3 -0
  542. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-3.html +3 -0
  543. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/sqrt-1.html +3 -0
  544. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/sqrt-2.html +3 -0
  545. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/binaryops-1.html +32 -0
  546. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/dots-1.html +26 -0
  547. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/largeops-1.html +4 -0
  548. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/largeops-2.html +3 -0
  549. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/relations-1.html +39 -0
  550. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-1.html +25 -0
  551. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-2.html +31 -0
  552. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-3.html +40 -0
  553. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-4.html +39 -0
  554. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-5.html +56 -0
  555. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-6.html +49 -0
  556. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-1.no_tex +8 -0
  557. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-2.no_tex +13 -0
  558. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-3.no_tex +23 -0
  559. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/arrows-1.no_tex +23 -0
  560. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/arrows-2.no_tex +26 -0
  561. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/min-1.no_tex +14 -0
  562. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/min-2.no_tex +14 -0
  563. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/above-below/issue490.no_tex +3 -0
  564. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/mathtip-1.no_tex +2 -0
  565. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/texttip-1.no_tex +2 -0
  566. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/toggle-1.no_tex +3 -0
  567. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/arrows/Newextarrow-1.xtex +4 -0
  568. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/atoms/mathbin-1.no_tex +3 -0
  569. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/atoms/mathop-2.xtex +3 -0
  570. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/basic-operators/basic-operators-2.xtex +5 -0
  571. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1a.xtex +7 -0
  572. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1b.xtex +7 -0
  573. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1c.xtex +7 -0
  574. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-2.xtex +13 -0
  575. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/fcolorbox-1.xtex +3 -0
  576. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/issue446.xtex +5 -0
  577. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/eqnarray-1c.no_tex +7 -0
  578. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/eqnarray-2a.no_tex +8 -0
  579. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/leqalignno-1.xtex +8 -0
  580. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/errors/noErrors-1.no_tex +3 -0
  581. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/errors/noUndefined-1.no_tex +2 -0
  582. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue1151.no_tex +3 -0
  583. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue1152-1.xtex +1 -0
  584. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue903-1.xtex +6 -0
  585. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue903-2.xtex +16 -0
  586. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/layout/shove-1.xtex +7 -0
  587. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/begingroup-1.no_tex +8 -0
  588. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/def-1.no_tex +4 -0
  589. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/let-1.no_tex +5 -0
  590. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-1a.no_tex +3 -0
  591. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-1b.no_tex +3 -0
  592. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-2.no_tex +3 -0
  593. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-3.no_tex +5 -0
  594. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-5.no_tex +3 -0
  595. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-6.no_tex +5 -0
  596. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-7.no_tex +11 -0
  597. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-1.no_tex +8 -0
  598. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-2.no_tex +3 -0
  599. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-3.no_tex +7 -0
  600. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/amounts-1.no_tex +4 -0
  601. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/arrows-1.no_tex +10 -0
  602. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/arrows-2.no_tex +9 -0
  603. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/basics-1.no_tex +13 -0
  604. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/bonds-1.no_tex +11 -0
  605. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/environments-1.no_tex +6 -0
  606. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/isotopes-1.no_tex +3 -0
  607. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/math-1.no_tex +4 -0
  608. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/special_symbols-1.no_tex +7 -0
  609. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/Rule-1.no_tex +3 -0
  610. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/class-1.no_tex +3 -0
  611. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/cssId-1.no_tex +3 -0
  612. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/href-1.no_tex +3 -0
  613. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/href-2.no_tex +3 -0
  614. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/require-1.no_tex +5 -0
  615. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/style-1.no_tex +3 -0
  616. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/unicode-1.no_tex +3 -0
  617. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/other/displaylines-1.xtex +8 -0
  618. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/other/style-2.no_tex +10 -0
  619. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/eqref-1.no_tex +7 -0
  620. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/label-1.no_tex +3 -0
  621. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/label-2.no_tex +2 -0
  622. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-1a.no_tex +2 -0
  623. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-1b.no_tex +2 -0
  624. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-2.no_tex +2 -0
  625. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-3.no_tex +2 -0
  626. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-1.no_tex +1 -0
  627. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-2.no_tex +1 -0
  628. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-3.no_tex +3 -0
  629. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-4.no_tex +3 -0
  630. data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/TODO.md +3 -0
  631. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_nesting.html +32 -0
  632. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_pos_alignment.html +8 -0
  633. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_pos_alignment_with_hline.html +12 -0
  634. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_vertical_column.html +5 -0
  635. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_vertical_column_with_align.html +5 -0
  636. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_hline.html +9 -0
  637. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_hline_and_hdashline.html +10 -0
  638. data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_vertical_and_horizontal_dashes.html +10 -0
  639. data/ext/mathematical/mtex2MML/tests/fixtures/array/augmented_matrix.html +6 -0
  640. data/ext/mathematical/mtex2MML/tests/fixtures/array/basic_array.html +5 -0
  641. data/ext/mathematical/mtex2MML/tests/fixtures/array/strip_excess_whitespace_in_array_attributes.html +7 -0
  642. data/ext/mathematical/mtex2MML/tests/fixtures/basic/block.html +1 -0
  643. data/ext/mathematical/mtex2MML/tests/fixtures/basic/comments.html +6 -0
  644. data/ext/mathematical/mtex2MML/tests/fixtures/basic/filter.html +1 -0
  645. data/ext/mathematical/mtex2MML/tests/fixtures/basic/inline.html +1 -0
  646. data/ext/mathematical/mtex2MML/tests/fixtures/basic/strict_filter.html +3 -0
  647. data/ext/mathematical/mtex2MML/tests/fixtures/basic/text_filter.html +3 -0
  648. data/ext/mathematical/mtex2MML/tests/fixtures/cornercases/broken_up_inline_env.html +3 -0
  649. data/ext/mathematical/mtex2MML/tests/fixtures/cornercases/some_crazy_alignment.html +24 -0
  650. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/brackets.html +1 -0
  651. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_filter.html +2 -0
  652. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_text_filter.html +27 -0
  653. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/double_dollar.html +1 -0
  654. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_brackets.html +35 -0
  655. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_dollars.html +35 -0
  656. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_parens.html +35 -0
  657. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed.html +1 -0
  658. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/parens.html +1 -0
  659. data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/single_dollar.html +1 -0
  660. data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_ex_spacing.html +6 -0
  661. data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_no_ex_spacing.html +6 -0
  662. data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_no_lines.html +5 -0
  663. data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_ex_spacing.html +5 -0
  664. data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_no_ex_spacing.html +5 -0
  665. data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_no_lines.html +4 -0
  666. data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_ex_spacing.html +5 -0
  667. data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_no_ex_spacing.html +5 -0
  668. data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_no_lines.html +4 -0
  669. data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_ex_spacing.html +7 -0
  670. data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_no_ex_spacing.html +7 -0
  671. data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_no_lines.html +6 -0
  672. data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_ex_spacing.html +6 -0
  673. data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_no_ex_spacing.html +6 -0
  674. data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_no_lines.html +5 -0
  675. data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_ex_spacing.html +7 -0
  676. data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_no_ex_spacing.html +7 -0
  677. data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_no_lines.html +6 -0
  678. data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_ex_spacing.html +5 -0
  679. data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_no_ex_spacing.html +5 -0
  680. data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_no_lines.html +4 -0
  681. data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_ex_spacing.html +8 -0
  682. data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_no_ex_spacing.html +7 -0
  683. data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_no_lines.html +5 -0
  684. data/ext/mathematical/mtex2MML/tests/fixtures/env/spaces_after_rowsep.html +7 -0
  685. data/ext/mathematical/mtex2MML/tests/fixtures/env/split_ex_spacing.html +6 -0
  686. data/ext/mathematical/mtex2MML/tests/fixtures/env/split_no_ex_spacing.html +6 -0
  687. data/ext/mathematical/mtex2MML/tests/fixtures/env/split_no_lines.html +5 -0
  688. data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_ex_spacing.html +5 -0
  689. data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_no_ex_spacing.html +5 -0
  690. data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_no_lines.html +4 -0
  691. data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_ex_spacing.html +6 -0
  692. data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_no_ex_spacing.html +6 -0
  693. data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_no_lines.html +5 -0
  694. data/ext/mathematical/mtex2MML/tests/fixtures/functions/max_limits.html +1 -0
  695. data/ext/mathematical/mtex2MML/tests/fixtures/functions/min_limits.html +1 -0
  696. data/ext/mathematical/mtex2MML/tests/fixtures/maliciousness/just_enough_parsing.html +1 -0
  697. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/multiple_equations.html +11 -0
  698. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/multiple_notag_nonumber.html +7 -0
  699. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_equation.html +5 -0
  700. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_nonumber.html +6 -0
  701. data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_notag.html +6 -0
  702. data/ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.html +12 -0
  703. data/ext/mathematical/mtex2MML/tests/generate.py +244 -0
  704. data/ext/mathematical/mtex2MML/tests/mathjax_generate.py +72 -0
  705. data/lib/mathematical/version.rb +1 -1
  706. data/mathematical.gemspec +1 -3
  707. metadata +699 -23
  708. data/ext/mathematical/lasem/Makefile +0 -1037
  709. data/ext/mathematical/lasem/config.h +0 -87
  710. data/ext/mathematical/lasem/docs/Makefile +0 -793
  711. data/ext/mathematical/lasem/docs/reference/Makefile +0 -735
  712. data/ext/mathematical/lasem/docs/reference/lasem/Makefile +0 -1029
  713. data/ext/mathematical/lasem/docs/reference/lasem/lasem-decl-list.txt +0 -245
  714. data/ext/mathematical/lasem/docs/reference/lasem/lasem-decl.txt +0 -856
  715. data/ext/mathematical/lasem/itex2mml/Makefile +0 -742
  716. data/ext/mathematical/lasem/itex2mml/lex.yy.c +0 -6294
  717. data/ext/mathematical/lasem/itex2mml/y.tab.c +0 -5796
  718. data/ext/mathematical/lasem/itex2mml/y.tab.h +0 -378
  719. data/ext/mathematical/lasem/po/Makefile +0 -413
  720. data/ext/mathematical/lasem/src/Makefile +0 -1343
  721. data/ext/mathematical/lasem/src/lsmdomenumtypes.c +0 -99
  722. data/ext/mathematical/lasem/src/lsmdomenumtypes.h +0 -26
  723. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.c +0 -793
  724. data/ext/mathematical/lasem/src/lsmmathmlenumtypes.h +0 -96
  725. data/ext/mathematical/lasem/src/lsmsvgenumtypes.c +0 -1254
  726. data/ext/mathematical/lasem/src/lsmsvgenumtypes.h +0 -129
  727. data/ext/mathematical/lasem/tests/Makefile +0 -776
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="2.49201em" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{aligned}
3
+ 2x &#x2d; 5y &amp;= 8 \\[2.49201em]
4
+ 3x + 9y &amp;= &#x2d;12
5
+ \end{aligned}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="3pt" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{aligned}
3
+ 2x &#x2d; 5y &amp;= 8 \\
4
+ 3x + 9y &amp;= &#x2d;12
5
+ \end{aligned}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{aligned}
3
+ 3x + 9y &amp;= &#x2d;12
4
+ \end{aligned}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="100cm" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[100cm]
4
+ 4 &amp; 5 &amp; 6 \end{Bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{Bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Bmatrix}
3
+ 4 &amp; 5 &amp; 6 \end{Bmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="2.5in" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[2.5in]
4
+ 4 &amp; 5 &amp; 6 \end{bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{bmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{bmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{bmatrix}
3
+ 4 &amp; 5 &amp; 6 \end{bmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="20ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even} \\[20ex]
5
+ 3n+1, &amp; \text{if n is odd}
6
+ \end{cases}
7
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even} \\
5
+ 3n+1, &amp; \text{if n is odd}
6
+ \end{cases}
7
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even}
5
+ \end{cases}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="2pt" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{gathered}
3
+ 2x &#x2d; 5y = 8 \\[2pt]
4
+ 3x^2 + 9y = 3a + c
5
+ \end{gathered}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="1.0ex" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>&minus;</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{gathered}
3
+ 2x &#x2d; 5y = 8 \\
4
+ 3x^2 + 9y = 3a + c
5
+ \end{gathered}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="1.0ex" rowlines="none"><mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{gathered}
3
+ 3x^2 + 9y = 3a + c
4
+ \end{gathered}
5
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="40ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \left\{
3
+ \begin{matrix} 1 &amp; 2 &amp; 3 \\[40ex]
4
+ 4 &amp; 5 &amp; 6
5
+ \end{matrix}
6
+ \right)
7
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \left\{
3
+ \begin{matrix} 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6
5
+ \end{matrix}
6
+ \right)
7
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \left\{
3
+ \begin{matrix} 1 &amp; 2 &amp; 3
4
+ \end{matrix}
5
+ \right)
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="30mu" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{pmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[30mu]
4
+ 4 &amp; 5 &amp; 6 \end{pmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{pmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{pmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{pmatrix}
3
+ 1 &amp; 2 &amp; 3 \end{pmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,8 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em 100.342832em" rowlines="solid none none"><mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{smallmatrix}
3
+ \circ &amp; \circ &amp; \bullet \\
4
+ \hline
5
+ \circ &amp; \circ &amp;\bullet \\[100.342832em]
6
+ \circ &amp; \circ &amp; \circ
7
+ \end{smallmatrix}
8
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em 0.2em" rowlines="none none none"><mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr> <mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&SmallCircle;</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{smallmatrix}
3
+ \circ &amp; \circ &amp; \bullet \\
4
+ \circ &amp; \circ &amp;\bullet \\
5
+ \circ &amp; \circ &amp; \circ
6
+ \end{smallmatrix}
7
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em" rowlines="none"><mtr><mtd><mo>&SmallCircle;</mo></mtd> <mtd><mo>&bullet;</mo></mtd> <mtd><mo>&bullet;</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{smallmatrix}
3
+ \circ &amp; \bullet &amp; \bullet
4
+ \end{smallmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
2
+ f(n) =
3
+ \begin{cases}
4
+ \frac{n}{2}, &amp; \text{if n is even} \\ [2ex]
5
+ 3n+1, &amp; \text{if n is odd}
6
+ \end{cases}
7
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="22.2ex" rowlines="none none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{split}
3
+ A &amp; = \frac{\pi r^2}{2} \\[22.2ex]
4
+ &amp; = \frac{1}{2} \pi r^2
5
+ \end{split}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{split}
3
+ A &amp; = \frac{\pi r^2}{2} \\
4
+ &amp; = \frac{1}{2} \pi r^2
5
+ \end{split}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>&pi;</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{split}
3
+ A &amp; = \frac{\pi r^2}{2}
4
+ \end{split}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&VerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="1000mm" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&VerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[1000mm]
4
+ 4 &amp; 5 &amp; 6 \end{vmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&VerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&VerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6 \end{vmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1,4 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&VerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&VerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{vmatrix}
3
+ 4 &amp; 5 &amp; 6 \end{vmatrix}
4
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&DoubleVerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="9.452pc" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&DoubleVerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\[9.452pc]
4
+ 4 &amp; 5 &amp; 6
5
+ \end{Vmatrix}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&DoubleVerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>&DoubleVerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Vmatrix}
3
+ 1 &amp; 2 &amp; 3 \\
4
+ 4 &amp; 5 &amp; 6
5
+ \end{Vmatrix}
6
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>&DoubleVerticalBar;</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>&DoubleVerticalBar;</mo></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{Vmatrix}
3
+ 1 &amp; 2 &amp; 3
4
+ \end{Vmatrix}
5
+ </annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>max</mi> <mrow><mn>1</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mi>n</mi></mrow></munder></mrow><annotation encoding='application/x-tex'>\max\limits_{1\leq j\leq n}</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>min</mi> <mrow><mn>1</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mi>n</mi></mrow></munder></mrow><annotation encoding='application/x-tex'>\min\limits_{1\leq j\leq n}</annotation></semantics></math>
@@ -0,0 +1 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathsize="2.49em"><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><mrow/></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></mstyle></mrow><annotation encoding='application/x-tex'>\Huge \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}</annotation></semantics></math>
@@ -0,0 +1,11 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>B</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mo>&Del;</mo><mo>&times;</mo><mi>E</mi><mo>,</mo></mtd></mlabeledtr> <mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd><mi>E</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&Del;</mo><mo>&times;</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>4</mn><mi>&pi;</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{align}
3
+ B&apos;&amp;=&#x2d;\nabla \times E,\\
4
+ E&apos;&amp;=\nabla \times B &#x2d; 4\pi j,
5
+ \end{align}
6
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mlabeledtr><mtd><mtext>(3)</mtext></mtd><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mi>t</mi></msub><mi>X</mi><mi>X</mi><mi>X</mi></mrow><mtext>&#xA0;</mtext></mtd> <mtd><mspace width="2em"/><mrow><mpadded width="0"><mphantom><mrow><msub><mo>&Integral;</mo> <mi>t</mi></msub></mrow></mphantom></mpadded><mi>Y</mi><mi>Y</mi><mi>Y</mi><mi>&hellip;</mi><mo>)</mo></mrow></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
7
+ \begin{align}
8
+ A &amp;= \left(\int_t XXX \right. \
9
+ &amp;\qquad \left.\vphantom{\int_t} YYY \dots \right)
10
+ \end{align}
11
+ </annotation></semantics></math>
@@ -0,0 +1,7 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex 0.5ex" rowlines="none none none"><mtr><mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>c</mi></mtd> <mtd><mi>d</mi></mtd></mlabeledtr> <mtr><mtd><mi>e</mi></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{align}
3
+ a &amp; b \notag \\ % no number is shown
4
+ c &amp; d \\ % there is a number
5
+ e &amp; f \nonumber % no number
6
+ \end{align}
7
+ </annotation></semantics></math>
@@ -0,0 +1,5 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>b</mi><mo stretchy="false">)</mo></mtd></mlabeledtr></mtable></mrow><annotation encoding='application/x-tex'>
2
+ \begin{equation}
3
+ f(x)=(x+a)(x+b)
4
+ \end{equation}
5
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable><mtr><mtd><mi>B</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mo>&Del;</mo><mo>&times;</mo><mi>E</mi><mo>,</mo></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>E</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&Del;</mo><mo>&times;</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>4</mn><mi>&pi;</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow><annotation encoding='application/x-tex'>
2
+ \begin{equation}
3
+ B&apos;&amp;=&#x2d;\nabla \times E, \nonumber \\
4
+ E&apos;&amp;=\nabla \times B &#x2d; 4\pi j,
5
+ \end{equation}
6
+ </annotation></semantics></math>
@@ -0,0 +1,6 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mi>B</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&minus;</mo><mo>&Del;</mo><mo>&times;</mo><mi>E</mi><mo>,</mo></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>E</mi><mo>&prime;</mo></mtd> <mtd><mo>=</mo><mo>&Del;</mo><mo>&times;</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>4</mn><mi>&pi;</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
2
+ \begin{align}
3
+ B&apos;&amp;=&#x2d;\nabla \times E, \notag \\
4
+ E&apos;&amp;=\nabla \times B &#x2d; 4\pi j,
5
+ \end{align}
6
+ </annotation></semantics></math>
@@ -0,0 +1,12 @@
1
+ <math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times Orth(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>=</mo><mi>&pfr;</mi><mo>&oplus;</mo><mi>&kfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D= G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mi>q</mi></mrow><annotation encoding='application/x-tex'>pq</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mi>&Theta;</mi> <mi>&Lscr;</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta=\Theta_{\mathcal{L}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>&ell;</mi><mo>&Element;</mo><mi>&Lscr;</mi></mrow></msub><msub><mi>&delta;</mi> <mi>&ell;</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mo stretchy="false">(</mo><mi>&Lscr;</mi><mo stretchy="false">)</mo><mo>&subset;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\G = \Stab(\mathcal{L}) \subset G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Theta;</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\Gamma&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&#x03C6;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mi>&Gamma;</mi><mo>&bsol;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \Gamma \backslash D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \subset SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\G&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mi>q</mi><mo>&minus;</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(pq&#x2d;r)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>&Sscr;</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>&otimes;</mo><msup><mo>&wedge;</mo> <mi>q</mi></msup><msup><mi>&pfr;</mi> <mo>&ast;</mo></msup><msup><mo stretchy="false">)</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>(p+q)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(3,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>+</mo><mi>q</mi><merror><mtext>Unknown character</mtext></merror><mn>6</mn></mrow><annotation encoding='application/x-tex'>p+q&gt;6</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>&geq;</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>p \geq q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_q^V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^q(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>=</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial \overline{X} = e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">N</mo></mrow><annotation encoding='application/x-tex'>n \in \N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X, \partial X,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>i</mi><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>q = e^{2\pi i \tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup></mrow><annotation encoding='application/x-tex'>k^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>&ast;</mo></msup><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>k^{\ast} \theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\partial {X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X}, \partial {X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{q}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_c \theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n&gt;0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>n</mi><mo>&geq;</mo><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo stretchy="false">]</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n \geq 0} [T_n^c] q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>+</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>&Sum;</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>&infin;</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>F(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi><mo>=</mo><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>C=C_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03D5;</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\underline{G} = \SO(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><munder><mi>G</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G=\underline{G}_0(R) \simeq \SO_0(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>D= D_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>dim</mi><mi>z</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\dim z =2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo><msub><mo stretchy="false">&vert;</mo> <mi>z</mi></msub><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(\,,\,)|_z &lt; 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">{</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\{e_1,e_2,e_3,e_4\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_1,e_1)=(e_2,e_2)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>4</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_3,e_3)=(e_4,e_4)=&#x2d;1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>x_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub><mo>=</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z_0=[e_3,e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>4</mn></msub></mrow><annotation encoding='application/x-tex'>e_4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K \simeq \SO(2)\times \SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D \simeq G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">H</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \H \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><msub><munder><mi>P</mi><mo>&#x00332;</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P= \underline{P}_0(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N = \underline{N}(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u =(e_1+e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>&minus;</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u&apos; =(e_1&#x2d;e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(u,u&apos;)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell = \Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\ell&apos;=\Q u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo>&cap;</mo><msup><mrow><mi>&ell;</mi><mo>&prime;</mo></mrow> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>W = \ell^{\perp} \cap {\ell&apos;}^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">Span</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>W_{R} = \Span_{R}(e_2,e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u,e_2,e_3,u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>&simeq;</mo><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>N \simeq W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>u</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>u_2,u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>e</mi> <mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>m(s) = m&apos;(e^s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&simeq;</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M \simeq \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&nfr;</mi><mo>,</mo><mi>&afr;</mi><mo>,</mo><mi>&mfr;</mi></mrow><annotation encoding='application/x-tex'>\frak{n},\frak{a},\frak{m}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>&alpha;</mi><mi>&mu;</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{\alpha\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&sigma;</mi><mo>:</mo><mi>&nfr;</mi><mi>&afr;</mi><mi>&mfr;</mi><mo>&rightarrow;</mo><mi>&gfr;</mi><mo>&rightarrow;</mo><mi>&gfr;</mi><mo stretchy="false">/</mo><mi>&kfr;</mi><mo>&simeq;</mo><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><msub><mi>u</mi> <mn>2</mn></msub><mo>+</mo><mi>w</mi><mo>&prime;</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>w= wu_2+w&apos;u_2&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V_{R} \simeq M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u = \kzxz{1}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn></mrow><annotation encoding='application/x-tex'>u&apos; = \kzxz{0}{0}{0}{1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>q(x) = (x,x)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>q(x) = \det(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{&#x2d;1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mn>1</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>g</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><msub><mi>g</mi> <mn>1</mn></msub><mi>x</mi><mspace width="thinmathspace"/><mrow><msup><mo/><mi>t</mi></msup><msub><mi>g</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding='application/x-tex'>(g_1,g_2)x = g_1x\, {^{t}g_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Spin</mo><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Spin(2,2) \simeq SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>z</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>&times;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>&subseteq;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>L \subseteq L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&Element;</mo><mn>2</mn><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>(x,x) \in 2 \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>x \in L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><msup><mi>L</mi> <mo>#</mo></msup><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>N</mi></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>q(L^{\#}) \Z = \tfrac1{N}\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>h \in L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi><mo>&subseteq;</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\Gamma \subseteq \Stab{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}:=L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell =\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>d&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">(</mo><msqrt><mi>d</mi></msqrt><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K = \Q(\sqrt{d})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&map;</mo><mi>x</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x \mapsto x&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo>&subset;</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V \subset M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo/><mi>t</mi></msup><mi>x</mi><mo>&prime;</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>^tx&apos; =&#x2d;x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>&times;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>g</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g \mapsto (g,g&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>&Oscr;</mi> <mi>K</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\mathcal{O}_K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>.</mo><mi>x</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">g</mo><mi>x</mi><mrow><msup><mo/><mi>t</mi></msup><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&prime;</mo></mrow></mrow><annotation encoding='application/x-tex'>\g.x = \g x{^t\g&apos;}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Phi;</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo>&cap;</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>\G_P = \G \cap P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N = \G_P \cap N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&ell;</mi> <mo>&perp;</mo></msup><mo stretchy="false">/</mo><mi>&ell;</mi></mrow><annotation encoding='application/x-tex'>\ell^{\perp}/\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\G_P/\G_N \simeq \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>g \in \G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>g</mi><mo stretchy="false">&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\bar{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>&cap;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\G_M :=\G_P \cap M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P = NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P=NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>M</mi><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq M \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>&#x00332;</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \G \back D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><munder><mi>P</mi><mo>&#x00332;</mo></munder><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\underline{P}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mi>W</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>X_W := \G_M \back D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><mn>&infin;</mn><mo stretchy="false">]</mo><mo>&times;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[(T,\infty] \times e&apos;(P)]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><merror><mtext>Unknown character</mtext></merror><mi>T</mi></mrow><annotation encoding='application/x-tex'>t&gt;T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo>&rightarrow;</mo><mi>X</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\pi:\tilde{X} \to X&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in} \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>N</mi></msub><mo>=</mo><msub><mi>&pi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Gamma_N =\pi_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Gamma;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Gamma_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a_P \in H_1(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa:e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub><mo>&Element;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>b_P \in H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi></mrow><annotation encoding='application/x-tex'>\kappa</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e&apos;(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(e&apos;(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W_{R} \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>T^2=\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>H_3(\tilde{X}) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(X^{out})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&oplus;</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e&apos;(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial \overline{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>i</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>i^*</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>&hookrightarrow;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>a</mi><mo>,</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>a</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d(a,b) = (da, i^*a &#x2d; db)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>&bullet;</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X) \to C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c \mapsto (c,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>V</mi><mo>&rightarrow;</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\pi:V \to \partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><mi>b</mi></mrow><annotation encoding='application/x-tex'>\pi^{\ast} b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t \leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>i</mi></msup></mrow><annotation encoding='application/x-tex'>C^i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi></mrow><annotation encoding='application/x-tex'>\mu</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mi>i</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^i_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>&map;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]] \mapsto [a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>&eta;</mi><mo stretchy="false">]</mo><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>X</mi><mo>&#x000AF;</mo></mover></msub><mi>a</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow></msub><mi>b</mi><mo>&wedge;</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>&eta;</mi><mo>,</mo><mtext>&#xA0;</mtext><mtext>and</mtext><mtext>&#xA0;</mtext><mtext>&#xA0;</mtext><mo stretchy="false">&langle;</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><msub><mo>&Integral;</mo> <mi>C</mi></msub><mi>a</mi><mo>&minus;</mo><msub><mo>&Integral;</mo> <mrow><mo>&PartialD;</mo><mi>C</mi></mrow></msub><mi>b</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
2
+ \langle[a, b], [\eta]\rangle
3
+ = \int_{\overline{X}}a\wedge \eta &#x2d; \int_{\partial \overline{X}} b \wedge i^*\eta, \ \text{and} \ \
4
+ \langle [a,b],C \rangle = \int_{C}a &#x2d; \int_{\partial C} b.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>x</mi></msub><mo>&subset;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_x \subset \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mi>&Lscr;</mi><mo>;</mo><mspace width="thinmathspace"/><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">(</mo></mfrac></mstyle><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>&PartialD;</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\partial X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>U_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><msub><mi>U</mi> <mn>&infin;</mn></msub><mo>=</mo><mi>&emptyv;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
5
+ D_x \cap U_{\infty} = \emptyset.
6
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi></mrow><annotation encoding='application/x-tex'>p</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub><mo>&subset;</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x \subset \partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>&#x000AF;</mo></mover> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P) \to e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&kappa;</mi><mo>:</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e&apos;(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL_V=\calL = L +h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&subset;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>L_{W,k} \subset W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&Element;</mo><msubsup><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow> <mo>#</mo></msubsup></mrow><annotation encoding='application/x-tex'>h_{W,k} \in L^{\#}_{W,k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&simeq;</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><mi>N</mi><mo>&cap;</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_N = N \cap \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(w) x= x + (w,x)u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \in u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>{\calL}_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&cap;</mo><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_{n,P} := \partial C_n \cap e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup><mo>;</mo><mspace width="thinmathspace"/><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Gamma;</mi></mrow><annotation encoding='application/x-tex'>\Gamma</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub></mrow><annotation encoding='application/x-tex'>\sim_{\Gamma}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>p</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>\G_p \back \calL_{n,u} \subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><msub><mo stretchy="false">]</mo> <mi>P</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>[x_i]= [x_i]_P, 1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msubsup><mo>&coprod;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>k</mi></msubsup><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&coprod;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>y \in [x_i]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>D_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>C_{x_i}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msub><mo>&coprod;</mo> <mrow><msub><mo>&sim;</mo> <mi>&Gamma;</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow></msub><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&coprod;</mo> <mrow><mtable columnalign="center" rowspacing="0.5ex"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>&Lscr;</mi> <mi>W</mi></msub></mtd></mlabeledtr> <mtr><mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi></mtd></mtr></mtable></mrow></msub><msub><mo>&coprod;</mo> <mrow><mn>0</mn><mo>&leq;</mo><mi>k</mi><merror><mtext>Unknown character</mtext></merror><mi>min</mi><msub><mo>&prime;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo></mrow></msub><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k &lt; \min&apos;_{\la \in \Lambda_W} |(\la,x)|} x+ku</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mi>&Lscr;</mi> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>x \in \mathcal{L}_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>a</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial a_x = c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>&Omega;</mi> <mi>P</mi></msub><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P = \sum_{y \in [x]} a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>y</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_x)_P = \sum_{y \in [x]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X}) = H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>+</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>T_n = T_n \cap X^{in} + T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mover><mi>C</mi><mo>&#x000AF;</mo></mover> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>j_{\ast} \overline{C}_n = T_n \cap X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&cap;</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>B_n = T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>=</mo><mo>&minus;</mo><mo>&PartialD;</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n = &#x2d; \partial B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_{\ast} C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_*C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&oplus;</mo><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X}) = j_*H_2(X) \oplus S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c = j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>+</mo><mi>T</mi><mo>+</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P+ T +\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>S</mi><mo stretchy="false">&vert;</mo></mrow><annotation encoding='application/x-tex'>|S|</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_k(Y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><mi>W</mi><mo stretchy="false">/</mo><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2 = W/ \Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi><mo>:</mo><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&rightarrow;</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\pi: R\times T^2 \to M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&alpha;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\alpha]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo stretchy="false">&rarr;</mo></mover></mrow><annotation encoding='application/x-tex'>\overrightarrow{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&alpha;</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>W \to T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>P</mi></msub><mi>&Omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mover><mi>P</mi><mo>&tilde;</mo></mover></msub><mi>&Omega;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\gamma_0 \subset T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">]</mo><mo>&subset;</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>&times;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\gamma_0 \times [0,1] \subset T^2 \times R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>f^{&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><merror><mtext>Unknown character</mtext></merror><mn>2</mn></mrow><annotation encoding='application/x-tex'>|\tr(f^{&#x2d;1})| &gt;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>t</mi><mo stretchy="false">(</mo><mi>I</mi><mo>&minus;</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mn>2</mn><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\det(f^{&#x2d;1} &#x2d;I)= det( I &#x2d; f) = \tr(f) &#x2d;2 \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N= \det(f^{&#x2d;1} &#x2d;I)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mi>N</mi><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo stretchy="false">[</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] = N \{(f^{&#x2d;1} &#x2d; I)^{&#x2d;1} ([\alpha_0]) \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>&Element;</mo><mo stretchy="false">[</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>\gamma_0 \in [\gamma_0]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>h_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&gamma;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\gamma_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>c_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>c_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>=</mo><mi>N</mi><msub><mi>h</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_1 = Nh_1(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub><mo>=</mo><msub><mi>h</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_2=h_2(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>d \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d =f^{&#x2d;1}(c_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub><mo>,</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>0,c_2,d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mover><mi>T</mi><mo>&tilde;</mo></mover><mo>=</mo><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>2</mn></msub></mrow><mo>&#x000AF;</mo></mover><mo>+</mo><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>&minus;</mo><mover><mrow><mn>0</mn><mi>d</mi></mrow><mo>&#x000AF;</mo></mover><mo>.</mo></mrow><annotation encoding='application/x-tex'>
7
+ \partial \widetilde{T} = \overline{0c_2} + \overline{c_2d} &#x2d; \overline{0d}.
8
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pi;</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>1</mn></msub></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{0c_1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mo stretchy="false">(</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>&minus;</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>N</mi><msub><mi>&alpha;</mi> <mn>0</mn></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>
9
+ \partial (\mathcal{M}(\gamma_0) + T ) = f^{&#x2d;1}(\gamma_0) &#x2d;\gamma_0 +\gamma_0 + \alpha_0 &#x2d; f^{&#x2d;1}(\gamma_0)= N\alpha_0.
10
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mn>0</mn></msub><mo>=</mo><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>A_0 = \mathcal{M}(\gamma_0) +T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mo stretchy="false">(</mo><mi>N</mi><mi>P</mi><mo>+</mo><msub><mi>A</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>T</mi><mo>+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>&Mscr;</mi><mo stretchy="false">(</mo><msub><mi>&gamma;</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>&alpha;</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
11
+ \partial A = \alpha.
12
+ </annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Mscr;</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">&langle;</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\Lk(a,b) = \langle A,b \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>&Element;</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a,b \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>R \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>&times;</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>a=a(0)=0 \times a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&times;</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>b=b(\eps)= \eps \times b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(a, b(\epsilon))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>(f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo>&minus;</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial M(c) = (f^{&#x2d;1} &#x2d; I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&epsi;</mi><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\epsilon \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&sdot;</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo>&sdot;</mo><mo>,</mo><mo>&sdot;</mo><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle \cdot, \cdot \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&Element;</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2, \Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(\partial C_n, \partial C_m)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>J</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>Jx</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(Jx,x)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><msqrt><mi>p</mi></msqrt><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u= \kzxz{\sqrt{p}}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo></mrow><mn>0</mn><mo>;</mo><mspace width="thickmathspace"/><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><mi>K</mi><mo stretchy="false">}</mo><mo>&simeq;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>W = \{ \kzxz{0}{\la}{&#x2d;\la&apos;}{0};\; \la \in K \} \simeq K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mi>p</mi></msqrt></mfrac><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mi>&mu;</mi><mo>&prime;</mo><mo>&minus;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&prime;</mo><mi>&mu;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu&apos; &#x2d; \la&apos;\mu)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mrow><mo>{</mo><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mn>0</mn><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>\mu \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mi>&mu;</mi><mo>=</mo><mi>&mu;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(\la) \mu = \mu + \langle \la, \mu \rangle u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>&mu;</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_{\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mi>&mu;</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>K</mi> <mi>R</mi></msub><mo>;</mo><mspace width="thickmathspace"/><mo stretchy="false">&langle;</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>&mu;</mi><mo stretchy="false">&rangle;</mo><mo>=</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo></mrow><annotation encoding='application/x-tex'>\eps</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>U_+</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&Oscr;</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\eps&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>&equiv;</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>m=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>C_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>&Element;</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>x =1 \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>&simeq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>C_1 \simeq SL_2(\Z) \back \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\min&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&langle;</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">&rangle;</mo></mrow><annotation encoding='application/x-tex'>\langle\,,\, \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>U=V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>U=W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D=G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z\in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi \in \calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><msub><mo>&prime;</mo> <mi>&tau;</mi></msub><mo>&Element;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g&apos;_{\tau} \in SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&#x03C6;</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi^0(x) = \varphi(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>g</mi> <mi>z</mi></msub><mo>&Element;</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>g_z \in G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&Element;</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z \in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo>&Element;</mo><mo stretchy="false">[</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><mi>E</mi><msup><mo stretchy="false">]</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>\varphi \in [\calS(U_{R}) \otimes E]^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,\tau,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>U</mi><mo>,</mo><mi>z</mi><mo>&Element;</mo><mi>D</mi><mo>,</mo><mi>&tau;</mi><mo>&Element;</mo><mi>&Hopf;</mi></mrow><annotation encoding='application/x-tex'>x \in U, z \in D, \tau \in \mathbb{H}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>=</mo><mi>&kfr;</mi><mo>&oplus;</mo><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&gfr;</mi><mo>&simeq;</mo><mo lspace="0em" rspace="thinmathspace">wwedge</mo><mn>2</mn><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{g} \simeq \wwedge{2} V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>e</mi> <mi>i</mi></msub><mo>&wedge;</mo><msub><mi>e</mi> <mi>j</mi></msub><mo>&Element;</mo><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>X_{ij} = e_i \wedge e_j \in \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&pfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>X_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \leq i \leq 2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo>&leq;</mo><mi>j</mi><mo>&leq;</mo><mn>4</mn></mrow><annotation encoding='application/x-tex'>3 \leq j \leq 4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calA^2(D)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi_0(x) := e^{&#x2d;\pi(x,x)_{0}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub><mo>=</mo><msubsup><mo>&Sum;</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>4</mn></msubsup><msubsup><mi>x</mi> <mi>i</mi> <mn>2</mn></msubsup></mrow><annotation encoding='application/x-tex'>(x,x)_0= \sum_{i=1}^4 x_i^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(L)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(V_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x\ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&notin;</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><msup><mo stretchy="false">]</mo> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>x \notin \Span[e_3,e_4]^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>&notin;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>z \notin D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&psi;</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi><mo>&minus;</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>r&#x2d;2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><mo>=</mo><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>d \tilde{\psi} = \varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mi>q</mi></msub></mrow><annotation encoding='application/x-tex'>\varphi_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mi>q</mi><mo>&minus;</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{q&#x2d;1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&subset;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>W\subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mfr;</mi><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{m} \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M = \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo>=</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>&wedge;</mo><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23} = e_2 \wedge e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>{\bf s}_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>&simeq;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mi>x</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>{\bf s} = \Span x(s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle></mrow><annotation encoding='application/x-tex'>{\bf s}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&Element;</mo><mi>D</mi><mo>;</mo><mspace width="thickmathspace"/><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>&perp;</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s} = D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x({\bf s})) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s}(x)=D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>1</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>W</mi></msub><mo stretchy="false">)</mo><mo>&otimes;</mo><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>\calA^1(D_W) \otimes W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\psi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>&psi;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&minus;</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>&Lambda;</mi></mfrac></mstyle> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>&#x2d;\psi_{1,1} &#x2d; \tfrac12 \Lambda_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>w</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{w,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>&Integral;</mo> <mi>a</mi> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>u</mi></mrow></msup><msup><mi>u</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\G(\tfrac12,a) = \int_a^{\infty} e^{&#x2d;u} u^{&#x2d;1/2} du</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>s=1/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn><mo stretchy="false">)</mo><msub><mi>x</mi> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A(x)&#x2d; (1/2) x_2 \frac{x_3}{|x_3|} e^{&#x2d;\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><mi>x</mi><mo stretchy="false">&vert;</mo><msup><mi>x</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>|x|x^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>C^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">&vert;</mo></mfrac></mstyle><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>B&apos;(x) + \tfrac12|x_3|e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>x</mi></mfrac></mstyle> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A&apos;(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{&#x2d; \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}&apos;_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>&tau;</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>v</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><msup><mi>m</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msqrt><mi>v</mi></msqrt><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>&pi;</mi><mi>i</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>&tau;</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x,\tau,s) = v^{&#x2d;1/2} m(s) \tilde{\psi}_{0,1}&apos;(m^{&#x2d;1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>&otimes;</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>D_{W,x} \otimes x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x) + B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A(x) + A&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>X_{23}(B + B&apos;) = &#x2d;(A + A&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K&apos;=\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&chi;</mi></mrow><annotation encoding='application/x-tex'>\chi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>&simeq;</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \simeq U(1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B&apos;(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>L</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>L^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k&apos;)(B+B&apos;)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><msup><mi>&chi;</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\omega(k&apos;)(B+B&apos;)] = \chi^2(k&apos;)[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>K&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_2^2&#x2d;x_3^2=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>i</mi></mrow><mrow><mn>4</mn><mi>&pi;</mi></mrow></mfrac><mo>&square;</mo><mo>+</mo><mi>&pi;</mi><mi>i</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\frac{&#x2d;i}{4\pi} \square + \pi i r^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mo>&PartialD;</mo><mrow><mo>&PartialD;</mo><msub><mi>x</mi> <mn>3</mn></msub></mrow></mfrac><mi>&Gamma;</mi><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo><mo>=</mo><mo>&minus;</mo><mn>2</mn><msqrt><mrow><mn>2</mn><mi>&pi;</mi></mrow></msqrt><mo lspace="0em" rspace="thinmathspace">sgn</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = &#x2d; 2 \sqrt{2\pi} \sgn(x_3) e^{&#x2d;2 \pi x_3^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">&vert;</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">&vert;</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">(</mo><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>&minus;</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>|x_3|e^{&#x2d;\pi(x_2^2&#x2d;x_3^2)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><mn>2</mn><mi>i</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B+B&apos;] = [H(B+B&apos;)]= 2i[B+B&apos;]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&nfr;</mi><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&Element;</mo><msup><mo>&xwedge;</mo> <mn>2</mn></msup><msub><mi>V</mi> <mi>R</mi></msub><mo>&simeq;</mo><mi>&gfr;</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&nfr;</mi> <mo>&ast;</mo></msup><mo>&simeq;</mo><mi>W</mi><mo>&wedge;</mo><mi>R</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>\mathfrak{n}^{\ast} \simeq W \wedge R u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_2,w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi> <mn>2</mn></msub><msub><mi>e</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>w</mi> <mn>3</mn></msub><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w=w_2e_2+w_3e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>{\psi&apos;}_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_{1,1}}(\tau,{\calL_W})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}(\calL_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>B+B&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>+</mo><mi>A</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>A+A&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\psi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&iota;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mi>c</mi></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi&apos;}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>16</mn><mi>&pi;</mi></mrow></mfrac></mstyle><msubsup><mo>&Integral;</mo> <mn>1</mn> <mn>&infin;</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>s</mi><mi>t</mi></mrow></msup><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></mrow><annotation encoding='application/x-tex'>\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{&#x2d;st}t^{&#x2d;3/2} dt</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Wscr;</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{W}(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>S^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>H^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mi>&beta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>d \beta = \eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M &#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>A</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial A = a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\eta_{M&#x2d;V}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo>,</mo><mo>&PartialD;</mo><mo stretchy="false">(</mo><mi>M</mi><mo>&minus;</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(M&#x2d;V, \partial (M&#x2d;V))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>&minus;</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M&#x2d;U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&beta;</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_n)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>&cap;</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>D_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&Omega;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta =\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\Omega \wedge \tilde{\psi&apos;}_{0,1}(n) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>d</mi><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = d \omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&eta;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&mu;</mi><mo>=</mo><mo>&pm;</mo><msqrt><mrow><mn>2</mn><mi>n</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>\mu = \pm \sqrt{2n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub></mrow></msub><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi&apos;}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>&times;</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>U_\eps= (&#x2d;\eps,\eps) \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>&omega;</mi><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\eta \wedge \tilde{\psi&apos;}_{0,1}(x) = d(\omega \wedge \tilde{\psi&apos;}_{0,1}(x))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub></mrow><annotation encoding='application/x-tex'>U_{\eps}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>&ne;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g \ne 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(s,w) \wedge \tilde{\psi&apos;}_{0,1}(\g^{&#x2d;1}x,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>T^2/ c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>&times;</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times S^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>dw_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega(0,w_2,w_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>w_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>d</mi><msub><mi>w</mi> <mn>2</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><msup><mi>&mu;</mi> <mn>2</mn></msup></mrow></msup></mrow><annotation encoding='application/x-tex'>\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{&#x2d; \pi \mu^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&omega;</mi><mo>=</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>A</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>&rightarrow;</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>W \to R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>&map;</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>w \mapsto (w,e_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub><mo>&simeq;</mo><mi>R</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msub><mi>min</mi> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>&Element;</mo><msub><mi>&Lambda;</mi> <mi>W</mi></msub></mrow></msub><mo>&prime;</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">&vert;</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}&apos;|(\la,e_2)|)\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>&eta;</mi> <mi>c</mi></msub><mo>&wedge;</mo><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Integral;</mo> <mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&wedge;</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\int_{e&apos;(P)} \eta_c \wedge \tilde{\psi&apos;}_{0,1}(n)= \int_{e&apos;(P)} \tilde{\psi&apos;}_{0,1}(n) \wedge \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta = \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub><mo>&supset;</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><mo stretchy="false">(</mo><msub><mi>&eta;</mi> <mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n \supset \supp (\eta_c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d; V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>PD(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>&minus;</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e&apos;(P) &#x2d;V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>&mu;</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>e_3 \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s(x )=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,R e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>&gamma;</mi><mo>&Element;</mo><msub><mi>&Gamma;</mi> <mi>M</mi></msub></mrow></msub><msup><mi>&gamma;</mi> <mo>*</mo></msup><mover><mi>&psi;</mi><mo>&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}&apos;_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mi>&epsi;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\epsilon)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&subset;</mo><msub><mi>F</mi> <mi>x</mi></msub><mo>&subset;</mo><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>c \subset F_x \subset F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>&ctdot;</mi><mo>,</mo><msub><mi>c</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>c_1,\cdots,c_k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mn>1</mn><mo>&leq;</mo><mi>i</mi><mo>&leq;</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>c_i,1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>=</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>c_i = c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(c,c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\eps)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>&times;</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>c \times [0,\eps]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mtext>&#xA0;</mtext><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(c_i, c(\eps)) =\ Lk(c_i, c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL = L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lscr;</mi><mo>=</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L} = L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G_0(d)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\delta_{h0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&omega;</mi> <mn>13</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>14</mn></msub><mo>+</mo><msub><mi>&omega;</mi> <mn>23</mn></msub><mo>&wedge;</mo><msub><mi>&omega;</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subset;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subset SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lambda(C,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>C_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>&pi;</mi></mrow></mfrac><msub><mi>&delta;</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\frac{1}{2\pi}\delta_{h0} [\omega]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>i</mi> <mi>P</mi> <mo>&ast;</mo></msubsup></mrow><annotation encoding='application/x-tex'>i_P^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>+</mo><msub><mi>L</mi> <mi>W</mi></msub><mo>+</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>L = \Z u + L_W + \Z u&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>h=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,0,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>&pi;</mi><mo stretchy="false">[</mo><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn></mrow></msup><msubsup><mi>y</mi> <mn>1</mn> <mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo>&prime;</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><msup><mi>t</mi> <mn>2</mn></msup><msub><mi>y</mi> <mn>1</mn></msub><msup><mo>&prime;</mo> <mn>2</mn></msup><mo stretchy="false">]</mo><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>\varphi_0(x,z) = \exp\left(&#x2d;\pi[ t^{&#x2d;2}y_1^2+ 2q(x&apos;)+t^2y_1&apos;^2]\right)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>y</mi> <mn>1</mn></msub><mi>u</mi><mo>+</mo><mi>x</mi><mo>&prime;</mo><mo>+</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>&prime;</mo><mi>u</mi><mo>&prime;</mo><mo>&Element;</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x = y_1u+x&apos;+y_1&apos;u&apos; \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&theta;</mi><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msubsup><mi>&psi;</mi> <mn>1</mn> <mi>V</mi></msubsup><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta(\tau,\psi_1^V,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>&prime;</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>y&apos;=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>L_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&prime;</mo><mo>&Element;</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x&apos; \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{ \tilde{\psi}_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{2,0}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{1}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&ell;</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell=\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mi>b</mi><mi>u</mi><mo>&prime;</mo></mrow><annotation encoding='application/x-tex'>x = au + x_W + bu&apos;</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=(w,t,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><msub><mo stretchy="false">)</mo> <mi>s</mi></msub></mrow><annotation encoding='application/x-tex'>(\,,\,)_s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>b \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x_W \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x_W +(a+h)u \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">/</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>h \in \Q/\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>&cap;</mo><msup><mi>u</mi> <mo>&perp;</mo></msup></mrow><annotation encoding='application/x-tex'>\calL_V \cap u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Sum;</mo> <mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow></msub><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>w=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>&ne;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_W=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03C6;</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&#x03D5;</mi></mrow><annotation encoding='application/x-tex'>\phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><msubsup><mi>&theta;</mi> <mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>&bullet;</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi},\theta_{\phi})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi},\theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><msup><mi>C</mi> <mo>&bullet;</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(C^{\bullet})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\overline{X}) = H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi}, \theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&tau;</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>&tau;</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}](\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>&subseteq;</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subseteq SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X},\partial \overline{X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub><mo>:</mo><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&rightarrow;</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\#}: H_c^2(X) \to H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>&omega;</mi><mo stretchy="false">]</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\omega] = \PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&omega;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>M = \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Lambda;</mi></mrow><annotation encoding='application/x-tex'>\Lambda</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>&simeq;</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>&PartialD;</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>&ast;</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow></mrow><annotation encoding='application/x-tex'>{\partial C_y}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(C^c_n \cdot C_y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>,</mo><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><mo stretchy="false">(</mo><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow></msub><msubsup><mi>&theta;</mi> <mi>&#x03D5;</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_n^c \cdot C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T^c_n \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>&infin;</mn></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>C</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X = (C_n \cdot C_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>&sdot;</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>&tau;</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&Lambda;</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&psi;</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&xi;</mi></mrow><annotation encoding='application/x-tex'>\xi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>&Sum;</mo> <mrow><mi>x</mi><mo>&Element;</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub></mrow></msub><mi>&xi;</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n) = \sum_{x\in\calL_n} \xi(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>dd^c \xi = \varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>4</mn><mi>&pi;</mi><mi>i</mi></mrow></mfrac></mstyle><mo stretchy="false">(</mo><mo>&PartialD;</mo><mo>&minus;</mo><mover><mo>&PartialD;</mo><mo>&#x000AF;</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d^c = \tfrac{1}{4\pi i}(\partial &#x2d; \overline{\partial})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mi>&xi;</mi><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \xi = \tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><msub><mi>&#x03C6;</mi> <mn>0</mn></msub><mo>=</mo><mo>&minus;</mo><msub><mi>&psi;</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \varphi_0 = &#x2d;\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&Element;</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msubsup><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\pi^{\ast} \phi^P_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>&PartialD;</mo><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>&theta;</mi> <mi>&#x03C6;</mi></msub><mo>,</mo><msub><mi>&theta;</mi> <mi>&#x03D5;</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>&prime;</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e&apos;(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&eta;</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&theta;</mi> <mrow><msub><mi>&#x03C6;</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n&gt;0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>&#x000AF;</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>&#x03C6;</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>&leq;</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><mi>&emptyv;</mi></mrow><annotation encoding='application/x-tex'>C_n^c = \emptyset</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&Xi;</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">&tilde;</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub></mrow><annotation encoding='application/x-tex'>\rho_{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calF</mo></mrow><annotation encoding='application/x-tex'>\calF</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>&leq;</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t\leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>T+1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\rho_T\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>&Integral;</mo> <mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow></msub><mi>&eta;</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mn>2</mn><mi>&pi;</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\left(\int_{C_n} \eta\right)e^{&#x2d;2\pi n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>&rightarrow;</mo><mn>&infin;</mn></mrow><annotation encoding='application/x-tex'>T \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>&eta;</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>&wedge;</mo><mi>&eta;</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>&rho;</mi> <mi>T</mi></msub><mi>d</mi><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>d(\rho_T \eta) = \rho_T&apos;(t) dt \wedge \eta + \rho_T d\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&rho;</mi> <mi>T</mi></msub><mo>&prime;</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\rho_T&apos;(t)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[T,T+1]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>&equiv;</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>f \equiv 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><mi>C</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{&#x2d;Ct})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover><msub><mo>&prime;</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}&apos;_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>&psi;</mi><mo stretchy="false">&tilde;</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>&minus;</mo><mi>f</mi><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mi>&#x03D5;</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) &#x2d; f \pi^{\ast}\phi_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msup><mi>&pi;</mi> <mo>&ast;</mo></msup><msub><mover><mrow><mi>&psi;</mi><mo>&prime;</mo></mrow><mo stretchy="false">&tilde;</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>&#x2d;\pi^{\ast} \tilde{\psi&apos;}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi><mo>=</mo><mi>&Omega;</mi></mrow><annotation encoding='application/x-tex'>\eta = \Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&eta;</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>&omega;</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>&coprod;</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">&minus;</mo><msub><mi>A</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_n^c = C_n \coprod (&#x2d;A_n)</annotation></semantics></math>
@@ -0,0 +1,244 @@
1
+ #!/usr/bin/env python
2
+ #
3
+ # Copyright (c) Vicent Marti. All rights reserved.
4
+ #
5
+ # This file is part of clar, distributed under the ISC license.
6
+ # For full terms see the included COPYING file.
7
+ #
8
+
9
+ from __future__ import with_statement
10
+ from string import Template
11
+ import re, fnmatch, os, codecs, pickle
12
+
13
+ class Module(object):
14
+ class Template(object):
15
+ def __init__(self, module):
16
+ self.module = module
17
+
18
+ def _render_callback(self, cb):
19
+ if not cb:
20
+ return ' { NULL, NULL }'
21
+ return ' { "%s", &%s }' % (cb['short_name'], cb['symbol'])
22
+
23
+ class DeclarationTemplate(Template):
24
+ def render(self):
25
+ out = "\n".join("extern %s;" % cb['declaration'] for cb in self.module.callbacks) + "\n"
26
+
27
+ if self.module.initialize:
28
+ out += "extern %s;\n" % self.module.initialize['declaration']
29
+
30
+ if self.module.cleanup:
31
+ out += "extern %s;\n" % self.module.cleanup['declaration']
32
+
33
+ return out
34
+
35
+ class CallbacksTemplate(Template):
36
+ def render(self):
37
+ out = "static const struct clar_func _clar_cb_%s[] = {\n" % self.module.name
38
+ out += ",\n".join(self._render_callback(cb) for cb in self.module.callbacks)
39
+ out += "\n};\n"
40
+ return out
41
+
42
+ class InfoTemplate(Template):
43
+ def render(self):
44
+ return Template(
45
+ r"""
46
+ {
47
+ "${clean_name}",
48
+ ${initialize},
49
+ ${cleanup},
50
+ ${cb_ptr}, ${cb_count}, ${enabled}
51
+ }"""
52
+ ).substitute(
53
+ clean_name = self.module.clean_name(),
54
+ initialize = self._render_callback(self.module.initialize),
55
+ cleanup = self._render_callback(self.module.cleanup),
56
+ cb_ptr = "_clar_cb_%s" % self.module.name,
57
+ cb_count = len(self.module.callbacks),
58
+ enabled = int(self.module.enabled)
59
+ )
60
+
61
+ def __init__(self, name):
62
+ self.name = name
63
+
64
+ self.mtime = 0
65
+ self.enabled = True
66
+ self.modified = False
67
+
68
+ def clean_name(self):
69
+ return self.name.replace("_", "::")
70
+
71
+ def _skip_comments(self, text):
72
+ SKIP_COMMENTS_REGEX = re.compile(
73
+ r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
74
+ re.DOTALL | re.MULTILINE)
75
+
76
+ def _replacer(match):
77
+ s = match.group(0)
78
+ return "" if s.startswith('/') else s
79
+
80
+ return re.sub(SKIP_COMMENTS_REGEX, _replacer, text)
81
+
82
+ def parse(self, contents):
83
+ TEST_FUNC_REGEX = r"^(void\s+(test_%s__(\w+))\s*\(\s*void\s*\))\s*\{"
84
+
85
+ contents = self._skip_comments(contents)
86
+ regex = re.compile(TEST_FUNC_REGEX % self.name, re.MULTILINE)
87
+
88
+ self.callbacks = []
89
+ self.initialize = None
90
+ self.cleanup = None
91
+
92
+ for (declaration, symbol, short_name) in regex.findall(contents):
93
+ data = {
94
+ "short_name" : short_name,
95
+ "declaration" : declaration,
96
+ "symbol" : symbol
97
+ }
98
+
99
+ if short_name == 'initialize':
100
+ self.initialize = data
101
+ elif short_name == 'cleanup':
102
+ self.cleanup = data
103
+ else:
104
+ self.callbacks.append(data)
105
+
106
+ return self.callbacks != []
107
+
108
+ def refresh(self, path):
109
+ self.modified = False
110
+
111
+ try:
112
+ st = os.stat(path)
113
+
114
+ # Not modified
115
+ if st.st_mtime == self.mtime:
116
+ return True
117
+
118
+ self.modified = True
119
+ self.mtime = st.st_mtime
120
+
121
+ with codecs.open(path, encoding='utf-8') as fp:
122
+ raw_content = fp.read()
123
+
124
+ except IOError:
125
+ return False
126
+
127
+ return self.parse(raw_content)
128
+
129
+ class TestSuite(object):
130
+
131
+ def __init__(self, path):
132
+ self.path = path
133
+
134
+ def should_generate(self, path):
135
+ if not os.path.isfile(path):
136
+ return True
137
+
138
+ if any(module.modified for module in self.modules.values()):
139
+ return True
140
+
141
+ return False
142
+
143
+ def find_modules(self):
144
+ modules = []
145
+ for root, _, files in os.walk(self.path):
146
+ module_root = root[len(self.path):]
147
+ module_root = [c for c in module_root.split(os.sep) if c]
148
+
149
+ tests_in_module = fnmatch.filter(files, "*.c")
150
+
151
+ for test_file in tests_in_module:
152
+ full_path = os.path.join(root, test_file)
153
+ module_name = "_".join(module_root + [test_file[:-2]]).replace("-", "_")
154
+
155
+ modules.append((full_path, module_name))
156
+
157
+ return modules
158
+
159
+ def load_cache(self):
160
+ path = os.path.join(self.path, '.clarcache')
161
+ cache = {}
162
+
163
+ try:
164
+ fp = open(path, 'rb')
165
+ cache = pickle.load(fp)
166
+ fp.close()
167
+ except (IOError, ValueError):
168
+ pass
169
+
170
+ return cache
171
+
172
+ def save_cache(self):
173
+ path = os.path.join(self.path, '.clarcache')
174
+ with open(path, 'wb') as cache:
175
+ pickle.dump(self.modules, cache)
176
+
177
+ def load(self, force = False):
178
+ module_data = self.find_modules()
179
+ self.modules = {} if force else self.load_cache()
180
+
181
+ for path, name in module_data:
182
+ if name not in self.modules:
183
+ self.modules[name] = Module(name)
184
+
185
+ if not self.modules[name].refresh(path):
186
+ del self.modules[name]
187
+
188
+ def disable(self, excluded):
189
+ for exclude in excluded:
190
+ for module in self.modules.values():
191
+ name = module.clean_name()
192
+ if name.startswith(exclude):
193
+ module.enabled = False
194
+ module.modified = True
195
+
196
+ def suite_count(self):
197
+ return len(self.modules)
198
+
199
+ def callback_count(self):
200
+ return sum(len(module.callbacks) for module in self.modules.values())
201
+
202
+ def write(self):
203
+ output = os.path.join(self.path, 'clar.suite')
204
+
205
+ if not self.should_generate(output):
206
+ return False
207
+
208
+ with open(output, 'w') as data:
209
+ for module in self.modules.values():
210
+ t = Module.DeclarationTemplate(module)
211
+ data.write(t.render())
212
+
213
+ for module in self.modules.values():
214
+ t = Module.CallbacksTemplate(module)
215
+ data.write(t.render())
216
+
217
+ suites = "static struct clar_suite _clar_suites[] = {" + ','.join(
218
+ Module.InfoTemplate(module).render() for module in sorted(self.modules.values(), key=lambda module: module.name)
219
+ ) + "\n};\n"
220
+
221
+ data.write(suites)
222
+
223
+ data.write("static const size_t _clar_suite_count = %d;\n" % self.suite_count())
224
+ data.write("static const size_t _clar_callback_count = %d;\n" % self.callback_count())
225
+
226
+ self.save_cache()
227
+ return True
228
+
229
+ if __name__ == '__main__':
230
+ from optparse import OptionParser
231
+
232
+ parser = OptionParser()
233
+ parser.add_option('-f', '--force', action="store_true", dest='force', default=False)
234
+ parser.add_option('-x', '--exclude', dest='excluded', action='append', default=[])
235
+
236
+ options, args = parser.parse_args()
237
+
238
+ for path in args or ['.']:
239
+ suite = TestSuite(path)
240
+ suite.load(options.force)
241
+ suite.disable(options.excluded)
242
+ if suite.write():
243
+ print("Written `clar.suite` (%d tests in %d suites)" % (suite.callback_count(), suite.suite_count()))
244
+