machine_learning_workbench 0.6.0 → 0.6.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
 - data/lib/machine_learning_workbench/neural_network/base.rb +1 -1
 - metadata +1 -1
 
    
        checksums.yaml
    CHANGED
    
    | 
         @@ -1,7 +1,7 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            ---
         
     | 
| 
       2 
2 
     | 
    
         
             
            SHA1:
         
     | 
| 
       3 
     | 
    
         
            -
              metadata.gz:  
     | 
| 
       4 
     | 
    
         
            -
              data.tar.gz:  
     | 
| 
      
 3 
     | 
    
         
            +
              metadata.gz: aa6944de3c6c7e7ef318e456aaf2479ff577773b
         
     | 
| 
      
 4 
     | 
    
         
            +
              data.tar.gz: dce74b8e349c4f15e6a65c32805e8fa6f7e95253
         
     | 
| 
       5 
5 
     | 
    
         
             
            SHA512:
         
     | 
| 
       6 
     | 
    
         
            -
              metadata.gz:  
     | 
| 
       7 
     | 
    
         
            -
              data.tar.gz:  
     | 
| 
      
 6 
     | 
    
         
            +
              metadata.gz: 86858d8e37e499ad296476a92afbaf59ecee6edf9c499c8d1e786ec25d39d676f5852f9faa7f14ed5afeac8f9b8d92a3fd478adb88d85d5d03acb3ca9ac804c6
         
     | 
| 
      
 7 
     | 
    
         
            +
              data.tar.gz: 5bd9161716409f4470d4b5d11aad78c9cf907c2acde8486928d3622f175c20f7fb608e27d33b7ede9fcb2ab9339fc95d8d0f6f4d6940c029793e7a854cfa770d
         
     | 
| 
         @@ -163,7 +163,7 @@ module MachineLearningWorkbench::NeuralNetwork 
     | 
|
| 
       163 
163 
     | 
    
         
             
                ## Activation functions
         
     | 
| 
       164 
164 
     | 
    
         | 
| 
       165 
165 
     | 
    
         
             
                # Traditional sigmoid (logistic) with variable steepness
         
     | 
| 
       166 
     | 
    
         
            -
                def sigmoid k= 
     | 
| 
      
 166 
     | 
    
         
            +
                def sigmoid k=1
         
     | 
| 
       167 
167 
     | 
    
         
             
                  # k is steepness:  0<k<1 is flatter, 1<k is flatter
         
     | 
| 
       168 
168 
     | 
    
         
             
                  # flatter makes activation less sensitive, better with large number of inputs
         
     | 
| 
       169 
169 
     | 
    
         
             
                  -> (vec) { 1.0 / (NMath.exp(-k * vec) + 1.0) }
         
     |