machine_learner 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +15 -0
- data/.rspec +2 -0
- data/.travis.yml +3 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +31 -0
- data/Rakefile +7 -0
- data/lib/machine_learner/adaboost.rb +115 -0
- data/lib/machine_learner/bayes.rb +72 -0
- data/lib/machine_learner/dataset.rb +24 -0
- data/lib/machine_learner/learner.rb +44 -0
- data/lib/machine_learner/version.rb +3 -0
- data/lib/machine_learner.rb +3 -0
- data/machine_learner.gemspec +27 -0
- data/spec/machine_learner_spec.rb +11 -0
- data/spec/spec_helper.rb +2 -0
- metadata +107 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: ae7126878df4103a2ee33bd433c109970ec39c3e
|
4
|
+
data.tar.gz: 8f33eb69cd5b5f86bebe1659c3e529c789180217
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 73bd4e5130971a2de7766f6c044d1e77792dfcb48e32eb7d16314a63aebfa22b3bf6e69c85c1d646e252e913e45a7637e692e838691ed29ce0719544bbe91616
|
7
|
+
data.tar.gz: 22439d8d45b57399efe48fb4addd0b9411b5b53be0d0c84c46b347719d666328c8be528c86acabe17d23ce116eb14e49bc4063f10f6cf101c002514067d49f5c
|
data/.gitignore
ADDED
data/.rspec
ADDED
data/.travis.yml
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2014 YutaTanaka
|
2
|
+
|
3
|
+
MIT License
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
6
|
+
a copy of this software and associated documentation files (the
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
11
|
+
the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be
|
14
|
+
included in all copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,31 @@
|
|
1
|
+
# MachineLearner
|
2
|
+
|
3
|
+
TODO: Write a gem description
|
4
|
+
|
5
|
+
## Installation
|
6
|
+
|
7
|
+
Add this line to your application's Gemfile:
|
8
|
+
|
9
|
+
```ruby
|
10
|
+
gem 'machine_learner'
|
11
|
+
```
|
12
|
+
|
13
|
+
And then execute:
|
14
|
+
|
15
|
+
$ bundle
|
16
|
+
|
17
|
+
Or install it yourself as:
|
18
|
+
|
19
|
+
$ gem install machine_learner
|
20
|
+
|
21
|
+
## Usage
|
22
|
+
|
23
|
+
TODO: Write usage instructions here
|
24
|
+
|
25
|
+
## Contributing
|
26
|
+
|
27
|
+
1. Fork it ( https://github.com/[my-github-username]/machine_learner/fork )
|
28
|
+
2. Create your feature branch (`git checkout -b my-new-feature`)
|
29
|
+
3. Commit your changes (`git commit -am 'Add some feature'`)
|
30
|
+
4. Push to the branch (`git push origin my-new-feature`)
|
31
|
+
5. Create a new Pull Request
|
data/Rakefile
ADDED
@@ -0,0 +1,115 @@
|
|
1
|
+
#coding utf-8
|
2
|
+
|
3
|
+
require_relative 'dataset.rb'
|
4
|
+
require_relative 'learner.rb'
|
5
|
+
|
6
|
+
module MachineLearner
|
7
|
+
# 複数の識別器から最良のものを自動選択する学習器
|
8
|
+
class SimpleLearner < Learner
|
9
|
+
|
10
|
+
# データを元に学習を行う
|
11
|
+
# classifiersの各戻り値に対し識別を行い、結果のもっともよいものを採用する
|
12
|
+
# @param datas [Array<DataSet>] トレーニングデータの配列
|
13
|
+
# @param ds [Array<Float>] 各トレーナーデータの重みの配列
|
14
|
+
# @return [Array<Boolean>] 識別結果の配列
|
15
|
+
def learn(datas, ds)
|
16
|
+
@log = []
|
17
|
+
enum_classifier(datas, ds) do |cl|
|
18
|
+
results = datas.map{|data| cl.test(data) }
|
19
|
+
epsilon = results.zip(ds).map{|r, w| r ? 0 : w }.inject(:+)
|
20
|
+
@log << {epsilon: epsilon, classifier: cl, results: results}
|
21
|
+
end
|
22
|
+
|
23
|
+
@best = @log.min {|h1, h2| h1[:epsilon] <=> h2[:epsilon] }
|
24
|
+
@best[:results]
|
25
|
+
end
|
26
|
+
|
27
|
+
# 識別器を列挙する
|
28
|
+
# 識別器はyieldでblockに渡す
|
29
|
+
# @param datas [Array<DataSet>] トレーニングデータの配列
|
30
|
+
# @param ds [Array<Float>] 各トレーナーデータの重みの配列
|
31
|
+
def classifiers(datas, ds)
|
32
|
+
raise NotImplementedError.new
|
33
|
+
end
|
34
|
+
|
35
|
+
# 識別器を文字列で表現する
|
36
|
+
# @return [String] 識別器を表す文字列
|
37
|
+
def to_s
|
38
|
+
cl.to_s
|
39
|
+
end
|
40
|
+
|
41
|
+
# 識別を行う
|
42
|
+
# @param x 特徴空間
|
43
|
+
# @return [Fixnum] 識別結果
|
44
|
+
def classify(x)
|
45
|
+
cl.classify(x)
|
46
|
+
end
|
47
|
+
|
48
|
+
private
|
49
|
+
|
50
|
+
# 性能の最も良い識別器を取得する
|
51
|
+
# @return [Classifier] 性能の最も良い識別器を取得する
|
52
|
+
def cl
|
53
|
+
@best[:classifier]
|
54
|
+
end
|
55
|
+
|
56
|
+
# データを識別器に掛けた結果
|
57
|
+
# ハッシュの配列であり、各ハッシュはキー[:classifier, :result, :epsiron]を持つ
|
58
|
+
# @return log [Array<Hash>] 識別結果の配列
|
59
|
+
def log
|
60
|
+
@log
|
61
|
+
end
|
62
|
+
|
63
|
+
end
|
64
|
+
|
65
|
+
# AdaBoost クラス
|
66
|
+
class AdaBoost < Learner
|
67
|
+
|
68
|
+
# コンストラクタ
|
69
|
+
# @param learners [Array<Learner>] 学習器のリスト
|
70
|
+
def initialize(learners)
|
71
|
+
@learners = learners
|
72
|
+
@alphas = []
|
73
|
+
end
|
74
|
+
|
75
|
+
# データを元に学習を行う
|
76
|
+
# @param datas [Array<DataSet>] トレーニングデータの配列
|
77
|
+
# @return [Array<Boolean>] 識別結果の配列
|
78
|
+
def learn(datas, ds = nil)
|
79
|
+
ds ||= [1.0 / datas.size] * datas.size
|
80
|
+
|
81
|
+
@learners.each do |learner|
|
82
|
+
# 学習記に順番に学習させる
|
83
|
+
# results : トレーニングデータの正解、不正解の配列
|
84
|
+
results = learner.learn(datas, ds)
|
85
|
+
# epsilon : 学習器のエラー率(失敗した学習データの重みの総和)
|
86
|
+
epsilon = results.zip(ds).map{|r, w| r ? 0 : w }.inject(:+)
|
87
|
+
epsilon = ds.min * 0.1 if(epsilon == 0)
|
88
|
+
# alpha : 学習器の重み(エラー率epsilonが低いほど高い値を取る)
|
89
|
+
alpha = Math.log((1 - epsilon) / epsilon) / 2
|
90
|
+
@alphas << alpha
|
91
|
+
# 重みの更新
|
92
|
+
ds = ds.map.with_index{|w, i| w * Math.exp(alpha * (results[i] ? -1 : 1)) }
|
93
|
+
z = ds.inject(&:+)
|
94
|
+
ds.map!{|w| w / z}
|
95
|
+
end
|
96
|
+
end
|
97
|
+
|
98
|
+
# 識別を行う
|
99
|
+
# @param x 特徴空間
|
100
|
+
# @return [Fixnum] 識別結果
|
101
|
+
def classify(x)
|
102
|
+
score = [@learners, @alphas].transpose.reduce(0) { |score, (l, a)|
|
103
|
+
score += l.classify(x) * a
|
104
|
+
}
|
105
|
+
score > 0 ? 1 : -1
|
106
|
+
end
|
107
|
+
|
108
|
+
# Learnerを表すログ
|
109
|
+
def to_s
|
110
|
+
[@learners, @alphas].transpose.map {|l, a| "(#{a.round(3)} * #{l})" }.join(" + ");
|
111
|
+
end
|
112
|
+
end
|
113
|
+
end
|
114
|
+
|
115
|
+
# vim: set et ts=2 sts=2 sw=2:
|
@@ -0,0 +1,72 @@
|
|
1
|
+
#coding utf-8
|
2
|
+
|
3
|
+
require_relative 'dataset.rb'
|
4
|
+
require_relative 'learner.rb'
|
5
|
+
|
6
|
+
module MachineLearner
|
7
|
+
|
8
|
+
# ナイブベイズ学習器
|
9
|
+
class BayesLearner < Learner
|
10
|
+
|
11
|
+
# データを元に学習を行う
|
12
|
+
# @param datas [Array<DataSet>] トレーニングデータの配列
|
13
|
+
# @return [Array<Boolean>] 識別結果の配列
|
14
|
+
def learn(datas, ds = nil)
|
15
|
+
@training = datas
|
16
|
+
@ys = @training.map{|data| data.y }
|
17
|
+
@candidate_y = @ys.uniq.compact
|
18
|
+
end
|
19
|
+
|
20
|
+
# 識別を行う
|
21
|
+
# @param x 特徴空間
|
22
|
+
# @return [Fixnum] 識別結果
|
23
|
+
def classify(xs)
|
24
|
+
# 最も尤度の高い候補 y を探す
|
25
|
+
max_y, max_likelihood = 0, -Float::INFINITY
|
26
|
+
@candidate_y.each do |y|
|
27
|
+
likelihood = p_y_x(y, xs)
|
28
|
+
max_y, max_likelihood = y, likelihood if max_likelihood < likelihood
|
29
|
+
end
|
30
|
+
return max_y
|
31
|
+
end
|
32
|
+
|
33
|
+
private
|
34
|
+
|
35
|
+
# P(Y | X) を計算
|
36
|
+
def p_y_x(y, xs)
|
37
|
+
p = Math.log(p_y(y))
|
38
|
+
xs.each_with_index do |xi, i|
|
39
|
+
next if xi.nil?
|
40
|
+
p += Math.log(p_xi_y(xi, i, y))
|
41
|
+
end
|
42
|
+
return p
|
43
|
+
end
|
44
|
+
|
45
|
+
# P(Xi | Y) を計算
|
46
|
+
def p_xi_y(x, i, y)
|
47
|
+
total = count = 0
|
48
|
+
@ys.each_with_index do |ysj, j|
|
49
|
+
next if ysj != y
|
50
|
+
total += 1
|
51
|
+
count += 1 if @training[j].x[i] == x
|
52
|
+
end
|
53
|
+
return (count + 1).to_f / (total + candidate_x(i).size + 1).to_f
|
54
|
+
end
|
55
|
+
|
56
|
+
# P(Y) を計算
|
57
|
+
def p_y(y)
|
58
|
+
count = @ys.count(y)
|
59
|
+
return (count + 1).to_f / (@ys.size + @candidate_y.size + 1).to_f
|
60
|
+
end
|
61
|
+
|
62
|
+
# xの候補を列挙
|
63
|
+
def candidate_x(field)
|
64
|
+
@candidate_x ||= []
|
65
|
+
@candidate_x[field] ||= @training.map{|data| data.x[field]}.uniq.compact
|
66
|
+
end
|
67
|
+
end
|
68
|
+
|
69
|
+
end
|
70
|
+
|
71
|
+
# vim: set et ts=2 sts=2 sw=2:
|
72
|
+
|
@@ -0,0 +1,24 @@
|
|
1
|
+
#coding utf-8
|
2
|
+
|
3
|
+
module MachineLearner
|
4
|
+
# 学習器にかけるデータ
|
5
|
+
# 特徴空間xと識別結果yを持つ
|
6
|
+
class DataSet
|
7
|
+
attr_reader :x, :y
|
8
|
+
|
9
|
+
# コンストラクタ
|
10
|
+
# @param x 特徴空間
|
11
|
+
# @param y 識別結果
|
12
|
+
def initialize(x, y)
|
13
|
+
@x, @y = x, y
|
14
|
+
end
|
15
|
+
|
16
|
+
# @return データセットを表現する文字列
|
17
|
+
def to_s
|
18
|
+
"(#{@x}=>#{@y})"
|
19
|
+
end
|
20
|
+
|
21
|
+
end
|
22
|
+
end
|
23
|
+
|
24
|
+
# vim: set et ts=2 sts=2 sw=2:
|
@@ -0,0 +1,44 @@
|
|
1
|
+
#coding utf-8
|
2
|
+
|
3
|
+
module MachineLearner
|
4
|
+
|
5
|
+
# 識別器クラス
|
6
|
+
class Classifier
|
7
|
+
|
8
|
+
# 識別を行う
|
9
|
+
# @param x 特徴空間
|
10
|
+
# @return [Fixnum] 識別結果
|
11
|
+
def classify(x)
|
12
|
+
raise NotImplementedError.new
|
13
|
+
end
|
14
|
+
|
15
|
+
# 性能の測定を行う
|
16
|
+
# @param data[DataSet] データ
|
17
|
+
# @return [Boolean] 識別できたらtrue, 外れたらfalse
|
18
|
+
def test(data)
|
19
|
+
classify(data.x) == data.y
|
20
|
+
end
|
21
|
+
|
22
|
+
# 性能の測定を行う
|
23
|
+
# @param datas[Array<DataSet>] テストデータセット
|
24
|
+
# @return [Float] 正解率(0以上1以下)
|
25
|
+
def evaluate(datas)
|
26
|
+
datas.count{|data| test(data)} / datas.size.to_f
|
27
|
+
end
|
28
|
+
end
|
29
|
+
|
30
|
+
# 学習器クラス
|
31
|
+
class Learner < Classifier
|
32
|
+
|
33
|
+
# トレーニングデータを元に学習を行う
|
34
|
+
# @param datas [Array<DataSet>] トレーニングデータセット
|
35
|
+
# @param ds [Array<Float>] 各データセットの重み
|
36
|
+
# @return [Array<Boolean>] 学習後の識別結果
|
37
|
+
def learn(datas, ds)
|
38
|
+
raise NotImplementedError.new
|
39
|
+
end
|
40
|
+
end
|
41
|
+
|
42
|
+
end
|
43
|
+
|
44
|
+
# vim: set et ts=2 sts=2 sw=2:
|
@@ -0,0 +1,27 @@
|
|
1
|
+
# coding: utf-8
|
2
|
+
lib = File.expand_path('../lib', __FILE__)
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
|
+
require 'machine_learner/version'
|
5
|
+
|
6
|
+
Gem::Specification.new do |spec|
|
7
|
+
spec.name = "machine_learner"
|
8
|
+
spec.version = MachineLearner::VERSION
|
9
|
+
spec.authors = ["YutaTanaka"]
|
10
|
+
spec.email = ["yuta84q.ihcarok@gmail.com"]
|
11
|
+
spec.summary = %q{Library for machine learning.}
|
12
|
+
spec.description = "This is a library for machine learning.\n" +
|
13
|
+
"You can use AdaBoost and Naive Bayes easily.\n"
|
14
|
+
spec.homepage = "https://github.com/84q/machine_learning"
|
15
|
+
spec.license = "MIT"
|
16
|
+
|
17
|
+
spec.files = `git ls-files -z`.split("\x0")
|
18
|
+
spec.executables = spec.files.grep(%r{^bin/}) { |f| File.basename(f) }
|
19
|
+
spec.test_files = spec.files.grep(%r{^(test|spec|features)/})
|
20
|
+
spec.require_paths = ["lib"]
|
21
|
+
|
22
|
+
spec.add_development_dependency "bundler", "~> 1.6"
|
23
|
+
spec.add_development_dependency "rake", "~> 10.0"
|
24
|
+
spec.add_development_dependency 'rspec', '~> 0'
|
25
|
+
end
|
26
|
+
|
27
|
+
# vim: set et ts=2 sts=2 sw=2:
|
data/spec/spec_helper.rb
ADDED
metadata
ADDED
@@ -0,0 +1,107 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: machine_learner
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- YutaTanaka
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2014-08-10 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: bundler
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '1.6'
|
20
|
+
type: :development
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '1.6'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rake
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '10.0'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '10.0'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rspec
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0'
|
55
|
+
description: |
|
56
|
+
This is a library for machine learning.
|
57
|
+
You can use AdaBoost and Naive Bayes easily.
|
58
|
+
email:
|
59
|
+
- yuta84q.ihcarok@gmail.com
|
60
|
+
executables: []
|
61
|
+
extensions: []
|
62
|
+
extra_rdoc_files: []
|
63
|
+
files:
|
64
|
+
- ".gitignore"
|
65
|
+
- ".rspec"
|
66
|
+
- ".travis.yml"
|
67
|
+
- Gemfile
|
68
|
+
- LICENSE.txt
|
69
|
+
- README.md
|
70
|
+
- Rakefile
|
71
|
+
- lib/machine_learner.rb
|
72
|
+
- lib/machine_learner/adaboost.rb
|
73
|
+
- lib/machine_learner/bayes.rb
|
74
|
+
- lib/machine_learner/dataset.rb
|
75
|
+
- lib/machine_learner/learner.rb
|
76
|
+
- lib/machine_learner/version.rb
|
77
|
+
- machine_learner.gemspec
|
78
|
+
- spec/machine_learner_spec.rb
|
79
|
+
- spec/spec_helper.rb
|
80
|
+
homepage: https://github.com/84q/machine_learning
|
81
|
+
licenses:
|
82
|
+
- MIT
|
83
|
+
metadata: {}
|
84
|
+
post_install_message:
|
85
|
+
rdoc_options: []
|
86
|
+
require_paths:
|
87
|
+
- lib
|
88
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
89
|
+
requirements:
|
90
|
+
- - ">="
|
91
|
+
- !ruby/object:Gem::Version
|
92
|
+
version: '0'
|
93
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
94
|
+
requirements:
|
95
|
+
- - ">="
|
96
|
+
- !ruby/object:Gem::Version
|
97
|
+
version: '0'
|
98
|
+
requirements: []
|
99
|
+
rubyforge_project:
|
100
|
+
rubygems_version: 2.2.2
|
101
|
+
signing_key:
|
102
|
+
specification_version: 4
|
103
|
+
summary: Library for machine learning.
|
104
|
+
test_files:
|
105
|
+
- spec/machine_learner_spec.rb
|
106
|
+
- spec/spec_helper.rb
|
107
|
+
has_rdoc:
|