machine_learning_workbench 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.codeclimate.yml +15 -0
- data/.gitignore +11 -0
- data/.rspec +3 -0
- data/.travis.yml +5 -0
- data/Gemfile +6 -0
- data/Gemfile.lock +70 -0
- data/LICENSE.txt +21 -0
- data/README.md +37 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/machine_learning_workbench.rb +19 -0
- data/lib/machine_learning_workbench/compressor.rb +1 -0
- data/lib/machine_learning_workbench/compressor/vector_quantization.rb +74 -0
- data/lib/machine_learning_workbench/monkey.rb +197 -0
- data/lib/machine_learning_workbench/neural_network.rb +3 -0
- data/lib/machine_learning_workbench/neural_network/base.rb +211 -0
- data/lib/machine_learning_workbench/neural_network/feed_forward.rb +20 -0
- data/lib/machine_learning_workbench/neural_network/recurrent.rb +35 -0
- data/lib/machine_learning_workbench/optimizer.rb +7 -0
- data/lib/machine_learning_workbench/optimizer/natural_evolution_strategies/base.rb +112 -0
- data/lib/machine_learning_workbench/optimizer/natural_evolution_strategies/bdnes.rb +104 -0
- data/lib/machine_learning_workbench/optimizer/natural_evolution_strategies/snes.rb +40 -0
- data/lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb +46 -0
- data/lib/machine_learning_workbench/tools.rb +4 -0
- data/lib/machine_learning_workbench/tools/execution.rb +18 -0
- data/lib/machine_learning_workbench/tools/imaging.rb +48 -0
- data/lib/machine_learning_workbench/tools/normalization.rb +22 -0
- data/lib/machine_learning_workbench/tools/verification.rb +11 -0
- data/machine_learning_workbench.gemspec +36 -0
- metadata +216 -0
@@ -0,0 +1,40 @@
|
|
1
|
+
|
2
|
+
module MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies
|
3
|
+
# Separable Natural Evolution Strategies
|
4
|
+
class SNES < Base
|
5
|
+
|
6
|
+
attr_reader :variances
|
7
|
+
|
8
|
+
def initialize_distribution mu_init: 0, sigma_init: 1
|
9
|
+
@mu = NMatrix.new([1, ndims], mu_init, dtype: :float64)
|
10
|
+
sigma_init = [sigma_init]*ndims unless sigma_init.kind_of? Enumerable
|
11
|
+
@variances = NMatrix.new([1,ndims], sigma_init, dtype: :float64)
|
12
|
+
@sigma = NMatrix.diagonal(variances, dtype: :float64)
|
13
|
+
end
|
14
|
+
|
15
|
+
def train picks: sorted_inds
|
16
|
+
g_mu = utils.dot(picks)
|
17
|
+
g_sigma = utils.dot(picks**2 - 1)
|
18
|
+
@mu += sigma.dot(g_mu.transpose).transpose * lrate
|
19
|
+
@variances *= (g_sigma * lrate / 2).exponential
|
20
|
+
@sigma = NMatrix.diagonal(variances, dtype: :float64)
|
21
|
+
end
|
22
|
+
|
23
|
+
# Estimate algorithm convergence as total variance
|
24
|
+
def convergence
|
25
|
+
variances.reduce :+
|
26
|
+
end
|
27
|
+
|
28
|
+
def save
|
29
|
+
[mu.to_consistent_a, variances.to_consistent_a]
|
30
|
+
end
|
31
|
+
|
32
|
+
def load data
|
33
|
+
raise ArgumentError unless data.size == 2
|
34
|
+
mu_ary, variances_ary = data
|
35
|
+
@mu = NMatrix[*mu_ary, dtype: :float64]
|
36
|
+
@variances = NMatrix[*variances_ary, dtype: :float64]
|
37
|
+
@sigma = NMatrix.diagonal(variances, dtype: :float64)
|
38
|
+
end
|
39
|
+
end
|
40
|
+
end
|
@@ -0,0 +1,46 @@
|
|
1
|
+
|
2
|
+
module MachineLearningWorkbench::Optimizer::NaturalEvolutionStrategies
|
3
|
+
# Exponential Natural Evolution Strategies
|
4
|
+
class XNES < Base
|
5
|
+
attr_reader :log_sigma
|
6
|
+
|
7
|
+
def initialize_distribution mu_init: 0, sigma_init: 1
|
8
|
+
@mu = NMatrix.new([1, ndims], mu_init, dtype: :float64)
|
9
|
+
sigma_init = [sigma_init]*ndims unless sigma_init.kind_of? Enumerable
|
10
|
+
@sigma = NMatrix.diag(sigma_init, dtype: :float64)
|
11
|
+
# Works with the log of sigma to avoid continuous decompositions (thanks Sun Yi)
|
12
|
+
log_sigma_init = sigma_init.map &Math.method(:log)
|
13
|
+
@log_sigma = NMatrix.diag(log_sigma_init, dtype: :float64)
|
14
|
+
end
|
15
|
+
|
16
|
+
def train picks: sorted_inds
|
17
|
+
g_mu = utils.dot(picks)
|
18
|
+
g_log_sigma = popsize.times.inject(NMatrix.zeros_like sigma) do |sum, i|
|
19
|
+
u = utils[i]
|
20
|
+
ind = picks.row(i)
|
21
|
+
ind_sq = ind.outer_flat(ind, &:*)
|
22
|
+
sum + (ind_sq - id) * u
|
23
|
+
end
|
24
|
+
@mu += sigma.dot(g_mu.transpose).transpose * lrate
|
25
|
+
@log_sigma += g_log_sigma * (lrate/2)
|
26
|
+
@sigma = log_sigma.exponential
|
27
|
+
end
|
28
|
+
|
29
|
+
# Estimate algorithm convergence as total variance
|
30
|
+
def convergence
|
31
|
+
sigma.trace
|
32
|
+
end
|
33
|
+
|
34
|
+
def save
|
35
|
+
[mu.to_consistent_a, log_sigma.to_consistent_a]
|
36
|
+
end
|
37
|
+
|
38
|
+
def load data
|
39
|
+
raise ArgumentError unless data.size == 2
|
40
|
+
mu_ary, log_sigma_ary = data
|
41
|
+
@mu = NMatrix[*mu_ary, dtype: :float64]
|
42
|
+
@log_sigma = NMatrix[*log_sigma_ary, dtype: :float64]
|
43
|
+
@sigma = log_sigma.exponential
|
44
|
+
end
|
45
|
+
end
|
46
|
+
end
|
@@ -0,0 +1,18 @@
|
|
1
|
+
module MachineLearningWorkbench::Tools
|
2
|
+
module Execution
|
3
|
+
$fork_pids ||= []
|
4
|
+
|
5
|
+
# Execute block in a fork. Be sure to check also `#kill_forks`
|
6
|
+
def self.in_fork &block
|
7
|
+
raise ArgumentError "Need block to be executed in fork" unless block
|
8
|
+
pid = fork(&block)
|
9
|
+
Process.detach pid
|
10
|
+
$fork_pids << pid
|
11
|
+
end
|
12
|
+
|
13
|
+
# Call this in an `ensure` block after using `in_fork`
|
14
|
+
def self.kill_forks
|
15
|
+
$fork_pids&.each { |pid| Process.kill 'KILL', pid }
|
16
|
+
end
|
17
|
+
end
|
18
|
+
end
|
@@ -0,0 +1,48 @@
|
|
1
|
+
module MachineLearningWorkbench::Tools
|
2
|
+
module Imaging
|
3
|
+
Forkable = MachineLearningWorkbench::Tools::Execution
|
4
|
+
Norm = MachineLearningWorkbench::Tools::Normalization
|
5
|
+
|
6
|
+
# Create RMagick::Image from NMatrix data
|
7
|
+
def self.nmat_to_img nmat, shape: nil
|
8
|
+
shape ||= nmat.shape
|
9
|
+
shape = [1, shape] if shape.kind_of?(Integer) || shape.size == 1
|
10
|
+
# `Image::constitute` requires Float pixels to be in [0,1]
|
11
|
+
pixels = Norm.feature_scaling nmat.round(4), to: [0,1]
|
12
|
+
Magick::Image.constitute *shape, "I", pixels.to_flat_a
|
13
|
+
end
|
14
|
+
|
15
|
+
# Create PNG file from NMatrix data
|
16
|
+
def self.nmat_to_png nmat, fname, shape: nil
|
17
|
+
nmat_to_img(nmat, shape: shape).write fname
|
18
|
+
end
|
19
|
+
|
20
|
+
# Show a NMatrix as image in a RMagick window
|
21
|
+
# @param disp_size the size of the image to display
|
22
|
+
# @param shape the true shape of the image (NMatrix could be flattened)
|
23
|
+
# @param in_fork [bool] whether to execute the display in fork (and continue running)
|
24
|
+
def self.display nmat, disp_size: [300, 300], shape: nil, in_fork: true
|
25
|
+
img = nmat_to_img(nmat, shape: shape).resize(*disp_size)
|
26
|
+
if in_fork
|
27
|
+
MachineLearningWorkbench::Tools::Execution.in_fork { img.display }
|
28
|
+
else
|
29
|
+
img.display
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
# Create NMatrix from png by filename.
|
34
|
+
# @param fname the file name
|
35
|
+
# @param scale optional rescaling of the image
|
36
|
+
# @param flat [bool] whether to return a flat array
|
37
|
+
# @param dtype dtype for the NMatrix, leave `nil` for automatic detection
|
38
|
+
def self.nmat_from_png fname, scale: nil, flat: false, dtype: nil
|
39
|
+
img = Magick::ImageList.new(fname).first
|
40
|
+
img.scale!(scale) if scale
|
41
|
+
shape = [img.columns, img.rows]
|
42
|
+
pixels = img.export_pixels(0, 0, *shape, 'I') # 'I' for intensity
|
43
|
+
raise "Sanity check" unless shape.reduce(:*)==pixels.size
|
44
|
+
return pixels.to_nm(nil, dtype) if flat
|
45
|
+
NMatrix.new shape, pixels, dtype: dtype
|
46
|
+
end
|
47
|
+
end
|
48
|
+
end
|
@@ -0,0 +1,22 @@
|
|
1
|
+
module MachineLearningWorkbench::Tools
|
2
|
+
module Normalization
|
3
|
+
def self.feature_scaling nmat, from: nil, to: [0,1]
|
4
|
+
from ||= nmat.minmax
|
5
|
+
old_min, old_max = from
|
6
|
+
new_min, new_max = to
|
7
|
+
res = (nmat-old_min)*(new_max-new_min)/(old_max-old_min)+new_min
|
8
|
+
end
|
9
|
+
|
10
|
+
# @param per_column [bool] wheather to compute stats per-column or matrix-wise
|
11
|
+
def self.z_score nmat, per_column: true
|
12
|
+
raise NotImplementedError unless per_column
|
13
|
+
means = nmat.mean
|
14
|
+
stddevs = nmat.std
|
15
|
+
# address edge case of zero variance
|
16
|
+
stddevs.map! { |v| v.zero? ? 1 : v }
|
17
|
+
mean_mat = means.repeat nmat.rows, 0
|
18
|
+
stddev_mat = stddevs.repeat nmat.rows, 0
|
19
|
+
ret = (nmat - mean_mat) / stddev_mat
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
@@ -0,0 +1,36 @@
|
|
1
|
+
|
2
|
+
lib = File.expand_path("../lib", __FILE__)
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
|
+
|
5
|
+
Gem::Specification.new do |spec|
|
6
|
+
spec.name = "machine_learning_workbench"
|
7
|
+
spec.version = `git describe`
|
8
|
+
spec.authors = ["Giuseppe Cuccu"]
|
9
|
+
spec.email = ["giuseppe.cuccu@gmail.com"]
|
10
|
+
|
11
|
+
spec.summary = %q{Workbench for practical machine learning in Ruby.}
|
12
|
+
spec.description = %q{This workbench holds a collection of machine learning methods in Ruby. Rather than specializing on a single task or method, this gem aims at providing an encompassing framework for any machine learning application.}
|
13
|
+
spec.homepage = "https://github.com/giuse/machine_learning_workbench"
|
14
|
+
spec.license = "MIT"
|
15
|
+
|
16
|
+
spec.files = `git ls-files -z`.split("\x0").reject do |f|
|
17
|
+
f.match(%r{^(test|spec|features)/})
|
18
|
+
end
|
19
|
+
spec.bindir = "exe"
|
20
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
21
|
+
spec.require_paths = ["lib"]
|
22
|
+
|
23
|
+
spec.add_dependency "nmatrix-atlas", "~> 0.2"
|
24
|
+
|
25
|
+
spec.add_development_dependency "bundler", "~> 1.16"
|
26
|
+
spec.add_development_dependency "rake", "~> 10.0"
|
27
|
+
spec.add_development_dependency "rspec", "~> 3.0"
|
28
|
+
spec.add_development_dependency "pry", "~> 0.10"
|
29
|
+
spec.add_development_dependency "pry-nav", "~> 0.2"
|
30
|
+
spec.add_development_dependency "pry-rescue", "~> 1.4"
|
31
|
+
spec.add_development_dependency "pry-stack_explorer", "~> 0.4"
|
32
|
+
|
33
|
+
# currently under trial
|
34
|
+
spec.add_development_dependency "rmagick"
|
35
|
+
spec.add_development_dependency "parallel"
|
36
|
+
end
|
metadata
ADDED
@@ -0,0 +1,216 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: machine_learning_workbench
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Giuseppe Cuccu
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2018-03-06 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: nmatrix-atlas
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '0.2'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '0.2'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: bundler
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.16'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.16'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rake
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '10.0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '10.0'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: rspec
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - "~>"
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '3.0'
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - "~>"
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '3.0'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: pry
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - "~>"
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '0.10'
|
76
|
+
type: :development
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - "~>"
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '0.10'
|
83
|
+
- !ruby/object:Gem::Dependency
|
84
|
+
name: pry-nav
|
85
|
+
requirement: !ruby/object:Gem::Requirement
|
86
|
+
requirements:
|
87
|
+
- - "~>"
|
88
|
+
- !ruby/object:Gem::Version
|
89
|
+
version: '0.2'
|
90
|
+
type: :development
|
91
|
+
prerelease: false
|
92
|
+
version_requirements: !ruby/object:Gem::Requirement
|
93
|
+
requirements:
|
94
|
+
- - "~>"
|
95
|
+
- !ruby/object:Gem::Version
|
96
|
+
version: '0.2'
|
97
|
+
- !ruby/object:Gem::Dependency
|
98
|
+
name: pry-rescue
|
99
|
+
requirement: !ruby/object:Gem::Requirement
|
100
|
+
requirements:
|
101
|
+
- - "~>"
|
102
|
+
- !ruby/object:Gem::Version
|
103
|
+
version: '1.4'
|
104
|
+
type: :development
|
105
|
+
prerelease: false
|
106
|
+
version_requirements: !ruby/object:Gem::Requirement
|
107
|
+
requirements:
|
108
|
+
- - "~>"
|
109
|
+
- !ruby/object:Gem::Version
|
110
|
+
version: '1.4'
|
111
|
+
- !ruby/object:Gem::Dependency
|
112
|
+
name: pry-stack_explorer
|
113
|
+
requirement: !ruby/object:Gem::Requirement
|
114
|
+
requirements:
|
115
|
+
- - "~>"
|
116
|
+
- !ruby/object:Gem::Version
|
117
|
+
version: '0.4'
|
118
|
+
type: :development
|
119
|
+
prerelease: false
|
120
|
+
version_requirements: !ruby/object:Gem::Requirement
|
121
|
+
requirements:
|
122
|
+
- - "~>"
|
123
|
+
- !ruby/object:Gem::Version
|
124
|
+
version: '0.4'
|
125
|
+
- !ruby/object:Gem::Dependency
|
126
|
+
name: rmagick
|
127
|
+
requirement: !ruby/object:Gem::Requirement
|
128
|
+
requirements:
|
129
|
+
- - ">="
|
130
|
+
- !ruby/object:Gem::Version
|
131
|
+
version: '0'
|
132
|
+
type: :development
|
133
|
+
prerelease: false
|
134
|
+
version_requirements: !ruby/object:Gem::Requirement
|
135
|
+
requirements:
|
136
|
+
- - ">="
|
137
|
+
- !ruby/object:Gem::Version
|
138
|
+
version: '0'
|
139
|
+
- !ruby/object:Gem::Dependency
|
140
|
+
name: parallel
|
141
|
+
requirement: !ruby/object:Gem::Requirement
|
142
|
+
requirements:
|
143
|
+
- - ">="
|
144
|
+
- !ruby/object:Gem::Version
|
145
|
+
version: '0'
|
146
|
+
type: :development
|
147
|
+
prerelease: false
|
148
|
+
version_requirements: !ruby/object:Gem::Requirement
|
149
|
+
requirements:
|
150
|
+
- - ">="
|
151
|
+
- !ruby/object:Gem::Version
|
152
|
+
version: '0'
|
153
|
+
description: This workbench holds a collection of machine learning methods in Ruby.
|
154
|
+
Rather than specializing on a single task or method, this gem aims at providing
|
155
|
+
an encompassing framework for any machine learning application.
|
156
|
+
email:
|
157
|
+
- giuseppe.cuccu@gmail.com
|
158
|
+
executables: []
|
159
|
+
extensions: []
|
160
|
+
extra_rdoc_files: []
|
161
|
+
files:
|
162
|
+
- ".codeclimate.yml"
|
163
|
+
- ".gitignore"
|
164
|
+
- ".rspec"
|
165
|
+
- ".travis.yml"
|
166
|
+
- Gemfile
|
167
|
+
- Gemfile.lock
|
168
|
+
- LICENSE.txt
|
169
|
+
- README.md
|
170
|
+
- Rakefile
|
171
|
+
- bin/console
|
172
|
+
- bin/setup
|
173
|
+
- lib/machine_learning_workbench.rb
|
174
|
+
- lib/machine_learning_workbench/compressor.rb
|
175
|
+
- lib/machine_learning_workbench/compressor/vector_quantization.rb
|
176
|
+
- lib/machine_learning_workbench/monkey.rb
|
177
|
+
- lib/machine_learning_workbench/neural_network.rb
|
178
|
+
- lib/machine_learning_workbench/neural_network/base.rb
|
179
|
+
- lib/machine_learning_workbench/neural_network/feed_forward.rb
|
180
|
+
- lib/machine_learning_workbench/neural_network/recurrent.rb
|
181
|
+
- lib/machine_learning_workbench/optimizer.rb
|
182
|
+
- lib/machine_learning_workbench/optimizer/natural_evolution_strategies/base.rb
|
183
|
+
- lib/machine_learning_workbench/optimizer/natural_evolution_strategies/bdnes.rb
|
184
|
+
- lib/machine_learning_workbench/optimizer/natural_evolution_strategies/snes.rb
|
185
|
+
- lib/machine_learning_workbench/optimizer/natural_evolution_strategies/xnes.rb
|
186
|
+
- lib/machine_learning_workbench/tools.rb
|
187
|
+
- lib/machine_learning_workbench/tools/execution.rb
|
188
|
+
- lib/machine_learning_workbench/tools/imaging.rb
|
189
|
+
- lib/machine_learning_workbench/tools/normalization.rb
|
190
|
+
- lib/machine_learning_workbench/tools/verification.rb
|
191
|
+
- machine_learning_workbench.gemspec
|
192
|
+
homepage: https://github.com/giuse/machine_learning_workbench
|
193
|
+
licenses:
|
194
|
+
- MIT
|
195
|
+
metadata: {}
|
196
|
+
post_install_message:
|
197
|
+
rdoc_options: []
|
198
|
+
require_paths:
|
199
|
+
- lib
|
200
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
201
|
+
requirements:
|
202
|
+
- - ">="
|
203
|
+
- !ruby/object:Gem::Version
|
204
|
+
version: '0'
|
205
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
206
|
+
requirements:
|
207
|
+
- - ">="
|
208
|
+
- !ruby/object:Gem::Version
|
209
|
+
version: '0'
|
210
|
+
requirements: []
|
211
|
+
rubyforge_project:
|
212
|
+
rubygems_version: 2.6.11
|
213
|
+
signing_key:
|
214
|
+
specification_version: 4
|
215
|
+
summary: Workbench for practical machine learning in Ruby.
|
216
|
+
test_files: []
|