mathematical 1.5.0 → 1.5.12
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +27 -0
- data/Rakefile +5 -9
- data/ext/README.md +21 -0
- data/ext/mathematical/CMakeLists.txt +76 -0
- data/ext/mathematical/FindNewerRubies.cmake +292 -0
- data/ext/mathematical/FindPackageHandleStandardArgs.cmake +58 -0
- data/ext/mathematical/extconf.rb +38 -18
- data/ext/mathematical/lasem/AUTHORS +1 -0
- data/ext/mathematical/lasem/COPYING +482 -0
- data/ext/mathematical/lasem/{docs/reference/lasem/lasem-overrides.txt → ChangeLog} +0 -0
- data/ext/mathematical/lasem/MAINTAINERS +3 -0
- data/ext/mathematical/lasem/Makefile.am +34 -0
- data/ext/mathematical/lasem/Makefile.decl +57 -0
- data/ext/mathematical/lasem/NEWS +117 -0
- data/ext/mathematical/lasem/README +28 -0
- data/ext/mathematical/lasem/RELEASING +85 -0
- data/ext/mathematical/lasem/TODO +50 -0
- data/ext/mathematical/lasem/autogen.sh +177 -0
- data/ext/mathematical/lasem/configure.ac +139 -0
- data/ext/mathematical/lasem/docs/Makefile.am +14 -0
- data/ext/mathematical/lasem/docs/lasem-render-0.6.1 +106 -0
- data/ext/mathematical/lasem/docs/reference/Makefile.am +3 -0
- data/ext/mathematical/lasem/docs/reference/lasem/Makefile.am +205 -0
- data/ext/mathematical/lasem/docs/reference/lasem/lasem-docs.xml +75 -0
- data/ext/mathematical/lasem/docs/reference/lasem/lasem-overview.xml +64 -0
- data/ext/mathematical/lasem/docs/reference/lasem/lasem.types +110 -0
- data/ext/mathematical/lasem/itex2mml/COPYING.itex2MML +3 -0
- data/ext/mathematical/lasem/itex2mml/Makefile.am +37 -0
- data/ext/mathematical/lasem/itex2mml/README.itex2MML +13 -0
- data/ext/mathematical/lasem/lasem.doap +21 -0
- data/ext/mathematical/lasem/m4/introspection.m4 +96 -0
- data/ext/mathematical/lasem/po/ChangeLog +0 -0
- data/ext/mathematical/lasem/po/LINGUAS +28 -0
- data/ext/mathematical/lasem/po/POTFILES.in +195 -0
- data/ext/mathematical/lasem/po/POTFILES.skip +1 -0
- data/ext/mathematical/lasem/po/bs.po +65 -0
- data/ext/mathematical/lasem/po/cs.po +70 -0
- data/ext/mathematical/lasem/po/de.po +68 -0
- data/ext/mathematical/lasem/po/el.po +73 -0
- data/ext/mathematical/lasem/po/es.po +78 -0
- data/ext/mathematical/lasem/po/eu.po +66 -0
- data/ext/mathematical/lasem/po/fr.po +65 -0
- data/ext/mathematical/lasem/po/gl.po +64 -0
- data/ext/mathematical/lasem/po/hu.po +76 -0
- data/ext/mathematical/lasem/po/id.po +69 -0
- data/ext/mathematical/lasem/po/it.po +64 -0
- data/ext/mathematical/lasem/po/lt.po +77 -0
- data/ext/mathematical/lasem/po/lv.po +66 -0
- data/ext/mathematical/lasem/po/nb.po +62 -0
- data/ext/mathematical/lasem/po/oc.po +65 -0
- data/ext/mathematical/lasem/po/pl.po +73 -0
- data/ext/mathematical/lasem/po/pt.po +77 -0
- data/ext/mathematical/lasem/po/pt_BR.po +64 -0
- data/ext/mathematical/lasem/po/ru.po +66 -0
- data/ext/mathematical/lasem/po/sl.po +68 -0
- data/ext/mathematical/lasem/po/sr.po +65 -0
- data/ext/mathematical/lasem/po/sr@latin.po +65 -0
- data/ext/mathematical/lasem/po/sv.po +72 -0
- data/ext/mathematical/lasem/po/tg.po +64 -0
- data/ext/mathematical/lasem/po/tr.po +65 -0
- data/ext/mathematical/lasem/po/zh_CN.po +63 -0
- data/ext/mathematical/lasem/src/Makefile.am +349 -0
- data/ext/mathematical/lasem/src/lsmdomenumtypes.c.template +39 -0
- data/ext/mathematical/lasem/src/lsmdomenumtypes.h.template +26 -0
- data/ext/mathematical/lasem/src/lsmitex.c +0 -1
- data/ext/mathematical/lasem/src/lsmmathmlenumtypes.c.template +39 -0
- data/ext/mathematical/lasem/src/lsmmathmlenumtypes.h.template +26 -0
- data/ext/mathematical/lasem/src/lsmsvgenumtypes.c.template +39 -0
- data/ext/mathematical/lasem/src/lsmsvgenumtypes.h.template +26 -0
- data/ext/mathematical/lasem/tests/Makefile.am +34 -0
- data/ext/mathematical/lasem/tests/data/mathml/gtkmathview/README +5 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-02.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-03-inline.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction-03.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/fractions/fraction.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/closed.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/multiples.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/integrals/standard.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/matrices/matrix-01.tex +5 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases-cr.tex +7 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases-space.tex +7 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/cases.tex +7 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/color.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex-2.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex-inline.tex +7 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/complex.tex +7 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/quadratic-inline.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/misc/quadratic.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/radicals/radical-01.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/radicals/radical-02.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/accents.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/script.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/stack.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/subscript.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/sums-inline.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/sums.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/superscript-inline.tex +1 -0
- data/ext/mathematical/lasem/tests/data/mathml/tex/scripts/superscript.tex +1 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/bmpCursor.bmp +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/brushedMetal.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/jpeg.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/jpegCursor.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaBridge.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaSteps.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/operaWalk.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors.tif +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_pb.tif +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_pb_tile.tif +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/sm_colors_tile.tif +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/tde.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/batik/resources/images/tiffCursor.tif +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/image1.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/struct-image-01.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.1/images/struct-image-02.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/CNN.3gp +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/SVG-1.1-monolithic-fixed.dtd +1622 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/TraitAccess.common.es +672 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/advice.wav +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/beep.wav +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/boing_x.wav +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/clock.mp4 +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud-ps411q4app.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q25s.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q65float.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75o.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75p.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud411q75s.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloud444q65o.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudgsq75s.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudoddq65o.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/cloudqllo.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/copyright-documents-19990405.html +89 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/disco.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.3gp +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/dogandball.mov +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/duckfeeding.3gp +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/duckfeeding.mov +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/excuse_me.wav +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/externalscript.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton1.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton2.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton3.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/greentopbutton4.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/heroesLanding.3gp +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/image1.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/image2_b.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/myimage.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pacman.wav +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/plant.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image0.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image1.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image2.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image3.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image4.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image5.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image6.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image7.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image8.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/pref_image9.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script1.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script10.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script2.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script3.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script4.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script5.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script6.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script7.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script8.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/script9.js +1 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/skier.3gp +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/skier.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/struct-image-01.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/struct-image-02.jpg +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/svgRef4.css +4 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/welcome.wav +0 -0
- data/ext/mathematical/lasem/tests/data/svg/svg1.2/images/xmltree.xml +4 -0
- data/ext/mathematical/lasem/tests/fuzztest.sh +12 -0
- data/ext/mathematical/lasem/tests/suite.ini +27 -0
- data/ext/mathematical/lasem/tools/change-license +3 -0
- data/ext/mathematical/lasem/tools/charlist.dtd +73 -0
- data/ext/mathematical/lasem/tools/entities-to-c.xsl +1067 -0
- data/ext/mathematical/lasem/tools/fuzzxml +243 -0
- data/ext/mathematical/lasem/tools/unicode.xml +44303 -0
- data/ext/mathematical/lasem_overrides.c +25 -4
- data/ext/mathematical/lasem_overrides.h +5 -0
- data/ext/mathematical/lib/liblasem.dylib +0 -0
- data/ext/mathematical/mtex2MML/CONTRIBUTING.md +22 -0
- data/ext/mathematical/mtex2MML/README.md +143 -0
- data/ext/mathematical/mtex2MML/SUPPORTED.md +1214 -0
- data/ext/mathematical/mtex2MML/appveyor.yml +25 -0
- data/ext/mathematical/mtex2MML/build.ps1 +2 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_C.bin +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CMakeDetermineCompilerABI_CXX.bin +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdC/a.out +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/CMakeCXXCompilerId.cpp +375 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/2.8.10.1/CompilerIdCXX/a.out +0 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/CMakeOutput.log +208 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Continuous.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousBuild.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousConfigure.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousCoverage.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousMemCheck.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousStart.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousSubmit.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousTest.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ContinuousUpdate.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Experimental.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalBuild.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalConfigure.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalCoverage.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalMemCheck.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalStart.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalSubmit.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalTest.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/ExperimentalUpdate.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Makefile2 +1137 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/Nightly.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyBuild.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyConfigure.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyCoverage.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemCheck.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyMemoryCheck.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyStart.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlySubmit.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyTest.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/NightlyUpdate.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/cmake.check_cache +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/format.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/build.make +253 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/depend.make +2 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/flags.make +8 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML.dir/progress.make +9 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/C.includecache +148 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/build.make +251 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.internal +48 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/depend.make +48 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/flags.make +8 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/libmtex2MML_static.dir/progress.make +9 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/build.make +69 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/memcheck.dir/progress.make +1 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/build.make +276 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/depend.make +2 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/flags.make +8 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML.dir/progress.make +10 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/build.make +683 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/depend.make +2 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/flags.make +8 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/mtex2MML_clar.dir/progress.make +26 -0
- data/ext/mathematical/mtex2MML/build/CMakeFiles/progress.marks +1 -0
- data/ext/mathematical/mtex2MML/build/DartConfiguration.tcl +94 -0
- data/ext/mathematical/mtex2MML/build/libmtex2MML.pc +10 -0
- data/ext/mathematical/mtex2MML/build/parser.output +117661 -0
- data/ext/mathematical/mtex2MML/deps/strdup/package.json +12 -0
- data/ext/mathematical/mtex2MML/deps/uthash/package.json +26 -0
- data/ext/mathematical/mtex2MML/script/bootstrap +30 -0
- data/ext/mathematical/mtex2MML/script/cibuild +11 -0
- data/ext/mathematical/mtex2MML/script/release +27 -0
- data/ext/mathematical/mtex2MML/src/y.output +117655 -0
- data/ext/mathematical/mtex2MML/tests/debug/mtex2MML_debug.cc +21 -0
- data/ext/mathematical/mtex2MML/tests/deps/file2str/package.json +9 -0
- data/ext/mathematical/mtex2MML/tests/deps/trim/package.json +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-1.html +86 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-2.html +148 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/amscd-3.html +188 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/arrows-2.html +156 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/min-1.html +45 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/AMScd/min-2.html +35 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-1.html +16 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/accents-3.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/buildrel-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue490.html +0 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue877.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/issue937.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overbrace-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overbracket-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/overset-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/sideset-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/stackrel-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/subarray-1.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/substack-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underbrace-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underbracket-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/above-below/underset-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/mathtip-1.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/texttip-1.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/action/toggle-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/Newextarrow-1.html +10 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-1.html +34 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-2.html +30 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-3.html +9 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-4.html +13 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/arrows/arrows-5.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathbin-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathinner-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-1a.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-1b.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathop-2.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathopenclose-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathord-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathpunct-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/atoms/mathrel-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/backslashed-1.html +16 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/basic-operators-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/basic-operators-2.html +25 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/basic-operators/remap-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/color-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/colorbox-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/definecolor-1.html +37 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/definecolor-2.html +79 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/fcolorbox-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/issue446.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/colors/namedcolors-1.html +70 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/big-3.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/delimiters-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/delimiters-2.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue775.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-1a.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-1b.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-2.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-3.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-4.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/issue776-5.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/delimiters/left-right-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/align-1a.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/align-1b.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignat-1a.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignat-1b.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/aligned-1.html +9 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/aligned-2.html +14 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/alignedat-1.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqalign-1.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqalignno-1.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-1a.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-1b.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/eqnarray-2.html +64 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/equation-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/equation-2.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gather-1a.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gather-1b.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gathered-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/gathered-2.html +12 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-1a.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-1b.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-2a.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-2b.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-3a.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/issue982-3b.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/leqalignno-1.html +11 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/multline-1a.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/multline-1b.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/environments/split-1.html +9 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/errors/noErrors-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/errors/noUndefined-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/above-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/abovewithdelims-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/atop-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/atopwithdelims-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/binom-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/brace-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/brack-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/cfrac-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/choose-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/dbinom-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/dfrac-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/frac-1a.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/frac-1b.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/genfrac-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/issue969.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/overwithdelims-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/tbinom-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/frac/tfrac-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue1152-1.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue1152-2.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue375.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue856.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1a.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1b.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1c.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/issues/issue901-1d.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/boxes-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/kern-1a.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/kern-1b.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/llap-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/lower-1.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/mathstrut-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/moveleft-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/moveright-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/newline-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/phantom-1.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/raise-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/rlap-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/shove-1.html +19 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/skip-1a.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/skip-1b.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/smash-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/spaces-1.html +18 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/strut-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/layout/vcenter-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-1.html +32 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-2.html +13 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-3.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/greek-4.html +13 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/letters/hebrew-1.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/begingroup-1.html +15 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/def-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/let-1.html +14 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-2.html +25 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-3.html +50 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-5.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-6.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/macro/macro-7.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/Bbb-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/bf-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/boldsymbol-1.html +9 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/cal-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/frak-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/it-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbb-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-1a.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-1b.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathbf-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathcal-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathfrak-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathit-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathrm-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathscr-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathsf-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mathtt-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/mit-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/pmb-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/rm-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/scr-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/sf-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/text-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textbf-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textit-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textrm-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/textsf-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/texttt-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mathvariant/tt-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-1a.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-1b.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/array-3.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/bmatrix-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/bmatrix-2.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/matrix-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/matrix-2.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/pmatrix-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/pmatrix-2.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/smallmatrix-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/vmatrix-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/matrices/vmatrix-2.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-1.html +120 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-2.html +35 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/advanced-3.html +138 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/amounts-1.html +46 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/arrows-1.html +235 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/arrows-2.html +159 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/basics-1.html +139 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/bonds-1.html +256 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/environments-1.html +81 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/isotopes-1.html +30 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/math-1.html +101 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/mhchem/special_symbols-1.html +176 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/Rule-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/Tiny-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/class-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/cssId-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/href-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/href-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/require-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/style-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/non-standard/unicode-1.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/LaTeX-1.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/bbox-1.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/boxed-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/cancel-1.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/cases-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/displaylines-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/enclose-1.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/functions-1.html +34 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-2.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/limits-3.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/mathsize-1.html +11 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/mod-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/not-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/pod-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-1.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-2.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/primes-3.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/style-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/style-2.html +0 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/verb-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/other/verb-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/eqref-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/label-1.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/label-2.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/notag-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-1.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-2.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/references/ref-3.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/root-3.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/sqrt-1.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/roots/sqrt-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/binaryops-1.html +32 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/dots-1.html +26 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/largeops-1.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/largeops-2.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/relations-1.html +39 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-1.html +25 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-2.html +31 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-3.html +40 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-4.html +39 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-5.html +56 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-out/symbols/symbols-6.html +49 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-1.no_tex +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-2.no_tex +13 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/amscd-3.no_tex +23 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/arrows-1.no_tex +23 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/arrows-2.no_tex +26 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/min-1.no_tex +14 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/AMScd/min-2.no_tex +14 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/above-below/issue490.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/mathtip-1.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/texttip-1.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/action/toggle-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/arrows/Newextarrow-1.xtex +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/atoms/mathbin-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/atoms/mathop-2.xtex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/basic-operators/basic-operators-2.xtex +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1a.xtex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1b.xtex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-1c.xtex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/definecolor-2.xtex +13 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/fcolorbox-1.xtex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/colors/issue446.xtex +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/eqnarray-1c.no_tex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/eqnarray-2a.no_tex +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/environments/leqalignno-1.xtex +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/errors/noErrors-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/errors/noUndefined-1.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue1151.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue1152-1.xtex +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue903-1.xtex +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/issues/issue903-2.xtex +16 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/layout/shove-1.xtex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/begingroup-1.no_tex +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/def-1.no_tex +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/let-1.no_tex +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-1a.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-1b.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-2.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-3.no_tex +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-5.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-6.no_tex +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/macro/macro-7.no_tex +11 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-1.no_tex +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-2.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/advanced-3.no_tex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/amounts-1.no_tex +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/arrows-1.no_tex +10 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/arrows-2.no_tex +9 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/basics-1.no_tex +13 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/bonds-1.no_tex +11 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/environments-1.no_tex +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/isotopes-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/math-1.no_tex +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/mhchem/special_symbols-1.no_tex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/Rule-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/class-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/cssId-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/href-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/href-2.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/require-1.no_tex +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/style-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/non-standard/unicode-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/other/displaylines-1.xtex +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/other/style-2.no_tex +10 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/eqref-1.no_tex +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/label-1.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/label-2.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-1a.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-1b.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-2.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/ref-3.no_tex +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-1.no_tex +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-2.no_tex +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-3.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/LaTeXToMathML-tex/references/tag-4.no_tex +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/MathJax/TODO.md +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_nesting.html +32 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_pos_alignment.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_pos_alignment_with_hline.html +12 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_vertical_column.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_vertical_column_with_align.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_hline.html +9 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_hline_and_hdashline.html +10 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/array_with_vertical_and_horizontal_dashes.html +10 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/augmented_matrix.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/basic_array.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/array/strip_excess_whitespace_in_array_attributes.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/block.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/comments.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/filter.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/inline.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/strict_filter.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/basic/text_filter.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/cornercases/broken_up_inline_env.html +3 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/cornercases/some_crazy_alignment.html +24 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/brackets.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_filter.html +2 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/dollar_spacings_text_filter.html +27 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/double_dollar.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_brackets.html +35 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_dollars.html +35 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/escaping_with_parens.html +35 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/mixed.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/parens.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/delimiters/single_dollar.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_no_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/aligned_no_lines.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_no_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/bbmatrix_no_lines.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_no_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/bmatrix_no_lines.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_ex_spacing.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_no_ex_spacing.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/cases_no_lines.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_no_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/gathered_no_lines.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_ex_spacing.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_no_ex_spacing.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/matrix_no_lines.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_no_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/pmatrix_no_lines.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_ex_spacing.html +8 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_no_ex_spacing.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/smallmatrix_no_lines.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/spaces_after_rowsep.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/split_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/split_no_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/split_no_lines.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_no_ex_spacing.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/vmatrix_no_lines.html +4 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_no_ex_spacing.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/env/vvmatrix_no_lines.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/functions/max_limits.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/functions/min_limits.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/maliciousness/just_enough_parsing.html +1 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/multiple_equations.html +11 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/multiple_notag_nonumber.html +7 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_equation.html +5 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_nonumber.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/numbered_equations/single_notag.html +6 -0
- data/ext/mathematical/mtex2MML/tests/fixtures/performance/big_file.html +12 -0
- data/ext/mathematical/mtex2MML/tests/generate.py +244 -0
- data/ext/mathematical/mtex2MML/tests/mathjax_generate.py +72 -0
- data/lib/mathematical/version.rb +1 -1
- data/mathematical.gemspec +1 -3
- metadata +699 -23
- data/ext/mathematical/lasem/Makefile +0 -1037
- data/ext/mathematical/lasem/config.h +0 -87
- data/ext/mathematical/lasem/docs/Makefile +0 -793
- data/ext/mathematical/lasem/docs/reference/Makefile +0 -735
- data/ext/mathematical/lasem/docs/reference/lasem/Makefile +0 -1029
- data/ext/mathematical/lasem/docs/reference/lasem/lasem-decl-list.txt +0 -245
- data/ext/mathematical/lasem/docs/reference/lasem/lasem-decl.txt +0 -856
- data/ext/mathematical/lasem/itex2mml/Makefile +0 -742
- data/ext/mathematical/lasem/itex2mml/lex.yy.c +0 -6294
- data/ext/mathematical/lasem/itex2mml/y.tab.c +0 -5796
- data/ext/mathematical/lasem/itex2mml/y.tab.h +0 -378
- data/ext/mathematical/lasem/po/Makefile +0 -413
- data/ext/mathematical/lasem/src/Makefile +0 -1343
- data/ext/mathematical/lasem/src/lsmdomenumtypes.c +0 -99
- data/ext/mathematical/lasem/src/lsmdomenumtypes.h +0 -26
- data/ext/mathematical/lasem/src/lsmmathmlenumtypes.c +0 -793
- data/ext/mathematical/lasem/src/lsmmathmlenumtypes.h +0 -96
- data/ext/mathematical/lasem/src/lsmsvgenumtypes.c +0 -1254
- data/ext/mathematical/lasem/src/lsmsvgenumtypes.h +0 -129
- data/ext/mathematical/lasem/tests/Makefile +0 -776
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="2.49201em" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>−</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>−</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{aligned}
|
3
|
+
2x - 5y &= 8 \\[2.49201em]
|
4
|
+
3x + 9y &= -12
|
5
|
+
\end{aligned}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="3pt" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>−</mo><mn>5</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>−</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{aligned}
|
3
|
+
2x - 5y &= 8 \\
|
4
|
+
3x + 9y &= -12
|
5
|
+
\end{aligned}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>3</mn><mi>x</mi><mo>+</mo><mn>9</mn><mi>y</mi></mtd> <mtd><mo>=</mo><mo>−</mo><mn>12</mn></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{aligned}
|
3
|
+
3x + 9y &= -12
|
4
|
+
\end{aligned}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="100cm" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{Bmatrix}
|
3
|
+
1 & 2 & 3 \\[100cm]
|
4
|
+
4 & 5 & 6 \end{Bmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{Bmatrix}
|
3
|
+
1 & 2 & 3 \\
|
4
|
+
4 & 5 & 6 \end{Bmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,4 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{Bmatrix}
|
3
|
+
4 & 5 & 6 \end{Bmatrix}
|
4
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="2.5in" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{bmatrix}
|
3
|
+
1 & 2 & 3 \\[2.5in]
|
4
|
+
4 & 5 & 6 \end{bmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{bmatrix}
|
3
|
+
1 & 2 & 3 \\
|
4
|
+
4 & 5 & 6 \end{bmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,4 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>[</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>]</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{bmatrix}
|
3
|
+
4 & 5 & 6 \end{bmatrix}
|
4
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,7 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="20ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
f(n) =
|
3
|
+
\begin{cases}
|
4
|
+
\frac{n}{2}, & \text{if n is even} \\[20ex]
|
5
|
+
3n+1, & \text{if n is odd}
|
6
|
+
\end{cases}
|
7
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,7 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
f(n) =
|
3
|
+
\begin{cases}
|
4
|
+
\frac{n}{2}, & \text{if n is even} \\
|
5
|
+
3n+1, & \text{if n is odd}
|
6
|
+
\end{cases}
|
7
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
f(n) =
|
3
|
+
\begin{cases}
|
4
|
+
\frac{n}{2}, & \text{if n is even}
|
5
|
+
\end{cases}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="2pt" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>−</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{gathered}
|
3
|
+
2x - 5y = 8 \\[2pt]
|
4
|
+
3x^2 + 9y = 3a + c
|
5
|
+
\end{gathered}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="1.0ex" rowlines="none none"><mtr><mtd><mn>2</mn><mi>x</mi><mo>−</mo><mn>5</mn><mi>y</mi><mo>=</mo><mn>8</mn></mtd></mtr> <mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{gathered}
|
3
|
+
2x - 5y = 8 \\
|
4
|
+
3x^2 + 9y = 3a + c
|
5
|
+
\end{gathered}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" rowspacing="1.0ex" rowlines="none"><mtr><mtd><mn>3</mn><msup><mi>x</mi> <mn>2</mn></msup><mo>+</mo><mn>9</mn><mi>y</mi><mo>=</mo><mn>3</mn><mi>a</mi><mo>+</mo><mi>c</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{gathered}
|
3
|
+
3x^2 + 9y = 3a + c
|
4
|
+
\end{gathered}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,7 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="40ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\left\{
|
3
|
+
\begin{matrix} 1 & 2 & 3 \\[40ex]
|
4
|
+
4 & 5 & 6
|
5
|
+
\end{matrix}
|
6
|
+
\right)
|
7
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,7 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\left\{
|
3
|
+
\begin{matrix} 1 & 2 & 3 \\
|
4
|
+
4 & 5 & 6
|
5
|
+
\end{matrix}
|
6
|
+
\right)
|
7
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>{</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\left\{
|
3
|
+
\begin{matrix} 1 & 2 & 3
|
4
|
+
\end{matrix}
|
5
|
+
\right)
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="30mu" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{pmatrix}
|
3
|
+
1 & 2 & 3 \\[30mu]
|
4
|
+
4 & 5 & 6 \end{pmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{pmatrix}
|
3
|
+
1 & 2 & 3 \\
|
4
|
+
4 & 5 & 6 \end{pmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,4 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>(</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{pmatrix}
|
3
|
+
1 & 2 & 3 \end{pmatrix}
|
4
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,8 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em 100.342832em" rowlines="solid none none"><mtr><mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd> <mtd><mo>•</mo></mtd></mtr> <mtr><mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd> <mtd><mo>•</mo></mtd></mtr> <mtr><mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{smallmatrix}
|
3
|
+
\circ & \circ & \bullet \\
|
4
|
+
\hline
|
5
|
+
\circ & \circ &\bullet \\[100.342832em]
|
6
|
+
\circ & \circ & \circ
|
7
|
+
\end{smallmatrix}
|
8
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,7 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em 0.2em" rowlines="none none none"><mtr><mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd> <mtd><mo>•</mo></mtd></mtr> <mtr><mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd> <mtd><mo>•</mo></mtd></mtr> <mtr><mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd> <mtd><mo>∘</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{smallmatrix}
|
3
|
+
\circ & \circ & \bullet \\
|
4
|
+
\circ & \circ &\bullet \\
|
5
|
+
\circ & \circ & \circ
|
6
|
+
\end{smallmatrix}
|
7
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="false" columnspacing="0.333em" rowspacing="0.2em" rowlines="none"><mtr><mtd><mo>∘</mo></mtd> <mtd><mo>•</mo></mtd> <mtd><mo>•</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{smallmatrix}
|
3
|
+
\circ & \bullet & \bullet
|
4
|
+
\end{smallmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,7 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mrow><mo>{</mo><mrow><mtable displaystyle="false" columnalign="left left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mfrac><mi>n</mi><mn>2</mn></mfrac><mo>,</mo></mtd> <mtd><mtext>if n is even</mtext></mtd></mtr> <mtr><mtd><mn>3</mn><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo></mtd> <mtd><mtext>if n is odd</mtext></mtd></mtr></mtable></mrow></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
f(n) =
|
3
|
+
\begin{cases}
|
4
|
+
\frac{n}{2}, & \text{if n is even} \\ [2ex]
|
5
|
+
3n+1, & \text{if n is odd}
|
6
|
+
\end{cases}
|
7
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="22.2ex" rowlines="none none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>π</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>π</mi><msup><mi>r</mi> <mn>2</mn></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{split}
|
3
|
+
A & = \frac{\pi r^2}{2} \\[22.2ex]
|
4
|
+
& = \frac{1}{2} \pi r^2
|
5
|
+
\end{split}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>π</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>π</mi><msup><mi>r</mi> <mn>2</mn></msup></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{split}
|
3
|
+
A & = \frac{\pi r^2}{2} \\
|
4
|
+
& = \frac{1}{2} \pi r^2
|
5
|
+
\end{split}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mfrac><mrow><mi>π</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><mn>2</mn></mfrac></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{split}
|
3
|
+
A & = \frac{\pi r^2}{2}
|
4
|
+
\end{split}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>∣</mo><mrow><mtable displaystyle="false" rowspacing="1000mm" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>∣</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{vmatrix}
|
3
|
+
1 & 2 & 3 \\[1000mm]
|
4
|
+
4 & 5 & 6 \end{vmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>∣</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>∣</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{vmatrix}
|
3
|
+
1 & 2 & 3 \\
|
4
|
+
4 & 5 & 6 \end{vmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,4 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>∣</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>∣</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{vmatrix}
|
3
|
+
4 & 5 & 6 \end{vmatrix}
|
4
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>∥</mo><mrow><mtable displaystyle="false" rowspacing="9.452pc" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>∥</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{Vmatrix}
|
3
|
+
1 & 2 & 3 \\[9.452pc]
|
4
|
+
4 & 5 & 6
|
5
|
+
\end{Vmatrix}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>∥</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr> <mtr><mtd><mn>4</mn></mtd> <mtd><mn>5</mn></mtd> <mtd><mn>6</mn></mtd></mtr></mtable></mrow><mo>∥</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{Vmatrix}
|
3
|
+
1 & 2 & 3 \\
|
4
|
+
4 & 5 & 6
|
5
|
+
\end{Vmatrix}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mo>∥</mo><mrow><mtable displaystyle="false" rowspacing="0.5ex" rowlines="none"><mtr><mtd><mn>1</mn></mtd> <mtd><mn>2</mn></mtd> <mtd><mn>3</mn></mtd></mtr></mtable></mrow><mo>∥</mo></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{Vmatrix}
|
3
|
+
1 & 2 & 3
|
4
|
+
\end{Vmatrix}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>max</mi> <mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></munder></mrow><annotation encoding='application/x-tex'>\max\limits_{1\leq j\leq n}</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>min</mi> <mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mi>n</mi></mrow></munder></mrow><annotation encoding='application/x-tex'>\min\limits_{1\leq j\leq n}</annotation></semantics></math>
|
@@ -0,0 +1 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathsize="2.49em"><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><msqrt><mrow/></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></msqrt></mstyle></mrow><annotation encoding='application/x-tex'>\Huge \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}</annotation></semantics></math>
|
@@ -0,0 +1,11 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>B</mi><mo>′</mo></mtd> <mtd><mo>=</mo><mo>−</mo><mo>∇</mo><mo>×</mo><mi>E</mi><mo>,</mo></mtd></mlabeledtr> <mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd><mi>E</mi><mo>′</mo></mtd> <mtd><mo>=</mo><mo>∇</mo><mo>×</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>4</mn><mi>π</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{align}
|
3
|
+
B'&=-\nabla \times E,\\
|
4
|
+
E'&=\nabla \times B - 4\pi j,
|
5
|
+
\end{align}
|
6
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mlabeledtr><mtd><mtext>(3)</mtext></mtd><mtd><mi>A</mi></mtd> <mtd><mo>=</mo><mrow><mo>(</mo><msub><mo>∫</mo> <mi>t</mi></msub><mi>X</mi><mi>X</mi><mi>X</mi></mrow><mtext> </mtext></mtd> <mtd><mspace width="2em"/><mrow><mpadded width="0"><mphantom><mrow><msub><mo>∫</mo> <mi>t</mi></msub></mrow></mphantom></mpadded><mi>Y</mi><mi>Y</mi><mi>Y</mi><mi>…</mi><mo>)</mo></mrow></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
7
|
+
\begin{align}
|
8
|
+
A &= \left(\int_t XXX \right. \
|
9
|
+
&\qquad \left.\vphantom{\int_t} YYY \dots \right)
|
10
|
+
\end{align}
|
11
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,7 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex 0.5ex" rowlines="none none none"><mtr><mtd><mi>a</mi></mtd> <mtd><mi>b</mi></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>c</mi></mtd> <mtd><mi>d</mi></mtd></mlabeledtr> <mtr><mtd><mi>e</mi></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{align}
|
3
|
+
a & b \notag \\ % no number is shown
|
4
|
+
c & d \\ % there is a number
|
5
|
+
e & f \nonumber % no number
|
6
|
+
\end{align}
|
7
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,5 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>a</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>x</mi><mo>+</mo><mi>b</mi><mo stretchy="false">)</mo></mtd></mlabeledtr></mtable></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{equation}
|
3
|
+
f(x)=(x+a)(x+b)
|
4
|
+
\end{equation}
|
5
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mtable><mtr><mtd><mi>B</mi><mo>′</mo></mtd> <mtd><mo>=</mo><mo>−</mo><mo>∇</mo><mo>×</mo><mi>E</mi><mo>,</mo></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>E</mi><mo>′</mo></mtd> <mtd><mo>=</mo><mo>∇</mo><mo>×</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>4</mn><mi>π</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{equation}
|
3
|
+
B'&=-\nabla \times E, \nonumber \\
|
4
|
+
E'&=\nabla \times B - 4\pi j,
|
5
|
+
\end{equation}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,6 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mrow><mtable displaystyle="true" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" columnalign="right left right left right left right left right left" rowspacing="0.5ex" rowlines="none none"><mtr><mtd><mi>B</mi><mo>′</mo></mtd> <mtd><mo>=</mo><mo>−</mo><mo>∇</mo><mo>×</mo><mi>E</mi><mo>,</mo></mtd></mtr> <mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>E</mi><mo>′</mo></mtd> <mtd><mo>=</mo><mo>∇</mo><mo>×</mo><mi>B</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>4</mn><mi>π</mi><mi>j</mi><mo>,</mo></mtd></mlabeledtr></mtable></mrow></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\begin{align}
|
3
|
+
B'&=-\nabla \times E, \notag \\
|
4
|
+
E'&=\nabla \times B - 4\pi j,
|
5
|
+
\end{align}
|
6
|
+
</annotation></semantics></math>
|
@@ -0,0 +1,12 @@
|
|
1
|
+
<math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>×</mo><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times Orth(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒮</mi><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(V_R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔨</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi><mo>=</mo><mi>𝔭</mi><mo>⊕</mo><mi>𝔨</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒮</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>φ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D= G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mi>q</mi></mrow><annotation encoding='application/x-tex'>pq</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒮</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{S}(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℒ</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi><mo>=</mo><msub><mi>Θ</mi> <mi>ℒ</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta=\Theta_{\mathcal{L}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi><mo>=</mo><msub><mo>∑</mo> <mrow><mi>ℓ</mi><mo>∈</mo><mi>ℒ</mi></mrow></msub><msub><mi>δ</mi> <mi>ℓ</mi></msub></mrow><annotation encoding='application/x-tex'>\Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mo stretchy="false">(</mo><mi>ℒ</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>\G = \Stab(\mathcal{L}) \subset G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\Gamma'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Θ</mi></mrow><annotation encoding='application/x-tex'>\Theta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\Gamma'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>φ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mi>Γ</mi><mo>\</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \Gamma \backslash D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>⊂</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \subset SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo>′</mo></mrow><annotation encoding='application/x-tex'>\G'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mi>φ</mi></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mi>q</mi><mo>−</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(pq-r)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>𝒮</mi><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo><mo>⊗</mo><msup><mo>∧</mo> <mi>q</mi></msup><msup><mi>𝔭</mi> <mo>*</mo></msup><msup><mo stretchy="false">)</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>+</mo><mi>q</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>(p+q)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(3,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>+</mo><mi>q</mi><merror><mtext>Unknown character</mtext></merror><mn>6</mn></mrow><annotation encoding='application/x-tex'>p+q>6</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi><mo>≥</mo><mi>q</mi></mrow><annotation encoding='application/x-tex'>p \geq q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_q^V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mi>q</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^q(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>=</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial \overline{X} = e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">N</mo></mrow><annotation encoding='application/x-tex'>n \in \N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X, \partial X,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo>=</mo><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>τ</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>q = e^{2\pi i \tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>k^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>k</mi> <mo>*</mo></msup><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>k^{\ast} \theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>:</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>k: \partial \overline{X} \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\partial {X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub><mo>,</mo><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2({X}, \partial {X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mi>q</mi> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{q}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>c</mi></msub><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_c \theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n>0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n>0}\Lk(\partial C_n,c) q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>3/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo stretchy="false">]</mo><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n \geq 0} [T_n^c] q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X},\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>+</mo><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>({T}_n \cdot {T}_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>∞</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mo>∑</mo> <mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow> <mn>∞</mn></msubsup><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub><msup><mi>q</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>F(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi><mo>=</mo><msub><mi>C</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>C=C_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>F_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>F_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>ϕ</mi> <mn>1</mn> <mi>W</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_1^W}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi^V_{2}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>V</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi^V_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>4</mn></mrow><annotation encoding='application/x-tex'>4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mi>V</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\underline{G} = \SO(V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><munder><mi>G</mi><mo>̲</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G=\underline{G}_0(R) \simeq \SO_0(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><msub><mi>D</mi> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>D= D_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>dim</mi><mi>z</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>\dim z =2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo><msub><mo stretchy="false">|</mo> <mi>z</mi></msub><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(\,,\,)|_z < 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">{</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\{e_1,e_2,e_3,e_4\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>1</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_1,e_1)=(e_2,e_2)=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>4</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(e_3,e_3)=(e_4,e_4)=-1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>x_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub><mo>=</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z_0=[e_3,e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>4</mn></msub></mrow><annotation encoding='application/x-tex'>e_4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K \simeq \SO(2)\times \SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D \simeq G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">H</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \H \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><msub><munder><mi>P</mi><mo>̲</mo></munder> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P= \underline{P}_0(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><munder><mi>N</mi><mo>̲</mo></munder><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N = \underline{N}(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>+</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u =(e_1+e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>1</mn></msub><mo>−</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msqrt><mn>2</mn></msqrt></mrow><annotation encoding='application/x-tex'>u' =(e_1-e_4)/\sqrt{2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>,</mo><mi>u</mi><mo>′</mo><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>(u,u')=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u,u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell = \Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\ell'=\Q u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><msup><mi>ℓ</mi> <mo>⊥</mo></msup><mo>∩</mo><msup><mrow><mi>ℓ</mi><mo>′</mo></mrow> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>W = \ell^{\perp} \cap {\ell'}^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">Span</mo> <mi>R</mi></msub><mo stretchy="false">(</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>W_{R} = \Span_{R}(e_2,e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>u,e_2,e_3,u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>≃</mo><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>N \simeq W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi></mrow><annotation encoding='application/x-tex'>z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">[</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>a</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mi>e</mi> <mn>4</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>u</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>u_2,u_2'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mi>m</mi><mo>′</mo><mo stretchy="false">(</mo><msup><mi>e</mi> <mi>s</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>m(s) = m'(e^s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>≃</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M \simeq \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔫</mi><mo>,</mo><mi>𝔞</mi><mo>,</mo><mi>𝔪</mi></mrow><annotation encoding='application/x-tex'>\frak{n},\frak{a},\frak{m}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mrow><mi>α</mi><mi>μ</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{\alpha\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>σ</mi><mo>:</mo><mi>𝔫</mi><mi>𝔞</mi><mi>𝔪</mi><mo>→</mo><mi>𝔤</mi><mo>→</mo><mi>𝔤</mi><mo stretchy="false">/</mo><mi>𝔨</mi><mo>≃</mo><mi>𝔭</mi></mrow><annotation encoding='application/x-tex'>\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><msub><mi>u</mi> <mn>2</mn></msub><mo>+</mo><mi>w</mi><mo>′</mo><msub><mi>u</mi> <mn>2</mn></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>w= wu_2+w'u_2'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>R</mi></msub><mo>≃</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V_{R} \simeq M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u = \kzxz{1}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>0</mn><mn>0</mn><mn>1</mn></mrow><annotation encoding='application/x-tex'>u' = \kzxz{0}{0}{0}{1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>q(x) = (x,x)/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>q(x) = \det(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{-1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mn>1</mn><mn>1</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R) \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>g</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>g</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><msub><mi>g</mi> <mn>1</mn></msub><mi>x</mi><mspace width="thinmathspace"/><mrow><msup><mo/><mi>t</mi></msup><msub><mi>g</mi> <mn>2</mn></msub></mrow></mrow><annotation encoding='application/x-tex'>(g_1,g_2)x = g_1x\, {^{t}g_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Spin</mo><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Spin(2,2) \simeq SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>D \simeq \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>z</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>z</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>1</mn></msub><mo>,</mo><msub><mi>x</mi> <mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>y</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo><mo>×</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>⊆</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>L \subseteq L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>∈</mo><mn>2</mn><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>(x,x) \in 2 \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>x \in L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>q</mi><mo stretchy="false">(</mo><msup><mi>L</mi> <mo>#</mo></msup><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mi>N</mi></mfrac></mstyle><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>q(L^{\#}) \Z = \tfrac1{N}\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>∈</mo><msup><mi>L</mi> <mo>#</mo></msup></mrow><annotation encoding='application/x-tex'>h \in L^{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi><mo>⊆</mo><mo lspace="0em" rspace="thinmathspace">Stab</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\Gamma \subseteq \Stab{L}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℒ</mi><mo>:</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L}:=L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell =\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>G</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{G}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>d>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">(</mo><msqrt><mi>d</mi></msqrt><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K = \Q(\sqrt{d})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>𝒪</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>↦</mo><mi>x</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>x \mapsto x'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi><mo>⊂</mo><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>V \subset M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo/><mi>t</mi></msup><mi>x</mi><mo>′</mo><mo>=</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>^tx' =-x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>M</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(2,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>K</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mi>R</mi><mo>×</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2{R} \times SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>g</mi><mo>,</mo><mi>g</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g \mapsto (g,g')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><msub><mi>𝒪</mi> <mi>K</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\mathcal{O}_K)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>.</mo><mi>x</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">g</mo><mi>x</mi><mrow><msup><mo/><mi>t</mi></msup><mo lspace="0em" rspace="thinmathspace">g</mo><mo>′</mo></mrow></mrow><annotation encoding='application/x-tex'>\g.x = \g x{^t\g'}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>≡</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Φ</mi></mrow><annotation encoding='application/x-tex'>\Phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo>∩</mo><mi>P</mi></mrow><annotation encoding='application/x-tex'>\G_P = \G \cap P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>∩</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N = \G_P \cap N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">/</mo><munder><mi>N</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}/\underline{N}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>ℓ</mi> <mo>⊥</mo></msup><mo stretchy="false">/</mo><mi>ℓ</mi></mrow><annotation encoding='application/x-tex'>\ell^{\perp}/\ell</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\G_P/\G_N \simeq \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>g \in \G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>g</mi><mo stretchy="false">¯</mo></mover></mrow><annotation encoding='application/x-tex'>\bar{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo stretchy="false">/</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P/\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi></mrow><annotation encoding='application/x-tex'>g</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub><mo>∩</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\G_M :=\G_P \cap M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P = NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>=</mo><mi>N</mi><mi>A</mi><mi>M</mi></mrow><annotation encoding='application/x-tex'>P=NAM</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>≃</mo><mi>M</mi><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq M \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><munder><mi>P</mi><mo>̲</mo></munder></mrow><annotation encoding='application/x-tex'>\underline{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">G</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>X = \G \back D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><munder><mi>P</mi><mo>̲</mo></munder><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\underline{P}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mi>W</mi></msub><mo>:</mo><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>X_W := \G_M \back D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{D}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">(</mo><mi>T</mi><mo>,</mo><mn>∞</mn><mo stretchy="false">]</mo><mo>×</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[(T,\infty] \times e'(P)]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(t,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><merror><mtext>Unknown character</mtext></merror><mi>T</mi></mrow><annotation encoding='application/x-tex'>t>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo>→</mo><mi>X</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\pi:\tilde{X} \to X'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>j</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>j:X \hookrightarrow \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in} \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Γ</mi> <mi>N</mi></msub><mo>=</mo><msub><mi>π</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Gamma_N =\pi_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Γ</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Gamma_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e'(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a_P \in H_1(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa:e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub><mo>∈</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>b_P \in H_2(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi></mrow><annotation encoding='application/x-tex'>\kappa</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(e'(P),\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(e'(P),\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub><mo>≃</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W_{R} \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>T^2=\G_N \back N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>3</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>H_3(\tilde{X}) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>a_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(X^{out})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>b</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>b_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>⊕</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\#}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>⊕</mo> <mi>P</mi></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>→</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial \overline{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub></mrow><annotation encoding='application/x-tex'>j_{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_c^{\bullet}(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>i</mi> <mo>*</mo></msup></mrow><annotation encoding='application/x-tex'>i^*</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>i</mi><mo>:</mo><mi>X</mi><mo>↪</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>i: X \hookrightarrow \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>d</mi><mi>a</mi><mo>,</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>a</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d(a,b) = (da, i^*a - db)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>A</mi> <mi>c</mi> <mo>•</mo></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>A_c^{\bullet}(X) \to C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c \mapsto (c,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\pi:V \to \partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><mi>b</mi></mrow><annotation encoding='application/x-tex'>\pi^{\ast} b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>≤</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t \leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(a,b)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>i</mi></msup></mrow><annotation encoding='application/x-tex'>C^i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi></mrow><annotation encoding='application/x-tex'>\mu</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mi>i</mi></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^i_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo stretchy="false">]</mo><mo>↦</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[a,b]] \mapsto [a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[a,b]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo stretchy="false">⟨</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>η</mi><mo stretchy="false">]</mo><mo stretchy="false">⟩</mo><mo>=</mo><msub><mo>∫</mo> <mover><mi>X</mi><mo>¯</mo></mover></msub><mi>a</mi><mo>∧</mo><mi>η</mi><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mo>∫</mo> <mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow></msub><mi>b</mi><mo>∧</mo><msup><mi>i</mi> <mo>*</mo></msup><mi>η</mi><mo>,</mo><mtext> </mtext><mtext>and</mtext><mtext> </mtext><mtext> </mtext><mo stretchy="false">⟨</mo><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">]</mo><mo>,</mo><mi>C</mi><mo stretchy="false">⟩</mo><mo>=</mo><msub><mo>∫</mo> <mi>C</mi></msub><mi>a</mi><mo>−</mo><msub><mo>∫</mo> <mrow><mo>∂</mo><mi>C</mi></mrow></msub><mi>b</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
2
|
+
\langle[a, b], [\eta]\rangle
|
3
|
+
= \int_{\overline{X}}a\wedge \eta - \int_{\partial \overline{X}} b \wedge i^*\eta, \ \text{and} \ \
|
4
|
+
\langle [a,b],C \rangle = \int_{C}a - \int_{\partial C} b.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>x</mi></msub><mo>⊂</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_x \subset \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mi>ℒ</mi><mo>;</mo><mspace width="thinmathspace"/><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">(</mo></mfrac></mstyle><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo>∂</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\partial X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>U_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>∩</mo><msub><mi>U</mi> <mn>∞</mn></msub><mo>=</mo><mi>∅</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
5
|
+
D_x \cap U_{\infty} = \emptyset.
|
6
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,u) = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>p</mi></mrow><annotation encoding='application/x-tex'>p</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub><mo>⊂</mo><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x \subset \partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>s(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>D</mi><mo>¯</mo></mover> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\overline{D}_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P) \to e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>κ</mi><mo>:</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mi>X</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\kappa: e'(P) \to X_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\overline{C}_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>=</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL_V=\calL = L +h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>⊂</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>L_{W,k} \subset W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>∈</mo><msubsup><mi>L</mi> <mrow><mi>W</mi><mo>,</mo><mi>k</mi></mrow> <mo>#</mo></msubsup></mrow><annotation encoding='application/x-tex'>h_{W,k} \in L^{\#}_{W,k}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>≃</mo><mi>N</mi></mrow><annotation encoding='application/x-tex'>W \simeq N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub><mo>=</mo><mi>N</mi><mo>∩</mo><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G_N = N \cap \G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi></mrow><annotation encoding='application/x-tex'>u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mi>w</mi><mo stretchy="false">)</mo><mi>x</mi><mo>=</mo><mi>x</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(w) x= x + (w,x)u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi>u</mi> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>x \in u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>{\calL}_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∩</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_n \cap e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\min'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∩</mo><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\partial C_{n,P} := \partial C_n \cap e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mi>x</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>∩</mo><msup><mi>u</mi> <mo>⊥</mo></msup><mo>;</mo><mspace width="thinmathspace"/><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Γ</mi></mrow><annotation encoding='application/x-tex'>\Gamma</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∼</mo> <mi>Γ</mi></msub></mrow><annotation encoding='application/x-tex'>\sim_{\Gamma}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>p</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub><mo>⊂</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>\G_p \back \calL_{n,u} \subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><msub><mo stretchy="false">]</mo> <mi>P</mi></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>[x_i]= [x_i]_P, 1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi></mrow><annotation encoding='application/x-tex'>R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msubsup><mo>∐</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mi>k</mi></msubsup><msub><mo>∐</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∐</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>x</mi> <mi>i</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>y \in [x_i]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>D_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>C_{x_i}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>=</mo><msub><mo>∐</mo> <mrow><msub><mo>∼</mo> <mi>Γ</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow></msub><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>x</mi> <mi>i</mi></msub></mrow></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mrow><mi>n</mi><mo>,</mo><mi>P</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\partial C_{n,P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∐</mo> <mrow><mtable columnalign="center" rowspacing="0.5ex"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub><mo lspace="0em" rspace="thinmathspace">back</mo><msub><mi>ℒ</mi> <mi>W</mi></msub></mtd></mlabeledtr> <mtr><mtd><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>2</mn><mi>n</mi></mtd></mtr></mtable></mrow></msub><msub><mo>∐</mo> <mrow><mn>0</mn><mo>≤</mo><mi>k</mi><merror><mtext>Unknown character</mtext></merror><mi>min</mi><msub><mo>′</mo> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>Λ</mi> <mi>W</mi></msub></mrow></msub><mo stretchy="false">|</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">|</mo></mrow></msub><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k < \min'_{\la \in \Lambda_W} |(\la,x)|} x+ku</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\calL_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mi>ℒ</mi> <mrow><mi>n</mi><mo>,</mo><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>x \in \mathcal{L}_{n,u}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>a</mi> <mi>x</mi></msub><mo>=</mo><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial a_x = c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>Ω</mi> <mi>P</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P = 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><msub><mi>Ω</mi> <mi>P</mi></msub><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{a_x} \Omega_P \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>A</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∑</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>a</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>(A_x)_P = \sum_{y \in [x]} a_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>=</mo><msub><mo>∑</mo> <mrow><mi>y</mi><mo>∈</mo><mo stretchy="false">[</mo><mi>x</mi><mo stretchy="false">]</mo></mrow></msub><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_x)_P = \sum_{y \in [x]} c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>A_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>x</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_x^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X}) = H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup><mo>+</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>T_n = T_n \cap X^{in} + T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mover><mi>C</mi><mo>¯</mo></mover> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>j_{\ast} \overline{C}_n = T_n \cap X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>∩</mo><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>B_n = T_n \cap X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>=</mo><mo>−</mo><mo>∂</mo><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n = - \partial B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_{\ast} C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>B</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>B_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>i</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{in}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>X</mi> <mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>X^{out}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>+</mo><msubsup><mi>B</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n = j_*C_n^c + B_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>T_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊕</mo><msub><mi>S</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>H_2(\tilde{X}) = j_*H_2(X) \oplus S_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c = j_*C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mo>+</mo><mi>T</mi><mo>+</mo><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>P+ T +\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_1(T^2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi></mrow><annotation encoding='application/x-tex'>S</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mi>S</mi><mo stretchy="false">|</mo></mrow><annotation encoding='application/x-tex'>|S|</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Y</mi></mrow><annotation encoding='application/x-tex'>Y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi></mrow><annotation encoding='application/x-tex'>k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>k</mi></msub><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_k(Y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>∈</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo>=</mo><mi>W</mi><mo stretchy="false">/</mo><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2 = W/ \Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi><mo>:</mo><mi>R</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>→</mo><mi>M</mi></mrow><annotation encoding='application/x-tex'>\pi: R\times T^2 \to M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>α</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\alpha]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi></mrow><annotation encoding='application/x-tex'>y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo stretchy="false">→</mo></mover></mrow><annotation encoding='application/x-tex'>\overrightarrow{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mi>x</mi><mi>y</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{xy}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>α</mi></mrow><annotation encoding='application/x-tex'>\alpha</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>→</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>W \to T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>P</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{P}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>P</mi></msub><mi>Ω</mi><mo>=</mo><msub><mo>∫</mo> <mover><mi>P</mi><mo>˜</mo></mover></msub><mi>Ω</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>⊂</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\gamma_0 \subset T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>×</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">]</mo><mo>⊂</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>×</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\gamma_0 \times [0,1] \subset T^2 \times R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f^{-1}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup></mrow><annotation encoding='application/x-tex'>f^{-1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">)</mo><mo stretchy="false">|</mo><merror><mtext>Unknown character</mtext></merror><mn>2</mn></mrow><annotation encoding='application/x-tex'>|\tr(f^{-1})| >2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mi>e</mi><mi>t</mi><mo stretchy="false">(</mo><mi>I</mi><mo>−</mo><mi>f</mi><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">tr</mo><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo><mo>−</mo><mn>2</mn><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\det(f^{-1} -I)= det( I - f) = \tr(f) -2 \neq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mi>det</mi><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N= \det(f^{-1} -I)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo>=</mo><mi>N</mi><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><msup><mo stretchy="false">)</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mo stretchy="false">[</mo><msub><mi>α</mi> <mn>0</mn></msub><mo stretchy="false">]</mo><mo stretchy="false">)</mo><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>[\gamma_0] = N \{(f^{-1} - I)^{-1} ([\alpha_0]) \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub><mo>∈</mo><mo stretchy="false">[</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>\gamma_0 \in [\gamma_0]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>h_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>γ</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>\gamma_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>c_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>c_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>=</mo><mi>N</mi><msub><mi>h</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_1 = Nh_1(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>2</mn></msub><mo>=</mo><msub><mi>h</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c_2=h_2(0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>d \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>c</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d =f^{-1}(c_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>,</mo><msub><mi>c</mi> <mn>2</mn></msub><mo>,</mo><mi>d</mi></mrow><annotation encoding='application/x-tex'>0,c_2,d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mover><mi>T</mi><mo>˜</mo></mover><mo>=</mo><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>2</mn></msub></mrow><mo>¯</mo></mover><mo>+</mo><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover><mo>−</mo><mover><mrow><mn>0</mn><mi>d</mi></mrow><mo>¯</mo></mover><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
7
|
+
\partial \widetilde{T} = \overline{0c_2} + \overline{c_2d} - \overline{0d}.
|
8
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>π</mi></mrow><annotation encoding='application/x-tex'>\pi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>h</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>h_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><mn>0</mn><msub><mi>c</mi> <mn>1</mn></msub></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{0c_1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mrow><msub><mi>c</mi> <mn>2</mn></msub><mi>d</mi></mrow><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{c_2d}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>N\alpha_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mo stretchy="false">(</mo><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>−</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo>+</mo><msub><mi>α</mi> <mn>0</mn></msub><mo>−</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>N</mi><msub><mi>α</mi> <mn>0</mn></msub><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
9
|
+
\partial (\mathcal{M}(\gamma_0) + T ) = f^{-1}(\gamma_0) -\gamma_0 +\gamma_0 + \alpha_0 - f^{-1}(\gamma_0)= N\alpha_0.
|
10
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mn>0</mn></msub><mo>=</mo><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>A_0 = \mathcal{M}(\gamma_0) +T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mo stretchy="false">(</mo><mi>N</mi><mi>P</mi><mo>+</mo><msub><mi>A</mi> <mn>0</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>P</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>T</mi><mo>+</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><mi>ℳ</mi><mo stretchy="false">(</mo><msub><mi>γ</mi> <mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Z</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>M</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Z_1(M,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='block'><semantics><mrow><mo>∂</mo><mi>A</mi><mo>=</mo><mi>α</mi><mo>.</mo></mrow><annotation encoding='application/x-tex'>
|
11
|
+
\partial A = \alpha.
|
12
|
+
</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>T</mi><mo>˜</mo></mover></mrow><annotation encoding='application/x-tex'>\widetilde{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℳ</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{M}(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">⟨</mo><mi>A</mi><mo>,</mo><mi>b</mi><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\Lk(a,b) = \langle A,b \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>a,b \in H_1(T^2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">Z</mo> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\Z^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi></mrow><annotation encoding='application/x-tex'>b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>R \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>×</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>a=a(0)=0 \times a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>=</mo><mi>b</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>×</mo><mi>b</mi></mrow><annotation encoding='application/x-tex'>b=b(\eps)= \eps \times b</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(a, b(\epsilon))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>(f^{-1} - I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>M</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msup><mi>f</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>I</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial M(c) = (f^{-1} - I) (c) =a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ε</mi><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\epsilon \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>⋅</mo></mrow><annotation encoding='application/x-tex'>\cdot</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\langle \cdot, \cdot \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2,\Q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>∈</mo><mi>S</mi><mi>L</mi><mo stretchy="false">(</mo><mn>2</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>f \in SL(2,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><msup><mi>T</mi> <mn>2</mn></msup><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_1(T^2, \Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><mo>∂</mo><msub><mi>C</mi> <mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(\partial C_n, \partial C_m)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>J</mi><mi>x</mi></mrow><annotation encoding='application/x-tex'>Jx</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>Λ</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\Lambda_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>J</mi><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(Jx,x)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>u</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><msqrt><mi>p</mi></msqrt><mn>0</mn><mn>0</mn><mn>0</mn></mrow><annotation encoding='application/x-tex'>u= \kzxz{\sqrt{p}}{0}{0}{0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>0</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>′</mo></mrow><mn>0</mn><mo>;</mo><mspace width="thickmathspace"/><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><mi>K</mi><mo stretchy="false">}</mo><mo>≃</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>W = \{ \kzxz{0}{\la}{-\la'}{0};\; \la \in K \} \simeq K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mo>=</mo><mfrac><mn>1</mn><msqrt><mi>p</mi></msqrt></mfrac><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mi>μ</mi><mo>′</mo><mo>−</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>′</mo><mi>μ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu' - \la'\mu)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo>=</mo><mrow><mo>{</mo><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">kzxz</mo><mn>1</mn><mo lspace="0em" rspace="thinmathspace">la</mo><mn>0</mn><mn>1</mn><mo>}</mo></mrow></mrow><annotation encoding='application/x-tex'>N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi><mo>∈</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>\mu \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo stretchy="false">)</mo><mi>μ</mi><mo>=</mo><mi>μ</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>n(\la) \mu = \mu + \langle \la, \mu \rangle u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>μ</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_{\mu}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>R</mi><mi>μ</mi><mo>=</mo><mo stretchy="false">{</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>K</mi> <mi>R</mi></msub><mo>;</mo><mspace width="thickmathspace"/><mo stretchy="false">⟨</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><mi>μ</mi><mo stretchy="false">⟩</mo><mo>=</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>𝒪</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo></mrow><annotation encoding='application/x-tex'>\eps</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo>+</mo></msub></mrow><annotation encoding='application/x-tex'>U_+</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>𝒪</mi> <mi>K</mi></msub></mrow><annotation encoding='application/x-tex'>\mathcal{O}_K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>′</mo></mrow><annotation encoding='application/x-tex'>\eps'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo>≡</mo><mn>1</mn><mrow><mo lspace="mediummathspace">(</mo><mo rspace="thinmathspace">mod</mo><mn>4</mn><mo rspace="mediummathspace">)</mo></mrow></mrow><annotation encoding='application/x-tex'>d \equiv 1 \pmod{4}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>m=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>C_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>1</mn><mo>∈</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>x =1 \in K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>1</mn></msub><mo>≃</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">back</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>C_1 \simeq SL_2(\Z) \back \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>min</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\min'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">⟨</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">⟩</mo></mrow><annotation encoding='application/x-tex'>\langle\,,\, \rangle</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>m</mi></mrow><annotation encoding='application/x-tex'>m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>U=V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi><mo>=</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>U=W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>G = \SO_0(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi><mo>=</mo><mi>G</mi><mo stretchy="false">/</mo><mi>K</mi></mrow><annotation encoding='application/x-tex'>D=G/K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\tau \in \h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∈</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z\in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi \in \calS(U_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>g</mi><msub><mo>′</mo> <mi>τ</mi></msub><mo>∈</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>g'_{\tau} \in SL_2(R)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>φ</mi> <mn>0</mn></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi^0(x) = \varphi(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>g</mi> <mi>z</mi></msub><mo>∈</mo><mi>G</mi></mrow><annotation encoding='application/x-tex'>g_z \in G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>z</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>z_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∈</mo><mi>D</mi></mrow><annotation encoding='application/x-tex'>z \in D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo>∈</mo><mo stretchy="false">[</mo><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>U</mi> <mi>R</mi></msub><mo stretchy="false">)</mo><mo>⊗</mo><mi>E</mi><msup><mo stretchy="false">]</mo> <mi>K</mi></msup></mrow><annotation encoding='application/x-tex'>\varphi \in [\calS(U_{R}) \otimes E]^K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>E</mi></mrow><annotation encoding='application/x-tex'>E</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>U_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi(x,\tau,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>U</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>D</mi><mo>,</mo><mi>τ</mi><mo>∈</mo><mi>ℍ</mi></mrow><annotation encoding='application/x-tex'>x \in U, z \in D, \tau \in \mathbb{H}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi><mo>=</mo><mi>𝔨</mi><mo>⊕</mo><mi>𝔭</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi></mrow><annotation encoding='application/x-tex'>K</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔤</mi><mo>≃</mo><mo lspace="0em" rspace="thinmathspace">wwedge</mo><mn>2</mn><msub><mi>V</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>\mathfrak{g} \simeq \wwedge{2} V_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>e</mi> <mi>i</mi></msub><mo>∧</mo><msub><mi>e</mi> <mi>j</mi></msub><mo>∈</mo><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>X_{ij} = e_i \wedge e_j \in \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔭</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{p}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>X_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>1 \leq i \leq 2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn><mo>≤</mo><mi>j</mi><mo>≤</mo><mn>4</mn></mrow><annotation encoding='application/x-tex'>3 \leq j \leq 4</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\omega_{ij}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>13</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>14</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>23</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>D</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calA^2(D)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>G</mi></mrow><annotation encoding='application/x-tex'>G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>:</mo><mo>=</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub></mrow></msup></mrow><annotation encoding='application/x-tex'>\varphi_0(x) := e^{-\pi(x,x)_{0}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><msub><mo stretchy="false">)</mo> <mn>0</mn></msub><mo>=</mo><msubsup><mo>∑</mo> <mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow> <mn>4</mn></msubsup><msubsup><mi>x</mi> <mi>i</mi> <mn>2</mn></msubsup></mrow><annotation encoding='application/x-tex'>(x,x)_0= \sum_{i=1}^4 x_i^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>L</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(L)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>SL_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>V</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(V_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi></mrow><annotation encoding='application/x-tex'>L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">h</mo></mrow><annotation encoding='application/x-tex'>\h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x\ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∉</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mo stretchy="false">[</mo><msub><mi>e</mi> <mn>3</mn></msub><mo>,</mo><msub><mi>e</mi> <mn>4</mn></msub><msup><mo stretchy="false">]</mo> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>x \notin \Span[e_3,e_4]^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>∉</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>z \notin D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(x,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi></mrow><annotation encoding='application/x-tex'>d</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>ψ</mi> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ψ</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>r-2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>r</mi></mrow><annotation encoding='application/x-tex'>r</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><mo>=</mo><mi>φ</mi></mrow><annotation encoding='application/x-tex'>d \tilde{\psi} = \varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mi>q</mi></msub></mrow><annotation encoding='application/x-tex'>\varphi_{q}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{q-1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>C_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>⊂</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>W\subset V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(1,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔪</mi><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{m} \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><msub><mo lspace="0em" rspace="thinmathspace">SO</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>M = \SO_0(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo>=</mo><msub><mi>e</mi> <mn>2</mn></msub><mo>∧</mo><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23} = e_2 \wedge e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>{\bf s}_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub><mo>≃</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>D_W \simeq R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Span</mo><mi>x</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>{\bf s} = \Span x(s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi></mrow><annotation encoding='application/x-tex'>s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle></mrow><annotation encoding='application/x-tex'>{\bf s}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>=</mo><mo stretchy="false">{</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>∈</mo><mi>D</mi><mo>;</mo><mspace width="thickmathspace"/><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>⊥</mo><mi>x</mi><mo stretchy="false">}</mo></mrow><annotation encoding='application/x-tex'>D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s} = D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">(</mo><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x({\bf s})) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mstyle mathvariant="bold"><mi mathvariant="bold">s</mi></mstyle><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>{\bf s}(x)=D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mi>R</mi></msub></mrow><annotation encoding='application/x-tex'>W_{R}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mo lspace="0em" rspace="thinmathspace">calA</mo> <mn>1</mn></msup><mo stretchy="false">(</mo><msub><mi>D</mi> <mi>W</mi></msub><mo stretchy="false">)</mo><mo>⊗</mo><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>\calA^1(D_W) \otimes W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\psi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>ψ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>Λ</mi></mfrac></mstyle> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>-\psi_{1,1} - \tfrac12 \Lambda_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mn>0</mn></msubsup><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}^0(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>w</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{w,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><msubsup><mo>∫</mo> <mi>a</mi> <mn>∞</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>u</mi></mrow></msup><msup><mi>u</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>u</mi></mrow><annotation encoding='application/x-tex'>\G(\tfrac12,a) = \int_a^{\infty} e^{-u} u^{-1/2} du</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow><annotation encoding='application/x-tex'>s=1/2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>−</mo><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn><mo stretchy="false">)</mo><msub><mi>x</mi> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A(x)- (1/2) x_2 \frac{x_3}{|x_3|} e^{-\pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><mi>x</mi><mo stretchy="false">|</mo><msup><mi>x</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>|x|x^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mi>n</mi></msup></mrow><annotation encoding='application/x-tex'>C^n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo stretchy="false">|</mo></mfrac></mstyle><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>B'(x) + \tfrac12|x_3|e^{- \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mstyle displaystyle="false"><mfrac><mn>12</mn><mi>x</mi></mfrac></mstyle> <mn>2</mn></msub><mfrac><mrow><msub><mi>x</mi> <mn>3</mn></msub></mrow><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo></mrow></mfrac><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>A'(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{- \pi (x,x)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}'_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>τ</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>v</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>m</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><msup><mi>m</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><msqrt><mi>v</mi></msqrt><mi>x</mi><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mi>π</mi><mi>i</mi><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><mi>τ</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x,\tau,s) = v^{-1/2} m(s) \tilde{\psi}_{0,1}'(m^{-1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo stretchy="false">)</mo><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>(x,x)>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub><mo>⊗</mo><mi>x</mi></mrow><annotation encoding='application/x-tex'>D_{W,x} \otimes x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mrow><mi>W</mi><mo>,</mo><mi>x</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>D_{W,x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>′</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x) + B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>A</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>A(x) + A'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mi>A</mi><mo>+</mo><mi>A</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>X_{23}(B + B') = -(A + A')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(x,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>C^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>W</mi> <mo lspace="0em" rspace="thinmathspace">C</mo></msub></mrow><annotation encoding='application/x-tex'>W_{\C}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>D_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>′</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>K'=\SO(2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>χ</mi></mrow><annotation encoding='application/x-tex'>\chi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">SO</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>≃</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\SO(2) \simeq U(1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>B(x)+B'(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B+B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>L</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>L^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(k')(B+B')</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><msup><mi>χ</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>k</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\omega(k')(B+B')] = \chi^2(k')[B+B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>K</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>K'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>−</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_2^2-x_3^2=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>i</mi></mrow><mrow><mn>4</mn><mi>π</mi></mrow></mfrac><mo>□</mo><mo>+</mo><mi>π</mi><mi>i</mi><msup><mi>r</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>\frac{-i}{4\pi} \square + \pi i r^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>B</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{B}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mn>3</mn></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_3=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mfrac><mo>∂</mo><mrow><mo>∂</mo><msub><mi>x</mi> <mn>3</mn></msub></mrow></mfrac><mi>Γ</mi><mo stretchy="false">(</mo><mstyle displaystyle="false"><mfrac><mn>12</mn><mo>,</mo></mfrac></mstyle><mn>2</mn><mi>π</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mn>2</mn><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt><mo lspace="0em" rspace="thinmathspace">sgn</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">)</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn><mi>π</mi><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup></mrow></msup></mrow><annotation encoding='application/x-tex'>\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = - 2 \sqrt{2\pi} \sgn(x_3) e^{-2 \pi x_3^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi></mrow><annotation encoding='application/x-tex'>B</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">|</mo><msub><mi>x</mi> <mn>3</mn></msub><mo stretchy="false">|</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">(</mo><msubsup><mi>x</mi> <mn>2</mn> <mn>2</mn></msubsup><mo>−</mo><msubsup><mi>x</mi> <mn>3</mn> <mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding='application/x-tex'>|x_3|e^{-\pi(x_2^2-x_3^2)}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>H</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo><mo>=</mo><mo stretchy="false">[</mo><mi>H</mi><mo stretchy="false">(</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">)</mo><mo stretchy="false">]</mo><mo>=</mo><mn>2</mn><mi>i</mi><mo stretchy="false">[</mo><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>H[B+B'] = [H(B+B')]= 2i[B+B']</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝔫</mi><mo>≃</mo><mi>W</mi><mo>∧</mo><mi>R</mi><mi>u</mi><mo>∈</mo><msup><mo>⋀</mo> <mn>2</mn></msup><msub><mi>V</mi> <mi>R</mi></msub><mo>≃</mo><mi>𝔤</mi></mrow><annotation encoding='application/x-tex'>\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\,,\,)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>𝔫</mi> <mo>*</mo></msup><mo>≃</mo><mi>W</mi><mo>∧</mo><mi>R</mi><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>\mathfrak{n}^{\ast} \simeq W \wedge R u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calS</mo><mo stretchy="false">(</mo><msub><mi>W</mi> <mi>R</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\calS(W_{R})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_2,w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><msub><mi>w</mi> <mn>2</mn></msub><msub><mi>e</mi> <mn>2</mn></msub><mo>+</mo><msub><mi>w</mi> <mn>3</mn></msub><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w=w_2e_2+w_3e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\psi_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mrow><mi>ψ</mi><mo>′</mo></mrow> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>{\psi'}_{0,1}^P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\G_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>N</mi></msub></mrow><annotation encoding='application/x-tex'>\G_N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\varphi_{1,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\psi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_{1,1}}(\tau,{\calL_W})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}(\calL_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>B</mi><mo>+</mo><mi>B</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>B+B'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>C^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>X</mi> <mn>23</mn></msub></mrow><annotation encoding='application/x-tex'>X_{23}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi><mo>+</mo><mi>A</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>A+A'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>\calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>\Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\psi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup></mrow><annotation encoding='application/x-tex'>\theta^P_{\phi_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ι</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\iota_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mi>c</mi></msub><msubsup><mi>θ</mi> <mi>ϕ</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi'}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>16</mn><mi>π</mi></mrow></mfrac></mstyle><msubsup><mo>∫</mo> <mn>1</mn> <mn>∞</mn></msubsup><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>s</mi><mi>t</mi></mrow></msup><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>3</mn><mo stretchy="false">/</mo><mn>2</mn></mrow></msup><mi>d</mi><mi>t</mi></mrow><annotation encoding='application/x-tex'>\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{-st}t^{-3/2} dt</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>𝒲</mi><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\mathcal{W}(\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>R</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>R^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>S</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>S^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>3</mn></msup></mrow><annotation encoding='application/x-tex'>H^3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mi>β</mi><mo>=</mo><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>d \beta = \eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M -U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>A</mi><mo>=</mo><mi>a</mi></mrow><annotation encoding='application/x-tex'>\partial A = a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi></mrow><annotation encoding='application/x-tex'>a</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mrow><mi>M</mi><mo>−</mo><mi>V</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>\eta_{M-V}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>M</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>M-V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>M</mi><mo>−</mo><mi>V</mi><mo>,</mo><mo>∂</mo><mo stretchy="false">(</mo><mi>M</mi><mo>−</mo><mi>V</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(M-V, \partial (M-V))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>−</mo><mi>U</mi></mrow><annotation encoding='application/x-tex'>M-U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>β</mi></mrow><annotation encoding='application/x-tex'>\beta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>(\partial C_n)_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>D</mi> <mi>x</mi></msub><mo>∩</mo><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>D_x \cap e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>e</mi> <mrow><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e^{2 \pi n} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>U</mi></mrow><annotation encoding='application/x-tex'>U</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><msub><mi>Ω</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta =\Omega_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\Omega \wedge \tilde{\psi'}_{0,1}(n) =0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,1)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><mi>d</mi><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\eta = d \omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{x+ku}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>c_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>η</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><mi>x</mi><mo>+</mo><mi>k</mi><mi>u</mi></mrow></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mi>x</mi></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>a</mi> <mi>x</mi></msub></mrow></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>μ</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>μ</mi><mo>=</mo><mo>±</mo><msqrt><mrow><mn>2</mn><mi>n</mi></mrow></msqrt></mrow><annotation encoding='application/x-tex'>\mu = \pm \sqrt{2n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mi>M</mi></msub></mrow></msub><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mo>*</mo></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi'}_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo>×</mo><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>U_\eps= (-\eps,\eps) \times T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>d</mi><mo stretchy="false">(</mo><mi>ω</mi><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\eta \wedge \tilde{\psi'}_{0,1}(x) = d(\omega \wedge \tilde{\psi'}_{0,1}(x))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>U</mi> <mo lspace="0em" rspace="thinmathspace">eps</mo></msub></mrow><annotation encoding='application/x-tex'>U_{\eps}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>≠</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g \ne 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi><mo stretchy="false">(</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msup><mo lspace="0em" rspace="thinmathspace">g</mo> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\omega(s,w) \wedge \tilde{\psi'}_{0,1}(\g^{-1}x,s,w)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">g</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>\g=1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>T^2/ c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn><mo>×</mo><msup><mi>S</mi> <mn>1</mn></msup></mrow><annotation encoding='application/x-tex'>0 \times S^1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup></mrow><annotation encoding='application/x-tex'>T^2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>dw_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>D</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>\partial D_{x}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>w_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>c_{e_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><msub><mi>w</mi> <mn>2</mn></msub><mo>,</mo><msub><mi>w</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega(0,w_2,w_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>w</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>w_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>d</mi><msub><mi>w</mi> <mn>2</mn></msub><mo>)</mo></mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><msup><mi>μ</mi> <mn>2</mn></msup></mrow></msup></mrow><annotation encoding='application/x-tex'>\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{- \pi \mu^2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>c</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>ω</mi><mo>=</mo><msub><mo>∫</mo> <mrow><msub><mi>A</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub></mrow></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi><mo>→</mo><mi>R</mi></mrow><annotation encoding='application/x-tex'>W \to R</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>w \mapsto (w,e_2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>T</mi> <mn>2</mn></msup><mo stretchy="false">/</mo><mo>∂</mo><msub><mi>C</mi> <mrow><msub><mi>e</mi> <mn>2</mn></msub></mrow></msub><mo>≃</mo><mi>R</mi><mo stretchy="false">/</mo><mo stretchy="false">(</mo><msub><mi>min</mi> <mrow><mo lspace="0em" rspace="thinmathspace">la</mo><mo>∈</mo><msub><mi>Λ</mi> <mi>W</mi></msub></mrow></msub><mo>′</mo><mo stretchy="false">|</mo><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">la</mo><mo>,</mo><msub><mi>e</mi> <mn>2</mn></msub><mo stretchy="false">)</mo><mo stretchy="false">|</mo><mo stretchy="false">)</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}'|(\la,e_2)|)\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>3</mn></mrow><annotation encoding='application/x-tex'>3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mi>η</mi> <mi>c</mi></msub><mo>∧</mo><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∫</mo> <mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow></msub><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>∧</mo><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\int_{e'(P)} \eta_c \wedge \tilde{\psi'}_{0,1}(n)= \int_{e'(P)} \tilde{\psi'}_{0,1}(n) \wedge \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta = \eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) - V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub><mo>⊃</mo><mo lspace="0em" rspace="thinmathspace">supp</mo><mo stretchy="false">(</mo><msub><mi>η</mi> <mi>c</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P) - V_n \supset \supp (\eta_c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>c</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) - V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi><mi>D</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>PD(c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo><mo>−</mo><msub><mi>V</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>e'(P) -V_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>=</mo><msub><mi>c</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>c=c_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>μ</mi><msub><mi>e</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>x = \mu e_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>e_3 \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s(x )=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>e</mi> <mn>3</mn></msub></mrow><annotation encoding='application/x-tex'>e_3</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mi>R</mi><msub><mi>e</mi> <mn>3</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(0,R e_3)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo>˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\widetilde{\psi}'_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>γ</mi><mo>∈</mo><msub><mi>Γ</mi> <mi>M</mi></msub></mrow></msub><msup><mi>γ</mi> <mo>*</mo></msup><mover><mi>ψ</mi><mo>˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}'_{0,1}(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi></mrow><annotation encoding='application/x-tex'>x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mi>ε</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\epsilon)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>⊂</mo><msub><mi>F</mi> <mi>x</mi></msub><mo>⊂</mo><msub><mi>F</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>c \subset F_x \subset F_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mn>1</mn></msub><mo>,</mo><mi>⋯</mi><mo>,</mo><msub><mi>c</mi> <mi>k</mi></msub></mrow><annotation encoding='application/x-tex'>c_1,\cdots,c_k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>F</mi> <mi>x</mi></msub></mrow><annotation encoding='application/x-tex'>F_x</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></mrow><annotation encoding='application/x-tex'>c_i,1 \leq i \leq k</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub><mo>=</mo><mi>c</mi></mrow><annotation encoding='application/x-tex'>c_i = c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Lk(c,c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>c(\eps)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>c</mi><mo>×</mo><mo stretchy="false">[</mo><mn>0</mn><mo>,</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>c \times [0,\eps]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>c</mi> <mi>i</mi></msub></mrow><annotation encoding='application/x-tex'>c_i</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">eps</mo><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mtext> </mtext><mi>L</mi><mi>k</mi><mo stretchy="false">(</mo><msub><mi>c</mi> <mi>i</mi></msub><mo>,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(c_i, c(\eps)) =\ Lk(c_i, c)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calL</mo><mo>=</mo><mi>L</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><mi>h</mi></mrow><annotation encoding='application/x-tex'>\calL = L+h</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℒ</mi><mo>=</mo><mi>L</mi></mrow><annotation encoding='application/x-tex'>\mathcal{L} = L</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">calL</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\tau,\calL)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">G</mo> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G_0(d)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>δ</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\delta_{h0}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ω</mi> <mn>13</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>14</mn></msub><mo>+</mo><msub><mi>ω</mi> <mn>23</mn></msub><mo>∧</mo><msub><mi>ω</mi> <mn>24</mn></msub></mrow><annotation encoding='application/x-tex'>\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>⊂</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subset SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X,\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Λ</mi><mo stretchy="false">(</mo><mi>C</mi><mo>,</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lambda(C,\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>C_0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mfrac><mn>1</mn><mrow><mn>2</mn><mi>π</mi></mrow></mfrac><msub><mi>δ</mi> <mrow><mi>h</mi><mn>0</mn></mrow></msub><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>-\frac{1}{2\pi}\delta_{h0} [\omega]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>i</mi> <mi>P</mi> <mo>*</mo></msubsup></mrow><annotation encoding='application/x-tex'>i_P^{\ast}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>ψ</mi> <mn>1</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\psi_1}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>L</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>+</mo><msub><mi>L</mi> <mi>W</mi></msub><mo>+</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>L = \Z u + L_W + \Z u'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>h=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mi>z</mi><mo stretchy="false">(</mo><mi>t</mi><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=z(t,0,0)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>0</mn></msub><mo stretchy="false">(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mrow><mo>(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>π</mi><mo stretchy="false">[</mo><msup><mi>t</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn></mrow></msup><msubsup><mi>y</mi> <mn>1</mn> <mn>2</mn></msubsup><mo>+</mo><mn>2</mn><mi>q</mi><mo stretchy="false">(</mo><mi>x</mi><mo>′</mo><mo stretchy="false">)</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><msup><mi>t</mi> <mn>2</mn></msup><msub><mi>y</mi> <mn>1</mn></msub><msup><mo>′</mo> <mn>2</mn></msup><mo stretchy="false">]</mo><mo>)</mo></mrow></mrow><annotation encoding='application/x-tex'>\varphi_0(x,z) = \exp\left(-\pi[ t^{-2}y_1^2+ 2q(x')+t^2y_1'^2]\right)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><msub><mi>y</mi> <mn>1</mn></msub><mi>u</mi><mo>+</mo><mi>x</mi><mo>′</mo><mo>+</mo><msub><mi>y</mi> <mn>1</mn></msub><mo>′</mo><mi>u</mi><mo>′</mo><mo>∈</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>x = y_1u+x'+y_1'u' \in V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>′</mo><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x' \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>θ</mi><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msubsup><mi>ψ</mi> <mn>1</mn> <mi>V</mi></msubsup><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta(\tau,\psi_1^V,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>y</mi><mo>′</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>y'=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>L</mi> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>L_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>y</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>y_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>′</mo><mo>∈</mo><mi>W</mi></mrow><annotation encoding='application/x-tex'>x' \in W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}(\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow></mrow><annotation encoding='application/x-tex'>{ \tilde{\psi}_{0,1}}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{2,0}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}^P(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{{1}}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ℓ</mi><mo>=</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mi>u</mi></mrow><annotation encoding='application/x-tex'>\ell=\Q u</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mi>b</mi><mi>u</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>x = au + x_W + bu'</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>z</mi><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>z=(w,t,s)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mspace width="thinmathspace"/><mo>,</mo><mspace width="thinmathspace"/><msub><mo stretchy="false">)</mo> <mi>s</mi></msub></mrow><annotation encoding='application/x-tex'>(\,,\,)_s</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>W</mi></mrow><annotation encoding='application/x-tex'>W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>b</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>b \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>W</mi></msub></mrow><annotation encoding='application/x-tex'>x_W \in \calL_W</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub></mrow><annotation encoding='application/x-tex'>x_W +(a+h)u \in \calL_V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>h</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo><mo stretchy="false">/</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>h \in \Q/\Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo>∩</mo><msup><mi>u</mi> <mo>⊥</mo></msup></mrow><annotation encoding='application/x-tex'>\calL_V \cap u^{\perp}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∑</mo> <mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow></msub><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>h</mi><mo stretchy="false">)</mo><mi>u</mi><mo>,</mo><mi>z</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>w=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>s</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>s=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>a</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Z</mo></mrow><annotation encoding='application/x-tex'>a \in \Z</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>≠</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k \ne 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>k=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi> <mi>W</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_{0,1}(x_W)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>x</mi> <mi>W</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x_W=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>φ</mi></mrow><annotation encoding='application/x-tex'>\varphi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding='application/x-tex'>\phi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow><annotation encoding='application/x-tex'>\phi_{0,1}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo><mo>,</mo><msub><mo>∑</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><msubsup><mi>θ</mi> <mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>C</mi> <mo>•</mo></msup></mrow><annotation encoding='application/x-tex'>C^{\bullet}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(\theta_{\varphi},\theta_{\phi})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi},\theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><msup><mi>C</mi> <mo>•</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(C^{\bullet})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2_c(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo stretchy="false">)</mo><mo>=</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\overline{X}) = H^2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[[\theta_{\varphi}, \theta_{\phi}]]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>τ</mi></mrow><annotation encoding='application/x-tex'>\tau</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo><mo stretchy="false">(</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}](\tau)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo><mo stretchy="false">(</mo><mi>N</mi><mo stretchy="false">)</mo><mo>⊆</mo><mi>S</mi><msub><mi>L</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\G(N) \subseteq SL_2(\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>,</mo><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover><mo>,</mo><mo lspace="0em" rspace="thinmathspace">Z</mo><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\overline{X},\partial \overline{X},\Z)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi}, \theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>#</mo></msub><mo>:</mo><msubsup><mi>H</mi> <mi>c</mi> <mn>2</mn></msubsup><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>→</mo><msup><mi>H</mi> <mn>2</mn></msup><mo stretchy="false">(</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\#}: H_c^2(X) \to H^2(\tilde{X})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>j_{\ast} C_n^c = T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>ω</mi><mo stretchy="false">]</mo><mo>=</mo><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>[\omega] = \PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">PD</mo><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\PD(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ω</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\omega}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi></mrow><annotation encoding='application/x-tex'>M</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>N(C)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>M</mi><mo>=</mo><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>M = \tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Λ</mi></mrow><annotation encoding='application/x-tex'>\Lambda</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>≃</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo stretchy="false">/</mo><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mo>∂</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>j</mi> <mo>*</mo></msub><msub><mi>H</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>j_{\ast} H_2(X)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mi>X</mi></mrow><annotation encoding='application/x-tex'>\partial X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow></mrow><annotation encoding='application/x-tex'>{\partial C_y}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(C^c_n \cdot C_y)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>,</mo><msub><mi>C</mi> <mi>y</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∑</mo> <mrow><mo stretchy="false">[</mo><mi>P</mi><mo stretchy="false">]</mo></mrow></msub><mo lspace="0em" rspace="thinmathspace">Lk</mo><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo>,</mo><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><mo stretchy="false">(</mo><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub><msub><mo stretchy="false">)</mo> <mi>P</mi></msub></mrow></msub><msubsup><mi>θ</mi> <mi>ϕ</mi> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mrow><msub><mi>W</mi> <mi>P</mi></msub></mrow></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>\partial C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>A</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>A_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>C</mi> <mi>y</mi></msub></mrow><annotation encoding='application/x-tex'>C_n^c \cdot C_y</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub></mrow><annotation encoding='application/x-tex'>T^c_n \cdot T_m</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mn>∞</mn></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_{\infty}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub><mo>=</mo><mo stretchy="false">(</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>C</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X = (C_n \cdot C_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><msub><mi>T</mi> <mi>n</mi></msub><mo>⋅</mo><msub><mi>T</mi> <mi>m</mi></msub><msub><mo stretchy="false">)</mo> <mi>X</mi></msub></mrow><annotation encoding='application/x-tex'>(T_n \cdot T_m)_X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>y</mi></msub></mrow></msub><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub><mo stretchy="false">(</mo><mi>τ</mi><mo>,</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>V</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>Λ</mi> <mi>c</mi></msup></mrow><annotation encoding='application/x-tex'>\Lambda^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>\varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>(p,q)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ψ</mi></mrow><annotation encoding='application/x-tex'>\psi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{\psi}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ξ</mi></mrow><annotation encoding='application/x-tex'>\xi</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>O</mi><mi>r</mi><mi>t</mi><mi>h</mi><mo stretchy="false">(</mo><mi>p</mi><mo>,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>Orth(p,2)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mo>∑</mo> <mrow><mi>x</mi><mo>∈</mo><msub><mo lspace="0em" rspace="thinmathspace">calL</mo> <mi>n</mi></msub></mrow></msub><mi>ξ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n) = \sum_{x\in\calL_n} \xi(x)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow><annotation encoding='application/x-tex'>C_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><msup><mi>d</mi> <mi>c</mi></msup><mi>ξ</mi><mo>=</mo><msub><mi>φ</mi> <mn>2</mn></msub></mrow><annotation encoding='application/x-tex'>dd^c \xi = \varphi_2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mo>=</mo><mstyle displaystyle="false"><mfrac><mn>1</mn><mrow><mn>4</mn><mi>π</mi><mi>i</mi></mrow></mfrac></mstyle><mo stretchy="false">(</mo><mo>∂</mo><mo>−</mo><mover><mo>∂</mo><mo>¯</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>d^c = \tfrac{1}{4\pi i}(\partial - \overline{\partial})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><mi>ξ</mi><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \xi = \tilde{\psi}_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>d</mi> <mi>c</mi></msup><msub><mi>φ</mi> <mn>0</mn></msub><mo>=</mo><mo>−</mo><msub><mi>ψ</mi> <mn>1</mn></msub></mrow><annotation encoding='application/x-tex'>d^c \varphi_0 = -\psi_1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>∈</mo><mo lspace="0em" rspace="thinmathspace">Q</mo></mrow><annotation encoding='application/x-tex'>n \in \Q</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><msubsup><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow> <mi>P</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\pi^{\ast} \phi^P_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo>∂</mo><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\partial \overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi></mrow><annotation encoding='application/x-tex'>f</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>=</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>t=\infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi_2^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi></mrow><annotation encoding='application/x-tex'>n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><msub><mi>θ</mi> <mi>φ</mi></msub><mo>,</mo><msub><mi>θ</mi> <mi>ϕ</mi></msub><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[\theta_{\varphi},\theta_{\phi}]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo>′</mo><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e'(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>η</mi> <mi>P</mi></msub></mrow><annotation encoding='application/x-tex'>\eta_P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>e</mi><mo stretchy="false">(</mo><mi>P</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>e(P)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>N</mi></mrow><annotation encoding='application/x-tex'>N</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>θ</mi> <mrow><msub><mi>φ</mi> <mn>2</mn></msub></mrow></msub></mrow><annotation encoding='application/x-tex'>\theta_{\varphi_2}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><merror><mtext>Unknown character</mtext></merror><mn>0</mn></mrow><annotation encoding='application/x-tex'>n>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>C^c_n</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1^c(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>2</mn></mrow><annotation encoding='application/x-tex'>2</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo>¯</mo></mover></mrow><annotation encoding='application/x-tex'>\overline{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n\leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>φ</mi> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\varphi^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>2</mn> <mi>c</mi></msubsup><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}^c_{2}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>n</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>n \leq 0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><mi>∅</mi></mrow><annotation encoding='application/x-tex'>C_n^c = \emptyset</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>x=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>Ξ</mi><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\Xi(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>T</mi> <mi>n</mi> <mi>c</mi></msubsup></mrow><annotation encoding='application/x-tex'>T_n^c</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mover><mi>X</mi><mo stretchy="false">˜</mo></mover></mrow><annotation encoding='application/x-tex'>\tilde{X}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>X</mi></mrow><annotation encoding='application/x-tex'>X</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>P</mi></mrow><annotation encoding='application/x-tex'>P</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub></mrow><annotation encoding='application/x-tex'>\rho_{T}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">calF</mo></mrow><annotation encoding='application/x-tex'>\calF</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="0em" rspace="thinmathspace">G</mo></mrow><annotation encoding='application/x-tex'>\G</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>D</mi></mrow><annotation encoding='application/x-tex'>D</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>1</mn></mrow><annotation encoding='application/x-tex'>1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi><mo>≤</mo><mi>T</mi></mrow><annotation encoding='application/x-tex'>t\leq T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mn>0</mn></mrow><annotation encoding='application/x-tex'>0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>T+1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub><mi>η</mi></mrow><annotation encoding='application/x-tex'>\rho_T\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mrow><mo>(</mo><msub><mo>∫</mo> <mrow><msub><mi>C</mi> <mi>n</mi></msub></mrow></msub><mi>η</mi><mo>)</mo></mrow><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mn>2</mn><mi>π</mi><mi>n</mi></mrow></msup></mrow><annotation encoding='application/x-tex'>\left(\int_{C_n} \eta\right)e^{-2\pi n}</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi><mo>→</mo><mn>∞</mn></mrow><annotation encoding='application/x-tex'>T \to \infty</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>d</mi><mo stretchy="false">(</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mi>η</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mo>′</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mi>d</mi><mi>t</mi><mo>∧</mo><mi>η</mi><mo lspace="verythinmathspace" rspace="0em">+</mo><msub><mi>ρ</mi> <mi>T</mi></msub><mi>d</mi><mi>η</mi></mrow><annotation encoding='application/x-tex'>d(\rho_T \eta) = \rho_T'(t) dt \wedge \eta + \rho_T d\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ρ</mi> <mi>T</mi></msub><mo>′</mo><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding='application/x-tex'>\rho_T'(t)=0</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo stretchy="false">[</mo><mi>T</mi><mo>,</mo><mi>T</mi><mo>+</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding='application/x-tex'>[T,T+1]</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>T</mi></mrow><annotation encoding='application/x-tex'>T</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>f</mi><mo>≡</mo><mn>1</mn></mrow><annotation encoding='application/x-tex'>f \equiv 1</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>π</mi> <mo>*</mo></msup><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mi>O</mi><mo stretchy="false">(</mo><msup><mi>e</mi> <mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>C</mi><mi>t</mi></mrow></msup><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{-Ct})</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>+</mo><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover><msub><mo>′</mo> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}'_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msub><mover><mi>ψ</mi><mo stretchy="false">˜</mo></mover> <mn>1</mn></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo><mo>−</mo><mi>f</mi><msup><mi>π</mi> <mo>*</mo></msup><msub><mi>ϕ</mi> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>\tilde{\psi}_1(n) - f \pi^{\ast}\phi_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><msup><mi>π</mi> <mo>*</mo></msup><msub><mover><mrow><mi>ψ</mi><mo>′</mo></mrow><mo stretchy="false">˜</mo></mover> <mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy="false">(</mo><mi>n</mi><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>-\pi^{\ast} \tilde{\psi'}_{0,1}(n)</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>t</mi></mrow><annotation encoding='application/x-tex'>t</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi><mo>=</mo><mi>Ω</mi></mrow><annotation encoding='application/x-tex'>\eta = \Omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>η</mi></mrow><annotation encoding='application/x-tex'>\eta</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><mi>ω</mi></mrow><annotation encoding='application/x-tex'>\omega</annotation></semantics></math><math xmlns='http://www.w3.org/1998/Math/MathML' display='inline'><semantics><mrow><msubsup><mi>C</mi> <mi>n</mi> <mi>c</mi></msubsup><mo>=</mo><msub><mi>C</mi> <mi>n</mi></msub><mo>∐</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><msub><mi>A</mi> <mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding='application/x-tex'>C_n^c = C_n \coprod (-A_n)</annotation></semantics></math>
|
@@ -0,0 +1,244 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
#
|
3
|
+
# Copyright (c) Vicent Marti. All rights reserved.
|
4
|
+
#
|
5
|
+
# This file is part of clar, distributed under the ISC license.
|
6
|
+
# For full terms see the included COPYING file.
|
7
|
+
#
|
8
|
+
|
9
|
+
from __future__ import with_statement
|
10
|
+
from string import Template
|
11
|
+
import re, fnmatch, os, codecs, pickle
|
12
|
+
|
13
|
+
class Module(object):
|
14
|
+
class Template(object):
|
15
|
+
def __init__(self, module):
|
16
|
+
self.module = module
|
17
|
+
|
18
|
+
def _render_callback(self, cb):
|
19
|
+
if not cb:
|
20
|
+
return ' { NULL, NULL }'
|
21
|
+
return ' { "%s", &%s }' % (cb['short_name'], cb['symbol'])
|
22
|
+
|
23
|
+
class DeclarationTemplate(Template):
|
24
|
+
def render(self):
|
25
|
+
out = "\n".join("extern %s;" % cb['declaration'] for cb in self.module.callbacks) + "\n"
|
26
|
+
|
27
|
+
if self.module.initialize:
|
28
|
+
out += "extern %s;\n" % self.module.initialize['declaration']
|
29
|
+
|
30
|
+
if self.module.cleanup:
|
31
|
+
out += "extern %s;\n" % self.module.cleanup['declaration']
|
32
|
+
|
33
|
+
return out
|
34
|
+
|
35
|
+
class CallbacksTemplate(Template):
|
36
|
+
def render(self):
|
37
|
+
out = "static const struct clar_func _clar_cb_%s[] = {\n" % self.module.name
|
38
|
+
out += ",\n".join(self._render_callback(cb) for cb in self.module.callbacks)
|
39
|
+
out += "\n};\n"
|
40
|
+
return out
|
41
|
+
|
42
|
+
class InfoTemplate(Template):
|
43
|
+
def render(self):
|
44
|
+
return Template(
|
45
|
+
r"""
|
46
|
+
{
|
47
|
+
"${clean_name}",
|
48
|
+
${initialize},
|
49
|
+
${cleanup},
|
50
|
+
${cb_ptr}, ${cb_count}, ${enabled}
|
51
|
+
}"""
|
52
|
+
).substitute(
|
53
|
+
clean_name = self.module.clean_name(),
|
54
|
+
initialize = self._render_callback(self.module.initialize),
|
55
|
+
cleanup = self._render_callback(self.module.cleanup),
|
56
|
+
cb_ptr = "_clar_cb_%s" % self.module.name,
|
57
|
+
cb_count = len(self.module.callbacks),
|
58
|
+
enabled = int(self.module.enabled)
|
59
|
+
)
|
60
|
+
|
61
|
+
def __init__(self, name):
|
62
|
+
self.name = name
|
63
|
+
|
64
|
+
self.mtime = 0
|
65
|
+
self.enabled = True
|
66
|
+
self.modified = False
|
67
|
+
|
68
|
+
def clean_name(self):
|
69
|
+
return self.name.replace("_", "::")
|
70
|
+
|
71
|
+
def _skip_comments(self, text):
|
72
|
+
SKIP_COMMENTS_REGEX = re.compile(
|
73
|
+
r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"',
|
74
|
+
re.DOTALL | re.MULTILINE)
|
75
|
+
|
76
|
+
def _replacer(match):
|
77
|
+
s = match.group(0)
|
78
|
+
return "" if s.startswith('/') else s
|
79
|
+
|
80
|
+
return re.sub(SKIP_COMMENTS_REGEX, _replacer, text)
|
81
|
+
|
82
|
+
def parse(self, contents):
|
83
|
+
TEST_FUNC_REGEX = r"^(void\s+(test_%s__(\w+))\s*\(\s*void\s*\))\s*\{"
|
84
|
+
|
85
|
+
contents = self._skip_comments(contents)
|
86
|
+
regex = re.compile(TEST_FUNC_REGEX % self.name, re.MULTILINE)
|
87
|
+
|
88
|
+
self.callbacks = []
|
89
|
+
self.initialize = None
|
90
|
+
self.cleanup = None
|
91
|
+
|
92
|
+
for (declaration, symbol, short_name) in regex.findall(contents):
|
93
|
+
data = {
|
94
|
+
"short_name" : short_name,
|
95
|
+
"declaration" : declaration,
|
96
|
+
"symbol" : symbol
|
97
|
+
}
|
98
|
+
|
99
|
+
if short_name == 'initialize':
|
100
|
+
self.initialize = data
|
101
|
+
elif short_name == 'cleanup':
|
102
|
+
self.cleanup = data
|
103
|
+
else:
|
104
|
+
self.callbacks.append(data)
|
105
|
+
|
106
|
+
return self.callbacks != []
|
107
|
+
|
108
|
+
def refresh(self, path):
|
109
|
+
self.modified = False
|
110
|
+
|
111
|
+
try:
|
112
|
+
st = os.stat(path)
|
113
|
+
|
114
|
+
# Not modified
|
115
|
+
if st.st_mtime == self.mtime:
|
116
|
+
return True
|
117
|
+
|
118
|
+
self.modified = True
|
119
|
+
self.mtime = st.st_mtime
|
120
|
+
|
121
|
+
with codecs.open(path, encoding='utf-8') as fp:
|
122
|
+
raw_content = fp.read()
|
123
|
+
|
124
|
+
except IOError:
|
125
|
+
return False
|
126
|
+
|
127
|
+
return self.parse(raw_content)
|
128
|
+
|
129
|
+
class TestSuite(object):
|
130
|
+
|
131
|
+
def __init__(self, path):
|
132
|
+
self.path = path
|
133
|
+
|
134
|
+
def should_generate(self, path):
|
135
|
+
if not os.path.isfile(path):
|
136
|
+
return True
|
137
|
+
|
138
|
+
if any(module.modified for module in self.modules.values()):
|
139
|
+
return True
|
140
|
+
|
141
|
+
return False
|
142
|
+
|
143
|
+
def find_modules(self):
|
144
|
+
modules = []
|
145
|
+
for root, _, files in os.walk(self.path):
|
146
|
+
module_root = root[len(self.path):]
|
147
|
+
module_root = [c for c in module_root.split(os.sep) if c]
|
148
|
+
|
149
|
+
tests_in_module = fnmatch.filter(files, "*.c")
|
150
|
+
|
151
|
+
for test_file in tests_in_module:
|
152
|
+
full_path = os.path.join(root, test_file)
|
153
|
+
module_name = "_".join(module_root + [test_file[:-2]]).replace("-", "_")
|
154
|
+
|
155
|
+
modules.append((full_path, module_name))
|
156
|
+
|
157
|
+
return modules
|
158
|
+
|
159
|
+
def load_cache(self):
|
160
|
+
path = os.path.join(self.path, '.clarcache')
|
161
|
+
cache = {}
|
162
|
+
|
163
|
+
try:
|
164
|
+
fp = open(path, 'rb')
|
165
|
+
cache = pickle.load(fp)
|
166
|
+
fp.close()
|
167
|
+
except (IOError, ValueError):
|
168
|
+
pass
|
169
|
+
|
170
|
+
return cache
|
171
|
+
|
172
|
+
def save_cache(self):
|
173
|
+
path = os.path.join(self.path, '.clarcache')
|
174
|
+
with open(path, 'wb') as cache:
|
175
|
+
pickle.dump(self.modules, cache)
|
176
|
+
|
177
|
+
def load(self, force = False):
|
178
|
+
module_data = self.find_modules()
|
179
|
+
self.modules = {} if force else self.load_cache()
|
180
|
+
|
181
|
+
for path, name in module_data:
|
182
|
+
if name not in self.modules:
|
183
|
+
self.modules[name] = Module(name)
|
184
|
+
|
185
|
+
if not self.modules[name].refresh(path):
|
186
|
+
del self.modules[name]
|
187
|
+
|
188
|
+
def disable(self, excluded):
|
189
|
+
for exclude in excluded:
|
190
|
+
for module in self.modules.values():
|
191
|
+
name = module.clean_name()
|
192
|
+
if name.startswith(exclude):
|
193
|
+
module.enabled = False
|
194
|
+
module.modified = True
|
195
|
+
|
196
|
+
def suite_count(self):
|
197
|
+
return len(self.modules)
|
198
|
+
|
199
|
+
def callback_count(self):
|
200
|
+
return sum(len(module.callbacks) for module in self.modules.values())
|
201
|
+
|
202
|
+
def write(self):
|
203
|
+
output = os.path.join(self.path, 'clar.suite')
|
204
|
+
|
205
|
+
if not self.should_generate(output):
|
206
|
+
return False
|
207
|
+
|
208
|
+
with open(output, 'w') as data:
|
209
|
+
for module in self.modules.values():
|
210
|
+
t = Module.DeclarationTemplate(module)
|
211
|
+
data.write(t.render())
|
212
|
+
|
213
|
+
for module in self.modules.values():
|
214
|
+
t = Module.CallbacksTemplate(module)
|
215
|
+
data.write(t.render())
|
216
|
+
|
217
|
+
suites = "static struct clar_suite _clar_suites[] = {" + ','.join(
|
218
|
+
Module.InfoTemplate(module).render() for module in sorted(self.modules.values(), key=lambda module: module.name)
|
219
|
+
) + "\n};\n"
|
220
|
+
|
221
|
+
data.write(suites)
|
222
|
+
|
223
|
+
data.write("static const size_t _clar_suite_count = %d;\n" % self.suite_count())
|
224
|
+
data.write("static const size_t _clar_callback_count = %d;\n" % self.callback_count())
|
225
|
+
|
226
|
+
self.save_cache()
|
227
|
+
return True
|
228
|
+
|
229
|
+
if __name__ == '__main__':
|
230
|
+
from optparse import OptionParser
|
231
|
+
|
232
|
+
parser = OptionParser()
|
233
|
+
parser.add_option('-f', '--force', action="store_true", dest='force', default=False)
|
234
|
+
parser.add_option('-x', '--exclude', dest='excluded', action='append', default=[])
|
235
|
+
|
236
|
+
options, args = parser.parse_args()
|
237
|
+
|
238
|
+
for path in args or ['.']:
|
239
|
+
suite = TestSuite(path)
|
240
|
+
suite.load(options.force)
|
241
|
+
suite.disable(options.excluded)
|
242
|
+
if suite.write():
|
243
|
+
print("Written `clar.suite` (%d tests in %d suites)" % (suite.callback_count(), suite.suite_count()))
|
244
|
+
|