lurn 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: b628aa2df6567044144aebc12d52f284b0eb93e9
4
+ data.tar.gz: 7d6089b8ca48eb371e39288ae034543b6f447e9d
5
+ SHA512:
6
+ metadata.gz: 0140373cd80d2594c4c34e5c9959f043b1f33ff527b5dd5e8ebcba7173153ee2ed3766b2f49888780040dbbe1b04e6bfce656bf0cd0b21294a9c0e50898bd798
7
+ data.tar.gz: dd31fabb232408c405fe7e40a630723fa39ab30f28982b8db6f0f6cf3dfeca4fc4bf4dbaae5df889e48c101617208993ee01701b1e2f34e0d550c499299d1789
data/.gitignore ADDED
@@ -0,0 +1,9 @@
1
+ /.bundle/
2
+ /.yardoc
3
+ /Gemfile.lock
4
+ /_yardoc/
5
+ /coverage/
6
+ /doc/
7
+ /pkg/
8
+ /spec/reports/
9
+ /tmp/
data/.rspec ADDED
@@ -0,0 +1,2 @@
1
+ --format documentation
2
+ --color
data/.travis.yml ADDED
@@ -0,0 +1,5 @@
1
+ sudo: false
2
+ language: ruby
3
+ rvm:
4
+ - 2.4.0
5
+ before_install: gem install bundler -v 1.13.7
data/Gemfile ADDED
@@ -0,0 +1,4 @@
1
+ source 'https://rubygems.org'
2
+
3
+ # Specify your gem's dependencies in lurn.gemspec
4
+ gemspec
data/LICENSE.txt ADDED
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2017 daniel.carpenter
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,68 @@
1
+ # Lurn
2
+
3
+ Lurn is a ruby gem for performing machine learning. The API and design patterns in Lurn are inspired by sklearn, an analogous library for Python.
4
+
5
+ ## Installation
6
+
7
+ Add this line to your application's Gemfile:
8
+
9
+ ```ruby
10
+ gem 'lurn'
11
+ ```
12
+
13
+ And then execute:
14
+
15
+ $ bundle
16
+
17
+ Or install it yourself as:
18
+
19
+ $ gem install lurn
20
+
21
+ ## Usage
22
+
23
+ ### Bernoulli Naive Bayes
24
+ ```ruby
25
+ require 'lurn'
26
+
27
+ documents = [
28
+ 'ruby is a great programming language',
29
+ 'the giants recently won the world series',
30
+ 'java is a compiled programming language',
31
+ 'the jets are a football team'
32
+ ]
33
+
34
+ labels = ['computers','sports','computers','sports']
35
+
36
+ # vectorizers take raw data and transform it to a set of features that our
37
+ # model can understand - in this case an array of boolean values representing
38
+ # the presence or absence of a word in text
39
+ vectorizer = Lurn::Text::BernoulliVectorizer.new
40
+ vectorizer.fit(documents)
41
+ vectors = vectorizer.transform(documents)
42
+
43
+ model = Lurn::NaiveBayes::BernoulliNaiveBayes.new
44
+ model.fit(vectors, labels)
45
+
46
+ new_vectors = vectorizer.transform(['programming is fun'])
47
+ probabilities = model.predict_probabilities(new_vectors.first)
48
+ # => [0.9715681919147049, 0.028431808085295614]
49
+
50
+ # to get the class of the maximum probability, look at the same index of the
51
+ # unique_labels attribute on the model
52
+ model.unique_labels[0] # => 'computers'
53
+ ```
54
+
55
+ ## Development
56
+
57
+ After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
58
+
59
+ To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
60
+
61
+ ## Contributing
62
+
63
+ Bug reports and pull requests are welcome on GitHub at https://github.com/dansbits/lurn.
64
+
65
+
66
+ ## License
67
+
68
+ The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).
data/Rakefile ADDED
@@ -0,0 +1,6 @@
1
+ require "bundler/gem_tasks"
2
+ require "rspec/core/rake_task"
3
+
4
+ RSpec::Core::RakeTask.new(:spec)
5
+
6
+ task :default => :spec
data/bin/console ADDED
@@ -0,0 +1,14 @@
1
+ #!/usr/bin/env ruby
2
+
3
+ require "bundler/setup"
4
+ require "lurn"
5
+
6
+ # You can add fixtures and/or initialization code here to make experimenting
7
+ # with your gem easier. You can also use a different console, if you like.
8
+
9
+ # (If you use this, don't forget to add pry to your Gemfile!)
10
+ # require "pry"
11
+ # Pry.start
12
+
13
+ require "irb"
14
+ IRB.start
data/bin/setup ADDED
@@ -0,0 +1,8 @@
1
+ #!/usr/bin/env bash
2
+ set -euo pipefail
3
+ IFS=$'\n\t'
4
+ set -vx
5
+
6
+ bundle install
7
+
8
+ # Do any other automated setup that you need to do here
@@ -0,0 +1,83 @@
1
+ require 'terminal-table'
2
+ require 'csv'
3
+
4
+ module Lurn
5
+ module Evaluation
6
+ class ClassifierEvaluator
7
+
8
+ attr_accessor :unique_classes
9
+
10
+ def initialize(predicted, actual)
11
+ @classes = Daru::DataFrame.new(predicted: predicted, actual: actual)
12
+ @unique_classes = (predicted + actual).uniq
13
+ preprocess_classes
14
+ end
15
+
16
+ def precision(cls)
17
+ true_positives = true_positives(cls)
18
+ false_positives = false_positives(cls)
19
+ true_positives.to_f / (true_positives + false_positives).to_f
20
+ end
21
+
22
+ def recall(cls)
23
+ true_positives = true_positives(cls)
24
+ false_nevatives = false_negatives(cls)
25
+
26
+ true_positives.to_f / (true_positives + false_nevatives).to_f
27
+ end
28
+
29
+ def true_positives(cls)
30
+ @classes.filter_rows { |r| r[:predicted] == r[:actual] && r[:predicted] == cls }.size
31
+ end
32
+
33
+ def false_positives(cls)
34
+ @classes.filter_rows { |r| r[:predicted] == cls && r[:actual] != cls }.size
35
+ end
36
+
37
+ def false_negatives(cls)
38
+ @classes.filter_rows { |r| r[:actual] == cls && r[:predicted] != cls }.size
39
+ end
40
+
41
+ def summary
42
+ headings = ['Class','Precision','Recall']
43
+
44
+ ::Terminal::Table.new(rows: summary_rows, headings: headings).to_s
45
+ end
46
+
47
+ def to_csv(file_path)
48
+ headings = ['Class','Precision','Recall']
49
+
50
+ CSV.open file_path, 'w' do |csv|
51
+ csv << headings
52
+
53
+ summary_rows.each do |row|
54
+ csv << row
55
+ end
56
+ end
57
+ end
58
+
59
+ private
60
+
61
+ def summary_rows
62
+ rows = []
63
+ precision_sum = 0
64
+ recall_sum = 0
65
+
66
+ @unique_classes.each do |cls|
67
+ rows << [cls, self.precision(cls), self.recall(cls)]
68
+ precision_sum = precision_sum + self.precision(cls)
69
+ recall_sum = recall_sum + self.recall(cls)
70
+ end
71
+
72
+ rows << ['Overall Average', precision_sum / @unique_classes.length.to_f, recall_sum / @unique_classes.length.to_f]
73
+
74
+ rows
75
+ end
76
+
77
+ def preprocess_classes
78
+ @classes[:accurately_predicted] = @classes.map_rows { |r| r[:predicted] == r[:actual] }
79
+ end
80
+
81
+ end
82
+ end
83
+ end
@@ -0,0 +1,107 @@
1
+ require 'matrix'
2
+
3
+ module Lurn
4
+ module NaiveBayes
5
+ class BernoulliNaiveBayes
6
+
7
+ attr_accessor :probability_matrix, :label_probabilities, :unique_labels
8
+
9
+ def initialize
10
+ @k = 1.0
11
+ end
12
+
13
+ def fit(vectors, labels)
14
+ vectors = Matrix.rows(vectors)
15
+
16
+ @unique_labels = labels.uniq
17
+ @feature_count = vectors.column_size
18
+
19
+ document_count_matrix = build_document_count_matrix(vectors, labels)
20
+ @probability_matrix = build_probability_matrix(document_count_matrix, labels)
21
+
22
+ @label_probabilities = @unique_labels.map { |l1| labels.select { |l2| l1 == l2 }.count.to_f / labels.count.to_f }
23
+ end
24
+
25
+ def predict_probabilities(vector)
26
+ log_probabilties = predict_log_probabilities(vector)
27
+
28
+ log_probabilties.map { |p| Math.exp(p) }
29
+ end
30
+
31
+ def predict_log_probabilities(vector)
32
+
33
+ probabilities = @unique_labels.map do |label|
34
+ joint_log_likelihood(vector, label)
35
+ end
36
+
37
+ log_prob_x = Math.log(probabilities.map { |v| Math.exp(v) }.sum)
38
+
39
+ probabilities.map { |p| p - log_prob_x }
40
+ end
41
+
42
+ def max_class(vector)
43
+ log_probs = predict_log_probabilities(vector)
44
+
45
+ max_index = log_probs.index(log_probs.max)
46
+
47
+ unique_labels[max_index]
48
+ end
49
+
50
+ def max_probability(vector)
51
+ probs = predict_probabilities(vector)
52
+
53
+ probs.max
54
+ end
55
+
56
+ def to_h
57
+ {
58
+ probability_matrix: probability_matrix.to_a,
59
+ label_probabilities: label_probabilities,
60
+ unique_labels: unique_labels
61
+ }
62
+ end
63
+
64
+ private
65
+
66
+ def build_probability_matrix(document_count_matrix, labels)
67
+ probability_matrix = Array.new(@unique_labels.count) { Array.new(@feature_count) { 0.0 } }
68
+
69
+ document_count_matrix.each_with_index do |value, row, col|
70
+ label = @unique_labels[row]
71
+ label_frequency = labels.select { |l| l == label }.count
72
+
73
+ probability_matrix[row][col] = Math.log((value.to_f + @k) / (label_frequency.to_f + (2.0 * @k)))
74
+ end
75
+
76
+ Matrix.rows(probability_matrix)
77
+ end
78
+
79
+ def build_document_count_matrix(vectors, labels)
80
+ matrix = Array.new(@unique_labels.count) { Array.new(@feature_count) { 0 } }
81
+
82
+ vectors.each_with_index do |value, row, col|
83
+ if value == true
84
+ label = labels[row]
85
+ label_index = @unique_labels.index(label)
86
+ matrix[label_index][col] += 1
87
+ end
88
+ end
89
+
90
+ Matrix.rows(matrix)
91
+ end
92
+
93
+ def joint_log_likelihood(vector, label)
94
+ label_index = @unique_labels.index(label)
95
+
96
+ vector = Vector.elements(vector.map { |e| e == true ? 1 : 0 })
97
+ probabilities = @probability_matrix.row(label_index)
98
+ neg_probs = probabilities.map { |prb| Math.log(1.0 - Math.exp(prb)) }
99
+ jll = vector.dot(probabilities - neg_probs)
100
+ jll += Math.log(@label_probabilities[label_index]) + neg_probs.sum
101
+
102
+ jll
103
+ end
104
+
105
+ end
106
+ end
107
+ end
@@ -0,0 +1,68 @@
1
+ module Lurn
2
+ module Text
3
+ class BernoulliVectorizer
4
+
5
+ attr_accessor :tokenizer
6
+ attr_accessor :vocabulary
7
+
8
+ def initialize(options = {})
9
+ @tokenizer = options[:tokenizer] || WordTokenizer.new
10
+ @vocabulary = []
11
+
12
+ options[:max_df] ||= 50
13
+ options[:min_df] ||= 0
14
+ @options = options
15
+ end
16
+
17
+ def fit(documents)
18
+ @vocabulary = []
19
+ tokenized_docs = tokenize_documents(documents)
20
+ @vocabulary = tokenized_docs.flatten.uniq.sort
21
+ reduce_features(tokenized_docs)
22
+ end
23
+
24
+ def to_h
25
+ {
26
+ tokenizer_options: @tokenizer.to_h,
27
+ vocabulary: @vocabulary
28
+ }
29
+ end
30
+
31
+ def transform(documents)
32
+ documents.map do |document|
33
+ tokens = @tokenizer.tokenize(document)
34
+ @vocabulary.map do |word|
35
+ tokens.include? word
36
+ end
37
+ end
38
+ end
39
+
40
+ private
41
+
42
+ def reduce_features(tokenized_docs)
43
+ doc_frequencies = Array.new(@vocabulary.length, 0)
44
+
45
+ tokenized_docs.each do |tokens|
46
+ tokens.each do |token|
47
+ vocab_index = @vocabulary.index(token)
48
+ doc_frequencies[vocab_index] += 1
49
+ end
50
+ end
51
+
52
+ reduced_features = []
53
+ @vocabulary.each_with_index do |token, index|
54
+ freq = doc_frequencies[index]
55
+ if freq < @options[:max_df] && freq > @options[:min_df]
56
+ reduced_features.push token
57
+ end
58
+ end
59
+
60
+ @vocabulary = reduced_features
61
+ end
62
+
63
+ def tokenize_documents(documents)
64
+ documents.map { |doc| @tokenizer.tokenize(doc).uniq }
65
+ end
66
+ end
67
+ end
68
+ end
@@ -0,0 +1,43 @@
1
+ require 'lingua/stemmer'
2
+
3
+ module Lurn
4
+ module Text
5
+ class WordTokenizer
6
+
7
+ attr_accessor :options
8
+
9
+ STOP_WORDS = %w[
10
+ a about above after again against all am an and any are aren't as at be
11
+ because been before being below between both but by can't cannot could
12
+ couldn't did didn't do does doesn't doing don't down during each few for
13
+ from further had hadn't has hasn't have haven't having he he'd he'll
14
+ he's her here here's hers herself him himself his how how's i i'd i'll
15
+ i'm i've if in into is isn't it it's its itself let's me more most
16
+ mustn't my myself no nor not of off on once only or other ought our ours
17
+ ]
18
+
19
+ def initialize(options = {})
20
+ @options = options
21
+ @options[:strip_punctuation] ||= false
22
+ @options[:strip_stopwords] ||= false
23
+ @options[:stem_words] ||= false
24
+ end
25
+
26
+ def tokenize(document)
27
+ document = document.gsub(/[[:punct:]]/, '') if @options[:strip_punctuation] == true
28
+ document = document.gsub(/\s+/, ' ').split(" ")
29
+
30
+ if(@options[:stem_words])
31
+ stemmer = Lingua::Stemmer.new(language: :en)
32
+ document = document.map { |word| stemmer.stem(word) }
33
+ end
34
+
35
+ document
36
+ end
37
+
38
+ def to_h
39
+ options
40
+ end
41
+ end
42
+ end
43
+ end
@@ -0,0 +1,3 @@
1
+ module Lurn
2
+ VERSION = "0.1.1"
3
+ end
data/lib/lurn.rb ADDED
@@ -0,0 +1,10 @@
1
+ require "daru"
2
+ require "lurn/version"
3
+ require "lurn/text/word_tokenizer"
4
+ require "lurn/text/bernoulli_vectorizer"
5
+ require "lurn/naive_bayes/bernoulli_naive_bayes"
6
+ require "lurn/evaluation/classifier_evaluator"
7
+
8
+ module Lurn
9
+ # Your code goes here...
10
+ end
data/lurn.gemspec ADDED
@@ -0,0 +1,33 @@
1
+ # coding: utf-8
2
+ lib = File.expand_path('../lib', __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require 'lurn/version'
5
+
6
+ Gem::Specification.new do |spec|
7
+ spec.name = "lurn"
8
+ spec.version = Lurn::VERSION
9
+ spec.authors = ["daniel.carpenter"]
10
+ spec.email = ["daniel.carpenter01@gmail.com"]
11
+
12
+ spec.summary = %q{ A gem with tools for machine learning. }
13
+ spec.description = %q{ A gem with tools for machine learning. }
14
+ spec.homepage = "https://www.github.com/dansbits/lurn"
15
+ spec.license = "MIT"
16
+
17
+ spec.files = `git ls-files -z`.split("\x0").reject do |f|
18
+ f.match(%r{^(test|spec|features)/})
19
+ end
20
+ spec.bindir = "exe"
21
+ spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
22
+ spec.require_paths = ["lib"]
23
+
24
+ spec.add_dependency "terminal-table", "~> 1.7.3"
25
+ spec.add_dependency "ruby-stemmer", "~> 0.9.6"
26
+ spec.add_dependency "daru", '~> 0.1.6'
27
+
28
+ spec.add_development_dependency "bundler", "~> 1.13"
29
+ spec.add_development_dependency "rake", "~> 10.0"
30
+ spec.add_development_dependency "rspec", "~> 3.0"
31
+ spec.add_development_dependency "awesome_print"
32
+ spec.add_development_dependency "byebug"
33
+ end
metadata ADDED
@@ -0,0 +1,172 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: lurn
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.1.1
5
+ platform: ruby
6
+ authors:
7
+ - daniel.carpenter
8
+ autorequire:
9
+ bindir: exe
10
+ cert_chain: []
11
+ date: 2017-12-13 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: terminal-table
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - "~>"
18
+ - !ruby/object:Gem::Version
19
+ version: 1.7.3
20
+ type: :runtime
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - "~>"
25
+ - !ruby/object:Gem::Version
26
+ version: 1.7.3
27
+ - !ruby/object:Gem::Dependency
28
+ name: ruby-stemmer
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - "~>"
32
+ - !ruby/object:Gem::Version
33
+ version: 0.9.6
34
+ type: :runtime
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - "~>"
39
+ - !ruby/object:Gem::Version
40
+ version: 0.9.6
41
+ - !ruby/object:Gem::Dependency
42
+ name: daru
43
+ requirement: !ruby/object:Gem::Requirement
44
+ requirements:
45
+ - - "~>"
46
+ - !ruby/object:Gem::Version
47
+ version: 0.1.6
48
+ type: :runtime
49
+ prerelease: false
50
+ version_requirements: !ruby/object:Gem::Requirement
51
+ requirements:
52
+ - - "~>"
53
+ - !ruby/object:Gem::Version
54
+ version: 0.1.6
55
+ - !ruby/object:Gem::Dependency
56
+ name: bundler
57
+ requirement: !ruby/object:Gem::Requirement
58
+ requirements:
59
+ - - "~>"
60
+ - !ruby/object:Gem::Version
61
+ version: '1.13'
62
+ type: :development
63
+ prerelease: false
64
+ version_requirements: !ruby/object:Gem::Requirement
65
+ requirements:
66
+ - - "~>"
67
+ - !ruby/object:Gem::Version
68
+ version: '1.13'
69
+ - !ruby/object:Gem::Dependency
70
+ name: rake
71
+ requirement: !ruby/object:Gem::Requirement
72
+ requirements:
73
+ - - "~>"
74
+ - !ruby/object:Gem::Version
75
+ version: '10.0'
76
+ type: :development
77
+ prerelease: false
78
+ version_requirements: !ruby/object:Gem::Requirement
79
+ requirements:
80
+ - - "~>"
81
+ - !ruby/object:Gem::Version
82
+ version: '10.0'
83
+ - !ruby/object:Gem::Dependency
84
+ name: rspec
85
+ requirement: !ruby/object:Gem::Requirement
86
+ requirements:
87
+ - - "~>"
88
+ - !ruby/object:Gem::Version
89
+ version: '3.0'
90
+ type: :development
91
+ prerelease: false
92
+ version_requirements: !ruby/object:Gem::Requirement
93
+ requirements:
94
+ - - "~>"
95
+ - !ruby/object:Gem::Version
96
+ version: '3.0'
97
+ - !ruby/object:Gem::Dependency
98
+ name: awesome_print
99
+ requirement: !ruby/object:Gem::Requirement
100
+ requirements:
101
+ - - ">="
102
+ - !ruby/object:Gem::Version
103
+ version: '0'
104
+ type: :development
105
+ prerelease: false
106
+ version_requirements: !ruby/object:Gem::Requirement
107
+ requirements:
108
+ - - ">="
109
+ - !ruby/object:Gem::Version
110
+ version: '0'
111
+ - !ruby/object:Gem::Dependency
112
+ name: byebug
113
+ requirement: !ruby/object:Gem::Requirement
114
+ requirements:
115
+ - - ">="
116
+ - !ruby/object:Gem::Version
117
+ version: '0'
118
+ type: :development
119
+ prerelease: false
120
+ version_requirements: !ruby/object:Gem::Requirement
121
+ requirements:
122
+ - - ">="
123
+ - !ruby/object:Gem::Version
124
+ version: '0'
125
+ description: " A gem with tools for machine learning. "
126
+ email:
127
+ - daniel.carpenter01@gmail.com
128
+ executables: []
129
+ extensions: []
130
+ extra_rdoc_files: []
131
+ files:
132
+ - ".gitignore"
133
+ - ".rspec"
134
+ - ".travis.yml"
135
+ - Gemfile
136
+ - LICENSE.txt
137
+ - README.md
138
+ - Rakefile
139
+ - bin/console
140
+ - bin/setup
141
+ - lib/lurn.rb
142
+ - lib/lurn/evaluation/classifier_evaluator.rb
143
+ - lib/lurn/naive_bayes/bernoulli_naive_bayes.rb
144
+ - lib/lurn/text/bernoulli_vectorizer.rb
145
+ - lib/lurn/text/word_tokenizer.rb
146
+ - lib/lurn/version.rb
147
+ - lurn.gemspec
148
+ homepage: https://www.github.com/dansbits/lurn
149
+ licenses:
150
+ - MIT
151
+ metadata: {}
152
+ post_install_message:
153
+ rdoc_options: []
154
+ require_paths:
155
+ - lib
156
+ required_ruby_version: !ruby/object:Gem::Requirement
157
+ requirements:
158
+ - - ">="
159
+ - !ruby/object:Gem::Version
160
+ version: '0'
161
+ required_rubygems_version: !ruby/object:Gem::Requirement
162
+ requirements:
163
+ - - ">="
164
+ - !ruby/object:Gem::Version
165
+ version: '0'
166
+ requirements: []
167
+ rubyforge_project:
168
+ rubygems_version: 2.5.1
169
+ signing_key:
170
+ specification_version: 4
171
+ summary: A gem with tools for machine learning.
172
+ test_files: []