machine_learner 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: ae7126878df4103a2ee33bd433c109970ec39c3e
4
+ data.tar.gz: 8f33eb69cd5b5f86bebe1659c3e529c789180217
5
+ SHA512:
6
+ metadata.gz: 73bd4e5130971a2de7766f6c044d1e77792dfcb48e32eb7d16314a63aebfa22b3bf6e69c85c1d646e252e913e45a7637e692e838691ed29ce0719544bbe91616
7
+ data.tar.gz: 22439d8d45b57399efe48fb4addd0b9411b5b53be0d0c84c46b347719d666328c8be528c86acabe17d23ce116eb14e49bc4063f10f6cf101c002514067d49f5c
data/.gitignore ADDED
@@ -0,0 +1,15 @@
1
+ /.bundle/
2
+ /.yardoc
3
+ /Gemfile.lock
4
+ /_yardoc/
5
+ /coverage/
6
+ /doc/
7
+ /pkg/
8
+ /spec/reports/
9
+ /tmp/
10
+ *.bundle
11
+ *.so
12
+ *.o
13
+ *.a
14
+ mkmf.log
15
+ machine_learner-*.gem
data/.rspec ADDED
@@ -0,0 +1,2 @@
1
+ --format documentation
2
+ --color
data/.travis.yml ADDED
@@ -0,0 +1,3 @@
1
+ language: ruby
2
+ rvm:
3
+ - 2.1.1
data/Gemfile ADDED
@@ -0,0 +1,4 @@
1
+ source 'https://rubygems.org'
2
+
3
+ # Specify your gem's dependencies in machine_learner.gemspec
4
+ gemspec
data/LICENSE.txt ADDED
@@ -0,0 +1,22 @@
1
+ Copyright (c) 2014 YutaTanaka
2
+
3
+ MIT License
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining
6
+ a copy of this software and associated documentation files (the
7
+ "Software"), to deal in the Software without restriction, including
8
+ without limitation the rights to use, copy, modify, merge, publish,
9
+ distribute, sublicense, and/or sell copies of the Software, and to
10
+ permit persons to whom the Software is furnished to do so, subject to
11
+ the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be
14
+ included in all copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
+ LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
+ OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
+ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,31 @@
1
+ # MachineLearner
2
+
3
+ TODO: Write a gem description
4
+
5
+ ## Installation
6
+
7
+ Add this line to your application's Gemfile:
8
+
9
+ ```ruby
10
+ gem 'machine_learner'
11
+ ```
12
+
13
+ And then execute:
14
+
15
+ $ bundle
16
+
17
+ Or install it yourself as:
18
+
19
+ $ gem install machine_learner
20
+
21
+ ## Usage
22
+
23
+ TODO: Write usage instructions here
24
+
25
+ ## Contributing
26
+
27
+ 1. Fork it ( https://github.com/[my-github-username]/machine_learner/fork )
28
+ 2. Create your feature branch (`git checkout -b my-new-feature`)
29
+ 3. Commit your changes (`git commit -am 'Add some feature'`)
30
+ 4. Push to the branch (`git push origin my-new-feature`)
31
+ 5. Create a new Pull Request
data/Rakefile ADDED
@@ -0,0 +1,7 @@
1
+ require "bundler/gem_tasks"
2
+ require "rspec/core/rake_task"
3
+
4
+ RSpec::Core::RakeTask.new(:spec)
5
+
6
+ task :default => :spec
7
+
@@ -0,0 +1,115 @@
1
+ #coding utf-8
2
+
3
+ require_relative 'dataset.rb'
4
+ require_relative 'learner.rb'
5
+
6
+ module MachineLearner
7
+ # 複数の識別器から最良のものを自動選択する学習器
8
+ class SimpleLearner < Learner
9
+
10
+ # データを元に学習を行う
11
+ # classifiersの各戻り値に対し識別を行い、結果のもっともよいものを採用する
12
+ # @param datas [Array<DataSet>] トレーニングデータの配列
13
+ # @param ds [Array<Float>] 各トレーナーデータの重みの配列
14
+ # @return [Array<Boolean>] 識別結果の配列
15
+ def learn(datas, ds)
16
+ @log = []
17
+ enum_classifier(datas, ds) do |cl|
18
+ results = datas.map{|data| cl.test(data) }
19
+ epsilon = results.zip(ds).map{|r, w| r ? 0 : w }.inject(:+)
20
+ @log << {epsilon: epsilon, classifier: cl, results: results}
21
+ end
22
+
23
+ @best = @log.min {|h1, h2| h1[:epsilon] <=> h2[:epsilon] }
24
+ @best[:results]
25
+ end
26
+
27
+ # 識別器を列挙する
28
+ # 識別器はyieldでblockに渡す
29
+ # @param datas [Array<DataSet>] トレーニングデータの配列
30
+ # @param ds [Array<Float>] 各トレーナーデータの重みの配列
31
+ def classifiers(datas, ds)
32
+ raise NotImplementedError.new
33
+ end
34
+
35
+ # 識別器を文字列で表現する
36
+ # @return [String] 識別器を表す文字列
37
+ def to_s
38
+ cl.to_s
39
+ end
40
+
41
+ # 識別を行う
42
+ # @param x 特徴空間
43
+ # @return [Fixnum] 識別結果
44
+ def classify(x)
45
+ cl.classify(x)
46
+ end
47
+
48
+ private
49
+
50
+ # 性能の最も良い識別器を取得する
51
+ # @return [Classifier] 性能の最も良い識別器を取得する
52
+ def cl
53
+ @best[:classifier]
54
+ end
55
+
56
+ # データを識別器に掛けた結果
57
+ # ハッシュの配列であり、各ハッシュはキー[:classifier, :result, :epsiron]を持つ
58
+ # @return log [Array<Hash>] 識別結果の配列
59
+ def log
60
+ @log
61
+ end
62
+
63
+ end
64
+
65
+ # AdaBoost クラス
66
+ class AdaBoost < Learner
67
+
68
+ # コンストラクタ
69
+ # @param learners [Array<Learner>] 学習器のリスト
70
+ def initialize(learners)
71
+ @learners = learners
72
+ @alphas = []
73
+ end
74
+
75
+ # データを元に学習を行う
76
+ # @param datas [Array<DataSet>] トレーニングデータの配列
77
+ # @return [Array<Boolean>] 識別結果の配列
78
+ def learn(datas, ds = nil)
79
+ ds ||= [1.0 / datas.size] * datas.size
80
+
81
+ @learners.each do |learner|
82
+ # 学習記に順番に学習させる
83
+ # results : トレーニングデータの正解、不正解の配列
84
+ results = learner.learn(datas, ds)
85
+ # epsilon : 学習器のエラー率(失敗した学習データの重みの総和)
86
+ epsilon = results.zip(ds).map{|r, w| r ? 0 : w }.inject(:+)
87
+ epsilon = ds.min * 0.1 if(epsilon == 0)
88
+ # alpha : 学習器の重み(エラー率epsilonが低いほど高い値を取る)
89
+ alpha = Math.log((1 - epsilon) / epsilon) / 2
90
+ @alphas << alpha
91
+ # 重みの更新
92
+ ds = ds.map.with_index{|w, i| w * Math.exp(alpha * (results[i] ? -1 : 1)) }
93
+ z = ds.inject(&:+)
94
+ ds.map!{|w| w / z}
95
+ end
96
+ end
97
+
98
+ # 識別を行う
99
+ # @param x 特徴空間
100
+ # @return [Fixnum] 識別結果
101
+ def classify(x)
102
+ score = [@learners, @alphas].transpose.reduce(0) { |score, (l, a)|
103
+ score += l.classify(x) * a
104
+ }
105
+ score > 0 ? 1 : -1
106
+ end
107
+
108
+ # Learnerを表すログ
109
+ def to_s
110
+ [@learners, @alphas].transpose.map {|l, a| "(#{a.round(3)} * #{l})" }.join(" + ");
111
+ end
112
+ end
113
+ end
114
+
115
+ # vim: set et ts=2 sts=2 sw=2:
@@ -0,0 +1,72 @@
1
+ #coding utf-8
2
+
3
+ require_relative 'dataset.rb'
4
+ require_relative 'learner.rb'
5
+
6
+ module MachineLearner
7
+
8
+ # ナイブベイズ学習器
9
+ class BayesLearner < Learner
10
+
11
+ # データを元に学習を行う
12
+ # @param datas [Array<DataSet>] トレーニングデータの配列
13
+ # @return [Array<Boolean>] 識別結果の配列
14
+ def learn(datas, ds = nil)
15
+ @training = datas
16
+ @ys = @training.map{|data| data.y }
17
+ @candidate_y = @ys.uniq.compact
18
+ end
19
+
20
+ # 識別を行う
21
+ # @param x 特徴空間
22
+ # @return [Fixnum] 識別結果
23
+ def classify(xs)
24
+ # 最も尤度の高い候補 y を探す
25
+ max_y, max_likelihood = 0, -Float::INFINITY
26
+ @candidate_y.each do |y|
27
+ likelihood = p_y_x(y, xs)
28
+ max_y, max_likelihood = y, likelihood if max_likelihood < likelihood
29
+ end
30
+ return max_y
31
+ end
32
+
33
+ private
34
+
35
+ # P(Y | X) を計算
36
+ def p_y_x(y, xs)
37
+ p = Math.log(p_y(y))
38
+ xs.each_with_index do |xi, i|
39
+ next if xi.nil?
40
+ p += Math.log(p_xi_y(xi, i, y))
41
+ end
42
+ return p
43
+ end
44
+
45
+ # P(Xi | Y) を計算
46
+ def p_xi_y(x, i, y)
47
+ total = count = 0
48
+ @ys.each_with_index do |ysj, j|
49
+ next if ysj != y
50
+ total += 1
51
+ count += 1 if @training[j].x[i] == x
52
+ end
53
+ return (count + 1).to_f / (total + candidate_x(i).size + 1).to_f
54
+ end
55
+
56
+ # P(Y) を計算
57
+ def p_y(y)
58
+ count = @ys.count(y)
59
+ return (count + 1).to_f / (@ys.size + @candidate_y.size + 1).to_f
60
+ end
61
+
62
+ # xの候補を列挙
63
+ def candidate_x(field)
64
+ @candidate_x ||= []
65
+ @candidate_x[field] ||= @training.map{|data| data.x[field]}.uniq.compact
66
+ end
67
+ end
68
+
69
+ end
70
+
71
+ # vim: set et ts=2 sts=2 sw=2:
72
+
@@ -0,0 +1,24 @@
1
+ #coding utf-8
2
+
3
+ module MachineLearner
4
+ # 学習器にかけるデータ
5
+ # 特徴空間xと識別結果yを持つ
6
+ class DataSet
7
+ attr_reader :x, :y
8
+
9
+ # コンストラクタ
10
+ # @param x 特徴空間
11
+ # @param y 識別結果
12
+ def initialize(x, y)
13
+ @x, @y = x, y
14
+ end
15
+
16
+ # @return データセットを表現する文字列
17
+ def to_s
18
+ "(#{@x}=>#{@y})"
19
+ end
20
+
21
+ end
22
+ end
23
+
24
+ # vim: set et ts=2 sts=2 sw=2:
@@ -0,0 +1,44 @@
1
+ #coding utf-8
2
+
3
+ module MachineLearner
4
+
5
+ # 識別器クラス
6
+ class Classifier
7
+
8
+ # 識別を行う
9
+ # @param x 特徴空間
10
+ # @return [Fixnum] 識別結果
11
+ def classify(x)
12
+ raise NotImplementedError.new
13
+ end
14
+
15
+ # 性能の測定を行う
16
+ # @param data[DataSet] データ
17
+ # @return [Boolean] 識別できたらtrue, 外れたらfalse
18
+ def test(data)
19
+ classify(data.x) == data.y
20
+ end
21
+
22
+ # 性能の測定を行う
23
+ # @param datas[Array<DataSet>] テストデータセット
24
+ # @return [Float] 正解率(0以上1以下)
25
+ def evaluate(datas)
26
+ datas.count{|data| test(data)} / datas.size.to_f
27
+ end
28
+ end
29
+
30
+ # 学習器クラス
31
+ class Learner < Classifier
32
+
33
+ # トレーニングデータを元に学習を行う
34
+ # @param datas [Array<DataSet>] トレーニングデータセット
35
+ # @param ds [Array<Float>] 各データセットの重み
36
+ # @return [Array<Boolean>] 学習後の識別結果
37
+ def learn(datas, ds)
38
+ raise NotImplementedError.new
39
+ end
40
+ end
41
+
42
+ end
43
+
44
+ # vim: set et ts=2 sts=2 sw=2:
@@ -0,0 +1,3 @@
1
+ module MachineLearner
2
+ VERSION = "0.0.1"
3
+ end
@@ -0,0 +1,3 @@
1
+ require "machine_learner/version"
2
+ require "machine_learner/adaboost"
3
+ require "machine_learner/bayes"
@@ -0,0 +1,27 @@
1
+ # coding: utf-8
2
+ lib = File.expand_path('../lib', __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require 'machine_learner/version'
5
+
6
+ Gem::Specification.new do |spec|
7
+ spec.name = "machine_learner"
8
+ spec.version = MachineLearner::VERSION
9
+ spec.authors = ["YutaTanaka"]
10
+ spec.email = ["yuta84q.ihcarok@gmail.com"]
11
+ spec.summary = %q{Library for machine learning.}
12
+ spec.description = "This is a library for machine learning.\n" +
13
+ "You can use AdaBoost and Naive Bayes easily.\n"
14
+ spec.homepage = "https://github.com/84q/machine_learning"
15
+ spec.license = "MIT"
16
+
17
+ spec.files = `git ls-files -z`.split("\x0")
18
+ spec.executables = spec.files.grep(%r{^bin/}) { |f| File.basename(f) }
19
+ spec.test_files = spec.files.grep(%r{^(test|spec|features)/})
20
+ spec.require_paths = ["lib"]
21
+
22
+ spec.add_development_dependency "bundler", "~> 1.6"
23
+ spec.add_development_dependency "rake", "~> 10.0"
24
+ spec.add_development_dependency 'rspec', '~> 0'
25
+ end
26
+
27
+ # vim: set et ts=2 sts=2 sw=2:
@@ -0,0 +1,11 @@
1
+ require 'spec_helper'
2
+
3
+ describe MachineLearner do
4
+ it 'has a version number' do
5
+ expect(MachineLearner::VERSION).not_to be nil
6
+ end
7
+
8
+ it 'does something useful' do
9
+ expect(false).to eq(true)
10
+ end
11
+ end
@@ -0,0 +1,2 @@
1
+ $LOAD_PATH.unshift File.expand_path('../../lib', __FILE__)
2
+ require 'machine_learner'
metadata ADDED
@@ -0,0 +1,107 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: machine_learner
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.1
5
+ platform: ruby
6
+ authors:
7
+ - YutaTanaka
8
+ autorequire:
9
+ bindir: bin
10
+ cert_chain: []
11
+ date: 2014-08-10 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: bundler
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - "~>"
18
+ - !ruby/object:Gem::Version
19
+ version: '1.6'
20
+ type: :development
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - "~>"
25
+ - !ruby/object:Gem::Version
26
+ version: '1.6'
27
+ - !ruby/object:Gem::Dependency
28
+ name: rake
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - "~>"
32
+ - !ruby/object:Gem::Version
33
+ version: '10.0'
34
+ type: :development
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - "~>"
39
+ - !ruby/object:Gem::Version
40
+ version: '10.0'
41
+ - !ruby/object:Gem::Dependency
42
+ name: rspec
43
+ requirement: !ruby/object:Gem::Requirement
44
+ requirements:
45
+ - - "~>"
46
+ - !ruby/object:Gem::Version
47
+ version: '0'
48
+ type: :development
49
+ prerelease: false
50
+ version_requirements: !ruby/object:Gem::Requirement
51
+ requirements:
52
+ - - "~>"
53
+ - !ruby/object:Gem::Version
54
+ version: '0'
55
+ description: |
56
+ This is a library for machine learning.
57
+ You can use AdaBoost and Naive Bayes easily.
58
+ email:
59
+ - yuta84q.ihcarok@gmail.com
60
+ executables: []
61
+ extensions: []
62
+ extra_rdoc_files: []
63
+ files:
64
+ - ".gitignore"
65
+ - ".rspec"
66
+ - ".travis.yml"
67
+ - Gemfile
68
+ - LICENSE.txt
69
+ - README.md
70
+ - Rakefile
71
+ - lib/machine_learner.rb
72
+ - lib/machine_learner/adaboost.rb
73
+ - lib/machine_learner/bayes.rb
74
+ - lib/machine_learner/dataset.rb
75
+ - lib/machine_learner/learner.rb
76
+ - lib/machine_learner/version.rb
77
+ - machine_learner.gemspec
78
+ - spec/machine_learner_spec.rb
79
+ - spec/spec_helper.rb
80
+ homepage: https://github.com/84q/machine_learning
81
+ licenses:
82
+ - MIT
83
+ metadata: {}
84
+ post_install_message:
85
+ rdoc_options: []
86
+ require_paths:
87
+ - lib
88
+ required_ruby_version: !ruby/object:Gem::Requirement
89
+ requirements:
90
+ - - ">="
91
+ - !ruby/object:Gem::Version
92
+ version: '0'
93
+ required_rubygems_version: !ruby/object:Gem::Requirement
94
+ requirements:
95
+ - - ">="
96
+ - !ruby/object:Gem::Version
97
+ version: '0'
98
+ requirements: []
99
+ rubyforge_project:
100
+ rubygems_version: 2.2.2
101
+ signing_key:
102
+ specification_version: 4
103
+ summary: Library for machine learning.
104
+ test_files:
105
+ - spec/machine_learner_spec.rb
106
+ - spec/spec_helper.rb
107
+ has_rdoc: