llmemory 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/LICENSE.txt +21 -0
- data/README.md +193 -0
- data/lib/generators/llmemory/install/install_generator.rb +24 -0
- data/lib/generators/llmemory/install/templates/create_llmemory_tables.rb +73 -0
- data/lib/llmemory/configuration.rb +51 -0
- data/lib/llmemory/extractors/entity_relation_extractor.rb +74 -0
- data/lib/llmemory/extractors/fact_extractor.rb +74 -0
- data/lib/llmemory/extractors.rb +9 -0
- data/lib/llmemory/llm/anthropic.rb +48 -0
- data/lib/llmemory/llm/base.rb +17 -0
- data/lib/llmemory/llm/openai.rb +46 -0
- data/lib/llmemory/llm.rb +18 -0
- data/lib/llmemory/long_term/file_based/category.rb +22 -0
- data/lib/llmemory/long_term/file_based/item.rb +31 -0
- data/lib/llmemory/long_term/file_based/memory.rb +83 -0
- data/lib/llmemory/long_term/file_based/resource.rb +22 -0
- data/lib/llmemory/long_term/file_based/retrieval.rb +90 -0
- data/lib/llmemory/long_term/file_based/storage.rb +35 -0
- data/lib/llmemory/long_term/file_based/storages/active_record_models.rb +26 -0
- data/lib/llmemory/long_term/file_based/storages/active_record_storage.rb +144 -0
- data/lib/llmemory/long_term/file_based/storages/base.rb +71 -0
- data/lib/llmemory/long_term/file_based/storages/database_storage.rb +231 -0
- data/lib/llmemory/long_term/file_based/storages/file_storage.rb +180 -0
- data/lib/llmemory/long_term/file_based/storages/memory_storage.rb +100 -0
- data/lib/llmemory/long_term/file_based.rb +15 -0
- data/lib/llmemory/long_term/graph_based/conflict_resolver.rb +33 -0
- data/lib/llmemory/long_term/graph_based/edge.rb +49 -0
- data/lib/llmemory/long_term/graph_based/knowledge_graph.rb +114 -0
- data/lib/llmemory/long_term/graph_based/memory.rb +143 -0
- data/lib/llmemory/long_term/graph_based/node.rb +42 -0
- data/lib/llmemory/long_term/graph_based/storage.rb +24 -0
- data/lib/llmemory/long_term/graph_based/storages/active_record_models.rb +23 -0
- data/lib/llmemory/long_term/graph_based/storages/active_record_storage.rb +132 -0
- data/lib/llmemory/long_term/graph_based/storages/base.rb +39 -0
- data/lib/llmemory/long_term/graph_based/storages/memory_storage.rb +106 -0
- data/lib/llmemory/long_term/graph_based.rb +15 -0
- data/lib/llmemory/long_term.rb +9 -0
- data/lib/llmemory/maintenance/consolidator.rb +55 -0
- data/lib/llmemory/maintenance/reindexer.rb +27 -0
- data/lib/llmemory/maintenance/runner.rb +34 -0
- data/lib/llmemory/maintenance/summarizer.rb +57 -0
- data/lib/llmemory/maintenance.rb +8 -0
- data/lib/llmemory/memory.rb +96 -0
- data/lib/llmemory/retrieval/context_assembler.rb +53 -0
- data/lib/llmemory/retrieval/engine.rb +74 -0
- data/lib/llmemory/retrieval/temporal_ranker.rb +23 -0
- data/lib/llmemory/retrieval.rb +10 -0
- data/lib/llmemory/short_term/checkpoint.rb +47 -0
- data/lib/llmemory/short_term/stores/active_record_checkpoint.rb +14 -0
- data/lib/llmemory/short_term/stores/active_record_store.rb +58 -0
- data/lib/llmemory/short_term/stores/base.rb +21 -0
- data/lib/llmemory/short_term/stores/memory_store.rb +37 -0
- data/lib/llmemory/short_term/stores/postgres_store.rb +80 -0
- data/lib/llmemory/short_term/stores/redis_store.rb +54 -0
- data/lib/llmemory/short_term.rb +8 -0
- data/lib/llmemory/vector_store/base.rb +19 -0
- data/lib/llmemory/vector_store/memory_store.rb +53 -0
- data/lib/llmemory/vector_store/openai_embeddings.rb +49 -0
- data/lib/llmemory/vector_store.rb +10 -0
- data/lib/llmemory/version.rb +5 -0
- data/lib/llmemory.rb +19 -0
- metadata +163 -0
checksums.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
---
|
|
2
|
+
SHA256:
|
|
3
|
+
metadata.gz: 84ebe29d1042b2efa07d02ded2a5374bbdcc1b0bad195a90d6cc5a15c1a2f73a
|
|
4
|
+
data.tar.gz: 6b6c0157acc13d89a07b9491c206a5a132d4c1e9c3c63a08f1810dd39681a067
|
|
5
|
+
SHA512:
|
|
6
|
+
metadata.gz: cfd74b6f30e3d049de41596344a15c7b7734794a146a22e9dc2ad61153eb8fa584982efe1a4969bbe24fdbe2a079f46f8f42aeabd1e90e6f78f65d511fbc10df
|
|
7
|
+
data.tar.gz: 644dd2c11dbcdb40486d4a1b3cc33e5c13aa0ae0f9616358b4aff069d7b0ac7a04a263bb09a98657e58bcbefd11def65c7c5c711bbf6be3d36645512367439e3
|
data/LICENSE.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 llmemory
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
data/README.md
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
# llmemory
|
|
2
|
+
|
|
3
|
+
Persistent memory system for LLM agents. Implements short-term checkpointing, long-term memory (file-based or **graph-based**), retrieval with time decay, and maintenance jobs.
|
|
4
|
+
|
|
5
|
+
## Installation
|
|
6
|
+
|
|
7
|
+
Add to your Gemfile:
|
|
8
|
+
|
|
9
|
+
```ruby
|
|
10
|
+
gem "llmemory"
|
|
11
|
+
```
|
|
12
|
+
|
|
13
|
+
Then run `bundle install`.
|
|
14
|
+
|
|
15
|
+
## Quick Start (Unified API)
|
|
16
|
+
|
|
17
|
+
The recommended way to use llmemory in a chat is the unified `Llmemory::Memory` API. It abstracts short-term (conversation history) and long-term (extracted facts) and combines retrieval from both:
|
|
18
|
+
|
|
19
|
+
```ruby
|
|
20
|
+
# File-based long-term (default): facts and categories
|
|
21
|
+
memory = Llmemory::Memory.new(user_id: "user_123", session_id: "conv_456")
|
|
22
|
+
|
|
23
|
+
# Or graph-based long-term: entities and relations (knowledge graph + vector search)
|
|
24
|
+
memory = Llmemory::Memory.new(user_id: "user_123", session_id: "conv_456", long_term_type: :graph_based)
|
|
25
|
+
|
|
26
|
+
# Add user and assistant messages
|
|
27
|
+
memory.add_message(role: :user, content: "Soy vegano y trabajo en OpenAI")
|
|
28
|
+
memory.add_message(role: :assistant, content: "Entendido, lo recordaré")
|
|
29
|
+
|
|
30
|
+
# Get full context for the next LLM call (recent conversation + relevant long-term memories)
|
|
31
|
+
context = memory.retrieve("¿Qué preferencias tiene el usuario?", max_tokens: 2000)
|
|
32
|
+
|
|
33
|
+
# Optionally consolidate current conversation into long-term (extract facts)
|
|
34
|
+
memory.consolidate!
|
|
35
|
+
|
|
36
|
+
# Clear session (short-term) while keeping long-term intact
|
|
37
|
+
memory.clear_session!
|
|
38
|
+
```
|
|
39
|
+
|
|
40
|
+
- **`add_message(role:, content:)`** — Persists messages in short-term.
|
|
41
|
+
- **`messages`** — Returns the current conversation history.
|
|
42
|
+
- **`retrieve(query, max_tokens: nil)`** — Returns combined context: recent conversation + relevant long-term memories.
|
|
43
|
+
- **`consolidate!`** — Extracts facts from the current conversation and stores them in long-term.
|
|
44
|
+
- **`clear_session!`** — Clears short-term only.
|
|
45
|
+
|
|
46
|
+
## Configuration
|
|
47
|
+
|
|
48
|
+
```ruby
|
|
49
|
+
Llmemory.configure do |config|
|
|
50
|
+
config.llm_provider = :openai
|
|
51
|
+
config.llm_api_key = ENV["OPENAI_API_KEY"]
|
|
52
|
+
config.llm_model = "gpt-4"
|
|
53
|
+
config.short_term_store = :memory # or :redis, :postgres, :active_record
|
|
54
|
+
config.redis_url = ENV["REDIS_URL"] # for :redis
|
|
55
|
+
config.long_term_type = :file_based # or :graph_based (entities + relations)
|
|
56
|
+
config.long_term_store = :memory # or :file, :postgres, :active_record
|
|
57
|
+
config.long_term_storage_path = "./llmemory_data" # for :file
|
|
58
|
+
config.database_url = ENV["DATABASE_URL"] # for :postgres
|
|
59
|
+
config.time_decay_half_life_days = 30
|
|
60
|
+
config.max_retrieval_tokens = 2000
|
|
61
|
+
config.prune_after_days = 90
|
|
62
|
+
end
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
## Long-Term Storage
|
|
66
|
+
|
|
67
|
+
Long-term memory can use different backends:
|
|
68
|
+
|
|
69
|
+
| Store | Class | Use case |
|
|
70
|
+
|------------------|-----------------------------|-----------------------------------|
|
|
71
|
+
| `:memory` | `Storages::MemoryStorage` | Default; in-memory, lost on exit |
|
|
72
|
+
| `:file` | `Storages::FileStorage` | Persist to disk (directory per user) |
|
|
73
|
+
| `:postgres` | `Storages::DatabaseStorage` | PostgreSQL (tables created automatically) |
|
|
74
|
+
| `:active_record` | `Storages::ActiveRecordStorage` | Rails: usa ActiveRecord y tu DB existente |
|
|
75
|
+
|
|
76
|
+
Set `config.long_term_store = :file`, `:postgres` or `:active_record` so that `Llmemory::Memory` and `FileBased::Memory` use it when no `storage:` is passed.
|
|
77
|
+
|
|
78
|
+
**Long-term type:** use `long_term_type: :graph_based` in `Llmemory::Memory.new(...)` for entity/relation memory (knowledge graph + hybrid retrieval). See [Long-Term Memory (Graph-Based)](#long-term-memory-graph-based) below.
|
|
79
|
+
|
|
80
|
+
**Rails (ActiveRecord):** añade `activerecord` a tu Gemfile si no está. Luego:
|
|
81
|
+
|
|
82
|
+
```bash
|
|
83
|
+
rails g llmemory:install
|
|
84
|
+
rails db:migrate
|
|
85
|
+
```
|
|
86
|
+
|
|
87
|
+
La migración crea las tablas de long-term file-based (resources, items, categories), short-term (checkpoints) y, para graph-based, nodos, aristas y embeddings (`llmemory_nodes`, `llmemory_edges`, `llmemory_embeddings`). Para embeddings se usa pgvector; asegúrate de tener la extensión `vector` en PostgreSQL. Para usar ambas con ActiveRecord:
|
|
88
|
+
|
|
89
|
+
```ruby
|
|
90
|
+
# config/application.rb o config/initializers/llmemory.rb
|
|
91
|
+
Llmemory.configure do |config|
|
|
92
|
+
config.short_term_store = :active_record # historial de conversación en DB
|
|
93
|
+
config.long_term_store = :active_record # hechos extraídos en DB
|
|
94
|
+
# ... llm, etc.
|
|
95
|
+
end
|
|
96
|
+
```
|
|
97
|
+
|
|
98
|
+
Explicit storage:
|
|
99
|
+
|
|
100
|
+
```ruby
|
|
101
|
+
storage = Llmemory::LongTerm::FileBased::Storages.build(store: :file, base_path: "./data/llmemory")
|
|
102
|
+
memory = Llmemory::LongTerm::FileBased::Memory.new(user_id: "u1", storage: storage)
|
|
103
|
+
|
|
104
|
+
storage = Llmemory::LongTerm::FileBased::Storages.build(store: :postgres, database_url: ENV["DATABASE_URL"])
|
|
105
|
+
memory = Llmemory::LongTerm::FileBased::Memory.new(user_id: "u1", storage: storage)
|
|
106
|
+
|
|
107
|
+
# Rails
|
|
108
|
+
storage = Llmemory::LongTerm::FileBased::Storages.build(store: :active_record)
|
|
109
|
+
memory = Llmemory::LongTerm::FileBased::Memory.new(user_id: "u1", storage: storage)
|
|
110
|
+
```
|
|
111
|
+
|
|
112
|
+
## Long-Term Memory (Graph-Based)
|
|
113
|
+
|
|
114
|
+
When you need **entities and relations** (e.g. “User works_at OpenAI”, “User prefers Ruby”) instead of flat facts and categories, use graph-based long-term memory. It combines:
|
|
115
|
+
|
|
116
|
+
- **Knowledge graph** — Nodes (entities) and edges (subject–predicate–object relations).
|
|
117
|
+
- **Vector store** — Embeddings (e.g. OpenAI `text-embedding-3-small`) for semantic search.
|
|
118
|
+
- **Hybrid retrieval** — Vector search + graph traversal from matched nodes, then merged and ranked.
|
|
119
|
+
- **Conflict resolution** — Exclusive predicates (e.g. `works_at`, `lives_in`) archive previous values when a new one is stored.
|
|
120
|
+
|
|
121
|
+
### Unified API with graph-based
|
|
122
|
+
|
|
123
|
+
```ruby
|
|
124
|
+
memory = Llmemory::Memory.new(
|
|
125
|
+
user_id: "user_123",
|
|
126
|
+
session_id: "conv_456",
|
|
127
|
+
long_term_type: :graph_based
|
|
128
|
+
)
|
|
129
|
+
memory.add_message(role: :user, content: "Trabajo en Acme y vivo en Madrid")
|
|
130
|
+
memory.consolidate!
|
|
131
|
+
context = memory.retrieve("¿Dónde trabaja el usuario?")
|
|
132
|
+
```
|
|
133
|
+
|
|
134
|
+
### Lower-level graph-based API
|
|
135
|
+
|
|
136
|
+
```ruby
|
|
137
|
+
storage = Llmemory::LongTerm::GraphBased::Storages.build(store: :memory) # or :active_record
|
|
138
|
+
vector_store = Llmemory::VectorStore::MemoryStore.new(
|
|
139
|
+
embedding_provider: Llmemory::VectorStore::OpenAIEmbeddings.new
|
|
140
|
+
)
|
|
141
|
+
memory = Llmemory::LongTerm::GraphBased::Memory.new(
|
|
142
|
+
user_id: "user_123",
|
|
143
|
+
storage: storage,
|
|
144
|
+
vector_store: vector_store
|
|
145
|
+
)
|
|
146
|
+
memory.memorize("User works at Acme. User lives in Madrid.")
|
|
147
|
+
context = memory.retrieve("where does user work", top_k: 10)
|
|
148
|
+
candidates = memory.search_candidates("job", top_k: 20)
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
- **`memorize(conversation_text)`** — LLM extracts entities and relations (SPO triplets), upserts nodes/edges, resolves conflicts, and stores relation text in the vector store.
|
|
152
|
+
- **`retrieve(query, top_k:)`** — Hybrid search: vector similarity + graph traversal; returns formatted context string.
|
|
153
|
+
- **`search_candidates(query, user_id:, top_k:)`** — Used by `Retrieval::Engine`; returns `[{ text:, timestamp:, score: }]`.
|
|
154
|
+
|
|
155
|
+
**Graph storage:** `:memory` (in-memory) or `:active_record` (Rails). For ActiveRecord, run `rails g llmemory:install` and migrate; the migration creates `llmemory_nodes`, `llmemory_edges`, and `llmemory_embeddings` (pgvector). Enable the `vector` extension in PostgreSQL for embeddings.
|
|
156
|
+
|
|
157
|
+
## Lower-Level APIs
|
|
158
|
+
|
|
159
|
+
### Short-Term Memory (Checkpointing)
|
|
160
|
+
|
|
161
|
+
```ruby
|
|
162
|
+
checkpoint = Llmemory::ShortTerm::Checkpoint.new(user_id: "user_123")
|
|
163
|
+
checkpoint.save_state(conversation_state)
|
|
164
|
+
state = checkpoint.restore_state
|
|
165
|
+
```
|
|
166
|
+
|
|
167
|
+
### Long-Term Memory (File-Based)
|
|
168
|
+
|
|
169
|
+
```ruby
|
|
170
|
+
memory = Llmemory::LongTerm::FileBased::Memory.new(user_id: "user_123")
|
|
171
|
+
# or with explicit storage: storage: Llmemory::LongTerm::FileBased::Storages.build(store: :file)
|
|
172
|
+
memory.memorize(conversation_text)
|
|
173
|
+
context = memory.retrieve(query)
|
|
174
|
+
```
|
|
175
|
+
|
|
176
|
+
### Retrieval Engine
|
|
177
|
+
|
|
178
|
+
```ruby
|
|
179
|
+
retrieval = Llmemory::Retrieval::Engine.new(long_term_memory)
|
|
180
|
+
context = retrieval.retrieve_for_inference(user_message, max_tokens: 2000)
|
|
181
|
+
```
|
|
182
|
+
|
|
183
|
+
### Maintenance
|
|
184
|
+
|
|
185
|
+
```ruby
|
|
186
|
+
Llmemory::Maintenance::Runner.run_nightly(user_id, storage: memory.storage)
|
|
187
|
+
Llmemory::Maintenance::Runner.run_weekly(user_id, storage: memory.storage)
|
|
188
|
+
Llmemory::Maintenance::Runner.run_monthly(user_id, storage: memory.storage)
|
|
189
|
+
```
|
|
190
|
+
|
|
191
|
+
## License
|
|
192
|
+
|
|
193
|
+
MIT. See [LICENSE.txt](LICENSE.txt).
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require "rails/generators/migration"
|
|
4
|
+
|
|
5
|
+
module Llmemory
|
|
6
|
+
module Generators
|
|
7
|
+
class InstallGenerator < ::Rails::Generators::Base
|
|
8
|
+
include Rails::Generators::Migration
|
|
9
|
+
|
|
10
|
+
source_root File.expand_path("templates", __dir__)
|
|
11
|
+
|
|
12
|
+
desc "Create migration for llmemory long-term storage (ActiveRecord)"
|
|
13
|
+
|
|
14
|
+
def self.next_migration_number(dirname)
|
|
15
|
+
next_migration_number = current_migration_number(dirname) + 1
|
|
16
|
+
ActiveRecord::Migration.next_migration_number(next_migration_number)
|
|
17
|
+
end
|
|
18
|
+
|
|
19
|
+
def copy_migration
|
|
20
|
+
migration_template "create_llmemory_tables.rb", "db/migrate/create_llmemory_tables.rb"
|
|
21
|
+
end
|
|
22
|
+
end
|
|
23
|
+
end
|
|
24
|
+
end
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
class CreateLlmemoryTables < ActiveRecord::Migration[7.0]
|
|
4
|
+
def change
|
|
5
|
+
create_table :llmemory_resources, id: false do |t|
|
|
6
|
+
t.string :id, null: false, primary_key: true
|
|
7
|
+
t.string :user_id, null: false
|
|
8
|
+
t.text :text, null: false
|
|
9
|
+
t.timestamps
|
|
10
|
+
end
|
|
11
|
+
add_index :llmemory_resources, :user_id
|
|
12
|
+
|
|
13
|
+
create_table :llmemory_items, id: false do |t|
|
|
14
|
+
t.string :id, null: false, primary_key: true
|
|
15
|
+
t.string :user_id, null: false
|
|
16
|
+
t.string :category, null: false
|
|
17
|
+
t.text :content, null: false
|
|
18
|
+
t.string :source_resource_id
|
|
19
|
+
t.timestamps
|
|
20
|
+
end
|
|
21
|
+
add_index :llmemory_items, :user_id
|
|
22
|
+
|
|
23
|
+
create_table :llmemory_categories do |t|
|
|
24
|
+
t.string :user_id, null: false
|
|
25
|
+
t.string :category_name, null: false
|
|
26
|
+
t.text :content, null: false
|
|
27
|
+
t.datetime :updated_at, null: false
|
|
28
|
+
end
|
|
29
|
+
add_index :llmemory_categories, [:user_id, :category_name], unique: true
|
|
30
|
+
|
|
31
|
+
create_table :llmemory_checkpoints do |t|
|
|
32
|
+
t.string :user_id, null: false
|
|
33
|
+
t.string :session_id, null: false
|
|
34
|
+
t.jsonb :state, null: false, default: {}
|
|
35
|
+
t.timestamps
|
|
36
|
+
end
|
|
37
|
+
add_index :llmemory_checkpoints, [:user_id, :session_id], unique: true
|
|
38
|
+
|
|
39
|
+
# Graph-based long-term memory (nodes = entities)
|
|
40
|
+
create_table :llmemory_nodes do |t|
|
|
41
|
+
t.string :user_id, null: false
|
|
42
|
+
t.string :entity_type, null: false
|
|
43
|
+
t.string :name, null: false
|
|
44
|
+
t.jsonb :properties, default: {}
|
|
45
|
+
t.timestamps
|
|
46
|
+
end
|
|
47
|
+
add_index :llmemory_nodes, [:user_id, :entity_type, :name], unique: true
|
|
48
|
+
|
|
49
|
+
# Graph-based long-term memory (edges = SPO relations)
|
|
50
|
+
create_table :llmemory_edges do |t|
|
|
51
|
+
t.string :user_id, null: false
|
|
52
|
+
t.references :subject, null: false, foreign_key: { to_table: :llmemory_nodes }
|
|
53
|
+
t.string :predicate, null: false
|
|
54
|
+
t.references :object, null: false, foreign_key: { to_table: :llmemory_nodes }
|
|
55
|
+
t.jsonb :properties, default: {}
|
|
56
|
+
t.datetime :archived_at
|
|
57
|
+
t.timestamps
|
|
58
|
+
end
|
|
59
|
+
add_index :llmemory_edges, [:user_id, :subject_id, :predicate]
|
|
60
|
+
|
|
61
|
+
# Vector store for hybrid retrieval (requires pgvector extension)
|
|
62
|
+
enable_extension "vector"
|
|
63
|
+
create_table :llmemory_embeddings do |t|
|
|
64
|
+
t.string :user_id, null: false
|
|
65
|
+
t.string :source_type, null: false
|
|
66
|
+
t.string :source_id, null: false
|
|
67
|
+
t.vector :embedding, limit: 1536
|
|
68
|
+
t.text :text_content
|
|
69
|
+
t.timestamps
|
|
70
|
+
end
|
|
71
|
+
add_index :llmemory_embeddings, [:user_id, :source_type, :source_id], unique: true
|
|
72
|
+
end
|
|
73
|
+
end
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module Llmemory
|
|
4
|
+
class Configuration
|
|
5
|
+
attr_accessor :llm_provider,
|
|
6
|
+
:llm_api_key,
|
|
7
|
+
:llm_model,
|
|
8
|
+
:llm_base_url,
|
|
9
|
+
:short_term_store,
|
|
10
|
+
:redis_url,
|
|
11
|
+
:long_term_type,
|
|
12
|
+
:long_term_store,
|
|
13
|
+
:long_term_storage_path,
|
|
14
|
+
:database_url,
|
|
15
|
+
:vector_store,
|
|
16
|
+
:time_decay_half_life_days,
|
|
17
|
+
:max_retrieval_tokens,
|
|
18
|
+
:prune_after_days
|
|
19
|
+
|
|
20
|
+
def initialize
|
|
21
|
+
@llm_provider = :openai
|
|
22
|
+
@llm_api_key = ENV["OPENAI_API_KEY"]
|
|
23
|
+
@llm_model = "gpt-4"
|
|
24
|
+
@llm_base_url = nil
|
|
25
|
+
@short_term_store = :memory
|
|
26
|
+
@redis_url = ENV["REDIS_URL"] || "redis://localhost:6379/0"
|
|
27
|
+
@long_term_type = :file_based
|
|
28
|
+
@long_term_store = :memory
|
|
29
|
+
@long_term_storage_path = ENV["LLMEMORY_STORAGE_PATH"] || "./llmemory_data"
|
|
30
|
+
@database_url = ENV["DATABASE_URL"]
|
|
31
|
+
@vector_store = nil
|
|
32
|
+
@time_decay_half_life_days = 30
|
|
33
|
+
@max_retrieval_tokens = 2000
|
|
34
|
+
@prune_after_days = 90
|
|
35
|
+
end
|
|
36
|
+
end
|
|
37
|
+
|
|
38
|
+
class << self
|
|
39
|
+
def configuration
|
|
40
|
+
@configuration ||= Configuration.new
|
|
41
|
+
end
|
|
42
|
+
|
|
43
|
+
def configure
|
|
44
|
+
yield configuration
|
|
45
|
+
end
|
|
46
|
+
|
|
47
|
+
def reset_configuration!
|
|
48
|
+
@configuration = Configuration.new
|
|
49
|
+
end
|
|
50
|
+
end
|
|
51
|
+
end
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require "json"
|
|
4
|
+
|
|
5
|
+
module Llmemory
|
|
6
|
+
module Extractors
|
|
7
|
+
class EntityRelationExtractor
|
|
8
|
+
def initialize(llm: nil)
|
|
9
|
+
@llm = llm || Llmemory::LLM.client
|
|
10
|
+
end
|
|
11
|
+
|
|
12
|
+
def extract(conversation_text)
|
|
13
|
+
prompt = <<~PROMPT
|
|
14
|
+
Extract entities and relations from this conversation as a knowledge graph.
|
|
15
|
+
- Entities: people, companies, places, preferences, concepts (type and name).
|
|
16
|
+
- Relations: subject-predicate-object triplets (e.g. User works_at OpenAI).
|
|
17
|
+
Use "User" as subject when the user talks about themselves.
|
|
18
|
+
Predicates: works_at, lives_in, prefers, is_allergic_to, likes, knows, current_job, current_city, etc.
|
|
19
|
+
Return ONLY valid JSON with this shape:
|
|
20
|
+
{"entities": [{"type": "person", "name": "User"}, {"type": "company", "name": "OpenAI"}], "relations": [{"subject": "User", "predicate": "works_at", "object": "OpenAI"}]}
|
|
21
|
+
Conversation:
|
|
22
|
+
#{conversation_text}
|
|
23
|
+
PROMPT
|
|
24
|
+
response = @llm.invoke(prompt.strip)
|
|
25
|
+
parse_response(response)
|
|
26
|
+
end
|
|
27
|
+
|
|
28
|
+
private
|
|
29
|
+
|
|
30
|
+
def parse_response(response)
|
|
31
|
+
json = extract_json(response)
|
|
32
|
+
return { entities: [], relations: [] } unless json.is_a?(Hash)
|
|
33
|
+
entities = Array(json["entities"] || json[:entities]).map { |e| normalize_entity(e) }
|
|
34
|
+
relations = Array(json["relations"] || json[:relations]).map { |r| normalize_relation(r) }
|
|
35
|
+
{ entities: entities, relations: relations }
|
|
36
|
+
end
|
|
37
|
+
|
|
38
|
+
def extract_json(response)
|
|
39
|
+
response = response.to_s.strip
|
|
40
|
+
start_idx = response.index("{")
|
|
41
|
+
return nil unless start_idx
|
|
42
|
+
depth = 0
|
|
43
|
+
end_idx = nil
|
|
44
|
+
response.each_char.with_index(start_idx) do |c, i|
|
|
45
|
+
depth += 1 if c == "{"
|
|
46
|
+
depth -= 1 if c == "}"
|
|
47
|
+
if depth == 0
|
|
48
|
+
end_idx = i
|
|
49
|
+
break
|
|
50
|
+
end
|
|
51
|
+
end
|
|
52
|
+
return nil unless end_idx
|
|
53
|
+
JSON.parse(response[start_idx..end_idx])
|
|
54
|
+
rescue JSON::ParserError
|
|
55
|
+
nil
|
|
56
|
+
end
|
|
57
|
+
|
|
58
|
+
def normalize_entity(e)
|
|
59
|
+
{
|
|
60
|
+
type: (e["type"] || e[:type] || "concept").to_s.downcase,
|
|
61
|
+
name: (e["name"] || e[:name]).to_s.strip
|
|
62
|
+
}
|
|
63
|
+
end
|
|
64
|
+
|
|
65
|
+
def normalize_relation(r)
|
|
66
|
+
{
|
|
67
|
+
subject: (r["subject"] || r[:subject]).to_s.strip,
|
|
68
|
+
predicate: (r["predicate"] || r[:predicate]).to_s.strip.downcase.gsub(/\s+/, "_"),
|
|
69
|
+
object: (r["object"] || r[:object]).to_s.strip
|
|
70
|
+
}
|
|
71
|
+
end
|
|
72
|
+
end
|
|
73
|
+
end
|
|
74
|
+
end
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require "json"
|
|
4
|
+
|
|
5
|
+
module Llmemory
|
|
6
|
+
module Extractors
|
|
7
|
+
class FactExtractor
|
|
8
|
+
def initialize(llm: nil)
|
|
9
|
+
@llm = llm || Llmemory::LLM.client
|
|
10
|
+
end
|
|
11
|
+
|
|
12
|
+
def extract_items(conversation_text)
|
|
13
|
+
prompt = <<~PROMPT
|
|
14
|
+
Extract discrete facts from this conversation.
|
|
15
|
+
Focus on preferences, behaviors, and important details.
|
|
16
|
+
Conversation: #{conversation_text}
|
|
17
|
+
Return as JSON array of objects with "content" key. Example: [{"content": "User prefers Ruby"}, {"content": "User is vegan"}]
|
|
18
|
+
PROMPT
|
|
19
|
+
response = @llm.invoke(prompt.strip)
|
|
20
|
+
parse_items_response(response)
|
|
21
|
+
end
|
|
22
|
+
|
|
23
|
+
def evolve_summary(existing:, new_memories:)
|
|
24
|
+
memory_list_text = Array(new_memories).map { |m| "- #{m}" }.join("\n")
|
|
25
|
+
prompt = <<~PROMPT
|
|
26
|
+
You are a Memory Synchronization Specialist.
|
|
27
|
+
Topic Scope: User Profile
|
|
28
|
+
|
|
29
|
+
## Original Profile
|
|
30
|
+
#{existing.to_s.empty? ? "No existing profile." : existing}
|
|
31
|
+
|
|
32
|
+
## New Memory Items to Integrate
|
|
33
|
+
#{memory_list_text}
|
|
34
|
+
|
|
35
|
+
# Task
|
|
36
|
+
1. Update: If new items conflict with the Original Profile, overwrite the old facts.
|
|
37
|
+
2. Add: If items are new, append them logically.
|
|
38
|
+
3. Output: Return ONLY the updated markdown profile.
|
|
39
|
+
PROMPT
|
|
40
|
+
@llm.invoke(prompt.strip).to_s
|
|
41
|
+
end
|
|
42
|
+
|
|
43
|
+
def classify_item(content)
|
|
44
|
+
return "general" if content.to_s.strip.empty?
|
|
45
|
+
prompt = <<~PROMPT
|
|
46
|
+
Classify this fact into ONE category. Use lowercase with underscores. Examples: work_life, personal_life, preferences, general.
|
|
47
|
+
Fact: #{content}
|
|
48
|
+
Return ONLY the category name, nothing else.
|
|
49
|
+
PROMPT
|
|
50
|
+
result = @llm.invoke(prompt.strip).to_s.strip.downcase.gsub(/\s+/, "_")
|
|
51
|
+
result.empty? ? "general" : result
|
|
52
|
+
end
|
|
53
|
+
|
|
54
|
+
private
|
|
55
|
+
|
|
56
|
+
def parse_items_response(response)
|
|
57
|
+
json = extract_json_array(response)
|
|
58
|
+
return [] unless json
|
|
59
|
+
json.map { |item| item.is_a?(Hash) ? item : { "content" => item.to_s } }
|
|
60
|
+
end
|
|
61
|
+
|
|
62
|
+
def extract_json_array(response)
|
|
63
|
+
response = response.to_s.strip
|
|
64
|
+
start_idx = response.index("[")
|
|
65
|
+
return nil unless start_idx
|
|
66
|
+
end_idx = response.rindex("]")
|
|
67
|
+
return nil unless end_idx
|
|
68
|
+
JSON.parse(response[start_idx..end_idx])
|
|
69
|
+
rescue JSON::ParserError
|
|
70
|
+
nil
|
|
71
|
+
end
|
|
72
|
+
end
|
|
73
|
+
end
|
|
74
|
+
end
|
|
@@ -0,0 +1,48 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require "faraday"
|
|
4
|
+
require "json"
|
|
5
|
+
require_relative "base"
|
|
6
|
+
|
|
7
|
+
module Llmemory
|
|
8
|
+
module LLM
|
|
9
|
+
class Anthropic < Base
|
|
10
|
+
DEFAULT_BASE_URL = "https://api.anthropic.com"
|
|
11
|
+
|
|
12
|
+
def initialize(api_key: nil, model: nil, base_url: nil)
|
|
13
|
+
@api_key = api_key || config.llm_api_key || ENV["ANTHROPIC_API_KEY"]
|
|
14
|
+
@model = model || config.llm_model || "claude-3-sonnet-20240229"
|
|
15
|
+
@base_url = base_url || config.llm_base_url || DEFAULT_BASE_URL
|
|
16
|
+
end
|
|
17
|
+
|
|
18
|
+
def invoke(prompt)
|
|
19
|
+
response = connection.post("v1/messages") do |req|
|
|
20
|
+
req.body = {
|
|
21
|
+
model: @model,
|
|
22
|
+
max_tokens: 1024,
|
|
23
|
+
messages: [{ role: "user", content: prompt }]
|
|
24
|
+
}.to_json
|
|
25
|
+
req.headers["Content-Type"] = "application/json"
|
|
26
|
+
req.headers["x-api-key"] = @api_key
|
|
27
|
+
req.headers["anthropic-version"] = "2023-06-01"
|
|
28
|
+
end
|
|
29
|
+
|
|
30
|
+
raise Llmemory::LLMError, "Anthropic API error: #{response.body}" unless response.success?
|
|
31
|
+
|
|
32
|
+
body = response.body.is_a?(Hash) ? response.body : JSON.parse(response.body.to_s)
|
|
33
|
+
content = body.dig("content", 0, "text")
|
|
34
|
+
content&.strip || ""
|
|
35
|
+
end
|
|
36
|
+
|
|
37
|
+
private
|
|
38
|
+
|
|
39
|
+
def connection
|
|
40
|
+
@connection ||= Faraday.new(url: @base_url) do |f|
|
|
41
|
+
f.request :json
|
|
42
|
+
f.response :json
|
|
43
|
+
f.adapter Faraday.default_adapter
|
|
44
|
+
end
|
|
45
|
+
end
|
|
46
|
+
end
|
|
47
|
+
end
|
|
48
|
+
end
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module Llmemory
|
|
4
|
+
module LLM
|
|
5
|
+
class Base
|
|
6
|
+
def invoke(prompt)
|
|
7
|
+
raise NotImplementedError, "#{self.class}#invoke must be implemented"
|
|
8
|
+
end
|
|
9
|
+
|
|
10
|
+
protected
|
|
11
|
+
|
|
12
|
+
def config
|
|
13
|
+
Llmemory.configuration
|
|
14
|
+
end
|
|
15
|
+
end
|
|
16
|
+
end
|
|
17
|
+
end
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require "faraday"
|
|
4
|
+
require "json"
|
|
5
|
+
require_relative "base"
|
|
6
|
+
|
|
7
|
+
module Llmemory
|
|
8
|
+
module LLM
|
|
9
|
+
class OpenAI < Base
|
|
10
|
+
DEFAULT_BASE_URL = "https://api.openai.com/v1"
|
|
11
|
+
|
|
12
|
+
def initialize(api_key: nil, model: nil, base_url: nil)
|
|
13
|
+
@api_key = api_key || config.llm_api_key
|
|
14
|
+
@model = model || config.llm_model
|
|
15
|
+
@base_url = base_url || config.llm_base_url || DEFAULT_BASE_URL
|
|
16
|
+
end
|
|
17
|
+
|
|
18
|
+
def invoke(prompt)
|
|
19
|
+
response = connection.post("chat/completions") do |req|
|
|
20
|
+
req.body = {
|
|
21
|
+
model: @model,
|
|
22
|
+
messages: [{ role: "user", content: prompt }],
|
|
23
|
+
temperature: 0.3
|
|
24
|
+
}.to_json
|
|
25
|
+
req.headers["Content-Type"] = "application/json"
|
|
26
|
+
req.headers["Authorization"] = "Bearer #{@api_key}"
|
|
27
|
+
end
|
|
28
|
+
|
|
29
|
+
raise Llmemory::LLMError, "OpenAI API error: #{response.body}" unless response.success?
|
|
30
|
+
|
|
31
|
+
body = response.body.is_a?(Hash) ? response.body : JSON.parse(response.body.to_s)
|
|
32
|
+
body.dig("choices", 0, "message", "content")&.strip || ""
|
|
33
|
+
end
|
|
34
|
+
|
|
35
|
+
private
|
|
36
|
+
|
|
37
|
+
def connection
|
|
38
|
+
@connection ||= Faraday.new(url: @base_url) do |f|
|
|
39
|
+
f.request :json
|
|
40
|
+
f.response :json
|
|
41
|
+
f.adapter Faraday.default_adapter
|
|
42
|
+
end
|
|
43
|
+
end
|
|
44
|
+
end
|
|
45
|
+
end
|
|
46
|
+
end
|
data/lib/llmemory/llm.rb
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
require_relative "llm/base"
|
|
4
|
+
require_relative "llm/openai"
|
|
5
|
+
require_relative "llm/anthropic"
|
|
6
|
+
|
|
7
|
+
module Llmemory
|
|
8
|
+
module LLM
|
|
9
|
+
def self.client
|
|
10
|
+
case Llmemory.configuration.llm_provider.to_sym
|
|
11
|
+
when :openai then OpenAI.new
|
|
12
|
+
when :anthropic then Anthropic.new
|
|
13
|
+
else
|
|
14
|
+
raise Llmemory::ConfigurationError, "Unknown LLM provider: #{Llmemory.configuration.llm_provider}"
|
|
15
|
+
end
|
|
16
|
+
end
|
|
17
|
+
end
|
|
18
|
+
end
|