mathematical 0.5.0 → 0.6.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,21 +2,7 @@ module Mathematical
2
2
  module Corrections
3
3
 
4
4
  def apply_corrections(maths)
5
- maths = adjust_alignment(maths)
6
- maths = adjust_frac(maths)
7
5
  maths = adjust_lt_gt(maths)
8
- maths = adjust_limits(maths)
9
- end
10
-
11
- # `{align}` *should* be valid, according to AMS-Latex, but it seems itex@1.5.1 does not like it.
12
- def adjust_alignment(maths)
13
- maths = maths.gsub(/\\begin\{align\}/, "\\begin{aligned}")
14
- maths.gsub(/\\end\{align\}/, "\\end{aligned}")
15
- end
16
-
17
- # seems like KaTeX/MathJax supports \frac\d\d, but itex does not
18
- def adjust_frac(maths)
19
- maths.gsub(/\\frac(\d)(\d)/, '\frac{\1}{\2}')
20
6
  end
21
7
 
22
8
  # from the itex website:
@@ -26,9 +12,5 @@ module Mathematical
26
12
  def adjust_lt_gt(maths)
27
13
  maths.gsub(/</, '\lt').gsub(/>/, '\gt')
28
14
  end
29
-
30
- def adjust_limits(maths)
31
- maths.gsub(/\\int\\limits_/, '\int_')
32
- end
33
15
  end
34
16
  end
@@ -1,3 +1,3 @@
1
1
  module Mathematical
2
- VERSION = "0.5.0"
2
+ VERSION = "0.6.0"
3
3
  end
@@ -4,41 +4,6 @@ class Mathematical::CorrectionsTest < Test::Unit::TestCase
4
4
 
5
5
  def setup
6
6
  @render = Mathematical::Render.new
7
- @slash_maths = '''
8
- $$
9
- \dot{x} & = \sigma(y-x) \\\\
10
- \dot{y} & = \rho x - y - xz \\\\
11
- \dot{z} & = -\beta z + xy
12
- $$
13
- '''
14
-
15
- @aligned_maths = '''
16
- $$
17
- \begin{align}
18
- \dot{x} & = \sigma(y-x) \\\\
19
- \dot{y} & = \rho x - y - xz \\\\
20
- \dot{z} & = -\beta z + xy
21
- \end{align}
22
- $$
23
- '''
24
- end
25
-
26
- def test_expect_slashes_failures
27
- @render.expects(:apply_corrections).returns(@slash_maths)
28
-
29
- printed = capture_stderr do
30
- @render.render @slash_maths
31
- end
32
- assert_match /Failed to parse mtex/, printed
33
- end
34
-
35
- def test_adjust_aligned
36
- assert_no_match /align\}/, @render.apply_corrections(@aligned_maths)
37
- end
38
-
39
- def test_adjust_fracs
40
- simple_frac = '$\frac25$'
41
- assert_match /frac\{2\}\{5\}/, @render.apply_corrections(simple_frac)
42
7
  end
43
8
 
44
9
  def test_adjust_lt_gt
@@ -48,9 +13,4 @@ $$
48
13
  simple_gt = '$|q| > 1$'
49
14
  assert_match /|q| \\gt 1/, @render.apply_corrections(simple_gt)
50
15
  end
51
-
52
- def test_adjust_limits
53
- integral = '\int\limits_{-\pi}^{\pi}'
54
- assert_equal '\int_{-\pi}^{\pi}', @render.apply_corrections(integral)
55
- end
56
16
  end
@@ -103,9 +103,8 @@ compactifying divisors of $\tilde{X}$. The principal result of \cite{HZ} was tha
103
103
  We show $j_{\ast} C_n^c = T_n^c$ (Proposition~\ref{CnTn}), and hence the Hirzebruch-Zagier theorem follows easily from Theorem~\ref{FMHZ-main} above, see Theorem~\ref{HZTheorem}.
104
104
 
105
105
  The main work in \cite{HZ} was to show that the generating function
106
- \[\vspace{-.1cm}
107
- F(\tau) = \sum_{n=0}^{\infty} (T_n^c \cdot T_m) q^n \vspace{-.1cm}
108
- \]
106
+
107
+
109
108
  for the intersection numbers in $\tilde{X}$ of $T^c_n$ with a fixed $T_m$ is a modular form of weight $2$. The Hirzebruch-Zagier proof of the modularity of $F$ was a remarkable synthesis of algebraic geometry, combinatorics, and modular forms. They explicitly computed the intersection numbers $T_n^c \cdot T_m$ as the sum of two terms, $T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}$, where $(T_n \cdot T_m)_X $ is the geometric intersection number of $T_n$ and $T_m$ in the interior of $X$ and $({T}_n \cdot {T}_m)_{\infty}$ which they called the ``contribution from infinity''. They then proved both generating functions $\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n$ and $\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^n$ are the holomorphic parts of two non-holomorphic forms $F_X$ and $F_{\infty}$ with the {\it same} non-holomorphic part (with opposite signs). Hence combining these two forms gives $F(\tau)$.
110
109
 
111
110
  We recover this feature of the original Hirzebruch-Zagier proof via \eqref{mappingconelift} with $C=C_m$. The first term on the right hand side of \eqref{mappingconelift} was studied in the thesis of the first author of this paper \cite{FCompo} and gives the interior intersections $(T_n \cdot T_m)_X$ encoded in $F_X$. So via Theorem~\ref{FMHZ-main} the second term on the right hand side of \eqref{mappingconelift} must match the boundary contribution $F_{\infty}$ in \cite{HZ}, that is, we obtain
@@ -677,13 +676,7 @@ glueing homeomorphism $f \in SL(2,\Z)$ on $H_1(T^2, \Z)$ for linking numbers fo
677
676
 
678
677
  This immediately leads to an explicit formula for the numbers $Lk(\partial C_n, \partial C_m)$. Using Lemma~\ref{LemmaB} we obtain
679
678
 
680
- \begin{theorem}\label{LinkCnCm}
681
- Let $g = (f^{-1} - I)^{-1}$. Then
682
- \[
683
- Lk( (\partial C_n)_P, (\partial C_m)_P) = \sum_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \sum_{\substack{x'\in \G_M \back \mathcal{L}_W \\ (x,x)=2m}} (\min_{\lambda \in \Lambda_W} {\hspace{-5pt}'}
684
- |(\lambda,x)|) (\min_{\mu \in \Lambda_W} {\hspace{-5pt}'}
685
- |(\mu,x')|) \langle g(Jx),Jx' \rangle.
686
- \]
679
+
687
680
  Here $Jx$ is properly oriented primitive vector in $\Lambda_W$ such that $(Jx,x)=0$.
688
681
  \end{theorem}
689
682
 
@@ -1244,10 +1237,7 @@ and $\tilde{\psi'}_{0,1}(n)$ has bidegree $(0,1)$ (here we use the obvious base/
1244
1237
 
1245
1238
  \begin{lemma}\label{LemmaA}
1246
1239
  Under the hypothesis on $\eta$ in Proposition~\ref{finalintegral} we have
1247
- \[
1248
- \int_{A_n} \eta = \sum_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \min_{\la \in \Lambda_W} {\hspace{-5pt}'} |(\la,x)| \int_{a_x} \eta
1249
- \]
1250
- \end{lemma}
1240
+
1251
1241
 
1252
1242
  \begin{proof}
1253
1243
  We use Lemma~\ref{LemmaB}. Write $\eta = d \omega$ for some $1$-form $\omega$ which by the support condition on $\eta$ is closed in $F_n$. Since $c_{x+ku}$ and $c_x$ are parallel hence homologous circles in $F_x$, we see $\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \eta$.
@@ -1262,9 +1252,8 @@ Proposition~\ref{finalintegral} will now follow from
1262
1252
 
1263
1253
  \begin{proposition}
1264
1254
  Under the hypothesis on $\eta$ in Proposition~\ref{finalintegral}, we have for any positive length vector $x \in \calL_W$
1265
- \[
1266
- \int_{e'(P)} \eta \wedge \sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi'}_{0,1}(x) = (\min_{\la \in \Lambda_W} {\hspace{-2pt}'}|(\la,x)|) \left(\int_{a_x} \eta \right) e^{-\pi (x,x)}.
1267
- \]
1255
+
1256
+
1268
1257
  \end{proposition}
1269
1258
 
1270
1259
 
@@ -1296,9 +1285,8 @@ Here $\omega_3$ is the $dw_3$ component of $\omega$ and we used that $\partial D
1296
1285
  of $\omega$ over (homologous) horizontal translates of the cycle $c_{e_2}$. But the restriction of $\omega$ to $F_x$ is closed so $\int_{c_{e_2}} \omega(0,w_2,w_3)$ is independent of $w_2$ and the last integral becomes
1297
1286
  $\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{- \pi \mu^2}$.
1298
1287
  But $\int_{c_{e_2}} \omega = \int_{A_{e_2}} \eta$. The proposition is then a consequence of
1299
- \[
1300
- |\mu| \int_{T^2/ \partial c_{e_2}} dw_2 = |\mu| \min_{\la \in \Lambda_W} {\hspace{-2pt}'} |(\la,e_2)| = \min_{\la \in \Lambda_W} {\hspace{-2pt}'} |(\la,x)|,
1301
- \]
1288
+
1289
+
1302
1290
  which follows from the fact that the map $W \to R$ given by $w \mapsto (w,e_2)$ induces an isomorphism $T^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}'|(\la,e_2)|)\Z$.
1303
1291
 
1304
1292
  \end{proof}
@@ -5,8 +5,9 @@ class Mathematical::MaliciousnessTest < Test::Unit::TestCase
5
5
  def test_it_does_not_error_on_unrecognized_commands
6
6
  render = Mathematical::Render.new
7
7
  output = nil
8
- # In C, we raise a ParseError, but Mathematical suppresses it.
9
- assert_nothing_raised { output = render.render('$\not_real_comment$') }
8
+ # In mtex2MML, we raise a ParseError, but Mathematical suppresses it and returns the string.
9
+ assert_nothing_raised { output = render.render('$not__thisisnotreal$') }
10
+ assert output == '$not__thisisnotreal$'
10
11
  end
11
12
 
12
13
  def test_it_does_not_blow_up_on_bad_arguments
@@ -76,4 +77,13 @@ class Mathematical::MaliciousnessTest < Test::Unit::TestCase
76
77
  render = Mathematical::Render.new.render("No dollars")
77
78
  end
78
79
  end
80
+
81
+ def test_it_returns_unmodified_string_for_max_parsing
82
+ render = Mathematical::Render.new
83
+ output = nil
84
+ # Much like above, this fails in mtx2MML, but should do nothing here
85
+ text = '$\Huge \sqrt\sqrt\sqrt\sqrt\sqrt\sqrt\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}'
86
+ assert_nothing_raised { output = render.render(text) }
87
+ assert output == text
88
+ end
79
89
  end
@@ -0,0 +1,16 @@
1
+ require 'test_helper'
2
+
3
+ class Mathematical::MathJaxTest < Test::Unit::TestCase
4
+
5
+ render = Mathematical::Render.new
6
+
7
+ MATHJAX_TEST_TEST_DIR = File.join('ext', 'mathematical', 'mtex2MML', 'test', 'fixtures', 'MathJax')
8
+ MATHJAX_TEST_TEX_DIR = File.join(MATHJAX_TEST_TEST_DIR, 'LaTeXToMathML-tex')
9
+ puts MATHJAX_TEST_TEX_DIR
10
+ Dir["#{MATHJAX_TEST_TEX_DIR}/**/*.tex"].each do |tex|
11
+ define_method "test_#{tex}" do
12
+ tex_contents = File.read(tex)
13
+ assert_nothing_raised { render.render(tex_contents) }
14
+ end
15
+ end
16
+ end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: mathematical
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.5.0
4
+ version: 0.6.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Garen Torikian
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2014-10-07 00:00:00.000000000 Z
11
+ date: 2014-12-06 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: rake-compiler
@@ -303,12 +303,16 @@ files:
303
303
  - ext/mathematical/lasem/tools/generate-entity-array.c
304
304
  - ext/mathematical/mathematical.c
305
305
  - ext/mathematical/mtex2MML/ext/extconf.rb
306
+ - ext/mathematical/mtex2MML/src/color_definitions.c
307
+ - ext/mathematical/mtex2MML/src/deps/uthash/utarray.h
308
+ - ext/mathematical/mtex2MML/src/deps/uthash/uthash.h
309
+ - ext/mathematical/mtex2MML/src/deps/uthash/utlist.h
310
+ - ext/mathematical/mtex2MML/src/deps/uthash/utstring.h
306
311
  - ext/mathematical/mtex2MML/src/lex.yy.c
307
312
  - ext/mathematical/mtex2MML/src/mtex2MML.h
313
+ - ext/mathematical/mtex2MML/src/mtex2MML_ruby.c
308
314
  - ext/mathematical/mtex2MML/src/parse_extras.c
309
315
  - ext/mathematical/mtex2MML/src/parse_extras.h
310
- - ext/mathematical/mtex2MML/src/stack.c
311
- - ext/mathematical/mtex2MML/src/stack.h
312
316
  - ext/mathematical/mtex2MML/src/string_extras.c
313
317
  - ext/mathematical/mtex2MML/src/string_extras.h
314
318
  - ext/mathematical/mtex2MML/src/y.tab.c
@@ -350,6 +354,7 @@ files:
350
354
  - test/mathematical/fixtures/png/pmatrix.png
351
355
  - test/mathematical/fixtures_test.rb
352
356
  - test/mathematical/maliciousness_test.rb
357
+ - test/mathematical/mathjax_test.rb
353
358
  - test/mathematical/mathml_test.rb
354
359
  - test/mathematical/performance_test.rb
355
360
  - test/mathematical/png_test.rb
@@ -412,6 +417,7 @@ test_files:
412
417
  - test/mathematical/fixtures/png/pmatrix.png
413
418
  - test/mathematical/fixtures_test.rb
414
419
  - test/mathematical/maliciousness_test.rb
420
+ - test/mathematical/mathjax_test.rb
415
421
  - test/mathematical/mathml_test.rb
416
422
  - test/mathematical/performance_test.rb
417
423
  - test/mathematical/png_test.rb
@@ -1,80 +0,0 @@
1
- /*
2
- * File: stack.c
3
- * Author: Robert I. Pitts <rip@cs.bu.edu>
4
- * Last Modified: March 7, 2000
5
- * Topic: Stack - Array Implementation
6
- * ----------------------------------------------------------------
7
- *
8
- * This is an array implementation of a character stack.
9
- */
10
-
11
- #include <stdio.h>
12
- #include <stdlib.h>
13
- #include "stack.h"
14
-
15
- /************************ Function Definitions **********************/
16
-
17
- void StackInit(stackT *stackP, int maxSize)
18
- {
19
- stackElementT *newContents;
20
-
21
- /* Allocate a new array to hold the contents. */
22
-
23
- newContents = (stackElementT *)malloc(sizeof(stackElementT) * maxSize);
24
-
25
- if (newContents == NULL) {
26
- fprintf(stderr, "Insufficient memory to initialize stack.\n");
27
- exit(1); /* Exit, returning error code. */
28
- }
29
-
30
- stackP->contents = newContents;
31
- stackP->maxSize = maxSize;
32
- stackP->top = -1; /* I.e., empty */
33
- }
34
-
35
- void StackDestroy(stackT *stackP)
36
- {
37
- /* Get rid of array. */
38
- free(stackP->contents);
39
-
40
- stackP->contents = NULL;
41
- stackP->maxSize = 0;
42
- stackP->top = -1; /* I.e., empty */
43
- }
44
-
45
- void StackPush(stackT *stackP, stackElementT element)
46
- {
47
- if (StackIsFull(stackP)) {
48
- fprintf(stderr, "Can't push element on stack: stack is full.\n");
49
- exit(1); /* Exit, returning error code. */
50
- }
51
-
52
- /* Put information in array; update top. */
53
-
54
- stackP->contents[++stackP->top] = element;
55
- }
56
-
57
- stackElementT StackPop(stackT *stackP)
58
- {
59
- if (StackIsEmpty(stackP)) {
60
- fprintf(stderr, "Can't pop element from stack: stack is empty.\n");
61
- exit(1); /* Exit, returning error code. */
62
- }
63
-
64
- return stackP->contents[stackP->top--];
65
- }
66
-
67
- int StackIsEmpty(stackT *stackP)
68
- {
69
- return stackP->top < 0;
70
- }
71
-
72
- int StackIsFull(stackT *stackP)
73
- {
74
- return stackP->top >= stackP->maxSize - 1;
75
- }
76
-
77
- stackElementT StackTop(stackT *stackP)
78
- {
79
- return stackP->contents[stackP->top];
80
- }
@@ -1,101 +0,0 @@
1
- /*
2
- * File: stack.h
3
- * Author: Robert I. Pitts <rip@cs.bu.edu>
4
- * Last Modified: March 7, 2000
5
- * Topic: Stack - Array Implementation
6
- * ----------------------------------------------------------------
7
- *
8
- * This is the interface for a stack of characters.
9
- */
10
-
11
- #ifndef _STACK_H
12
- #define _STACK_H
13
-
14
- typedef struct {
15
- char *line;
16
- int line_pos;
17
- } stackElementT;
18
-
19
- /*
20
- * Type: stackElementT
21
- * -------------------
22
- * This is the type of the objects entered in the stack.
23
- * Edit it to change the type of things to be placed in
24
- * the stack.
25
- */
26
-
27
- // typedef char* stackElementT;
28
-
29
- /*
30
- * Type: stackT
31
- * --------------
32
- * This is the type for a stack, i.e., it is a type that
33
- * holds the information necessary to keep track of a stack.
34
- * It has a pointer `contents' to a dynamically-allocated
35
- * array (used to hold the contents of the stack), an integer
36
- * `maxSize' that holds the size of this array (i.e., the
37
- * maximum number of things that can be held in the stack),
38
- * and another integer `top,' which stores the array index of
39
- * the element at the top of the stack.
40
- */
41
-
42
- typedef struct {
43
- stackElementT *contents;
44
- int maxSize;
45
- int top;
46
- } stackT;
47
-
48
- /*
49
- * Function: StackInit
50
- * Usage: StackInit(&stack, maxSize);
51
- * -------------------------
52
- * A new stack variable is initialized. The initialized
53
- * stack is made empty. MaxSize is used to determine the
54
- * maximum number of character that can be held in the
55
- * stack.
56
- */
57
-
58
- void StackInit(stackT *stackP, int maxSize);
59
-
60
- /* Function: StackDestroy
61
- * Usage: StackDestroy(&stack);
62
- * -----------------------
63
- * This function frees all memory associated with the stack.
64
- * The `stack' variable may not be used again unless
65
- * StackInit(&stack, maxSize) is first called on the stack.
66
- */
67
-
68
- void StackDestroy(stackT *stackP);
69
-
70
- /*
71
- * Functions: StackPush, StackPop
72
- * Usage: StackPush(&stack, element); element = StackPop(&stack);
73
- * --------------------------------------------
74
- * These are the fundamental stack operations that add an element to
75
- * the top of the stack and remove an element from the top of the stack.
76
- * A call to StackPop on an empty stack or to StackPush on a full stack
77
- * is an error. Make use of StackIsEmpty()/StackIsFull() (see below)
78
- * to avoid these errors.
79
- */
80
-
81
- void StackPush(stackT *stackP, stackElementT element);
82
- stackElementT StackPop(stackT *stackP);
83
-
84
- /*
85
- * Functions: StackIsEmpty, StackIsFull
86
- * Usage: if (StackIsEmpty(&stack)) ...
87
- * -----------------------------------
88
- * These return a true value if the stack is empty
89
- * or full (respectively).
90
- */
91
-
92
- int StackIsEmpty(stackT *stackP);
93
- int StackIsFull(stackT *stackP);
94
-
95
- // Retrieve the top-most element from the stack
96
- stackElementT StackTop(stackT *stackP);
97
-
98
- // Retrieve the bottom-most element from the stack
99
- stackElementT StackBottom(stackT *stackP);
100
-
101
- #endif /* not defined _STACK_H */