llama_cpp 0.14.5 → 0.14.6
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/lib/llama_cpp/version.rb +2 -2
- data/vendor/tmp/llama.cpp/Makefile +18 -6
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +135 -46
- data/vendor/tmp/llama.cpp/ggml-impl.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-metal.m +130 -83
- data/vendor/tmp/llama.cpp/ggml-metal.metal +505 -1467
- data/vendor/tmp/llama.cpp/ggml-quants.c +1 -1
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +65 -52
- data/vendor/tmp/llama.cpp/ggml.c +153 -87
- data/vendor/tmp/llama.cpp/ggml.h +5 -4
- data/vendor/tmp/llama.cpp/llama.cpp +885 -144
- data/vendor/tmp/llama.cpp/sgemm.cpp +1148 -0
- data/vendor/tmp/llama.cpp/sgemm.h +12 -0
- metadata +4 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 5c4bd6bcb93b98a00f94dcdf93d04f853174f73e281d96fce8f837a6ba7f250e
|
4
|
+
data.tar.gz: 6d184e9ce927c06ba794bea63a09007a175a72e477366ffb1c5763ceb2c7c71e
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 953fe2777a759e5467694b8afb9d3f929a42603e81b2c3e38ba0fda4bb6dca78b2d147345023f99c2c9fb899cc746bf6729ad2726c2cb473d7094e93c13caf73
|
7
|
+
data.tar.gz: 71eb3cd5a5c619e9cc8a3418be745a8b76dc5e8cabe5b26a766230a8533df9a11c3981601b0be4ec0adb34a49f86ad741503ffc9f3b0d7ba021a7e9ddc3246a7
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,7 @@
|
|
1
|
+
## [[0.14.6](https://github.com/yoshoku/llama_cpp.rb/compare/v0.14.5...v0.14.6)] - 2024-04-20
|
2
|
+
|
3
|
+
- Bump llama.cpp from b2658 to b2698.
|
4
|
+
|
1
5
|
## [[0.14.5](https://github.com/yoshoku/llama_cpp.rb/compare/v0.14.4...v0.14.5)] - 2024-04-13
|
2
6
|
|
3
7
|
- Bump llama.cpp from b2608 to b2658.
|
data/lib/llama_cpp/version.rb
CHANGED
@@ -3,8 +3,8 @@
|
|
3
3
|
# llama_cpp.rb provides Ruby bindings for the llama.cpp.
|
4
4
|
module LLaMACpp
|
5
5
|
# The version of llama_cpp.rb you install.
|
6
|
-
VERSION = '0.14.
|
6
|
+
VERSION = '0.14.6'
|
7
7
|
|
8
8
|
# The version of llama.cpp bundled with llama_cpp.rb.
|
9
|
-
LLAMA_CPP_VERSION = '
|
9
|
+
LLAMA_CPP_VERSION = 'b2698'
|
10
10
|
end
|
@@ -386,6 +386,15 @@ ifdef LLAMA_OPENBLAS
|
|
386
386
|
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
387
387
|
endif # LLAMA_OPENBLAS
|
388
388
|
|
389
|
+
# TODO: temporary disable until MoE is fixed
|
390
|
+
# https://github.com/ggerganov/llama.cpp/pull/6716
|
391
|
+
LLAMA_NO_LLAMAFILE := 1
|
392
|
+
|
393
|
+
ifndef LLAMA_NO_LLAMAFILE
|
394
|
+
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
|
395
|
+
OBJS += sgemm.o
|
396
|
+
endif
|
397
|
+
|
389
398
|
ifdef LLAMA_BLIS
|
390
399
|
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
391
400
|
MK_LDFLAGS += -lblis -L/usr/local/lib
|
@@ -482,11 +491,9 @@ ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/com
|
|
482
491
|
|
483
492
|
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
|
484
493
|
$(NVCC_COMPILE)
|
485
|
-
|
486
494
|
endif # LLAMA_CUDA
|
487
495
|
|
488
496
|
ifdef LLAMA_CLBLAST
|
489
|
-
|
490
497
|
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
|
491
498
|
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
492
499
|
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
@@ -605,6 +612,11 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
|
605
612
|
$(CC) $(CFLAGS) -c $< -o $@
|
606
613
|
endif # LLAMA_MPI
|
607
614
|
|
615
|
+
ifndef LLAMA_NO_LLAMAFILE
|
616
|
+
sgemm.o: sgemm.cpp sgemm.h ggml.h
|
617
|
+
$(CXX) $(CXXFLAGS) -c $< -o $@
|
618
|
+
endif
|
619
|
+
|
608
620
|
GF_CC := $(CC)
|
609
621
|
include scripts/get-flags.mk
|
610
622
|
|
@@ -690,7 +702,7 @@ llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml
|
|
690
702
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
691
703
|
|
692
704
|
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
|
693
|
-
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o
|
705
|
+
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o json-schema-to-grammar.o
|
694
706
|
|
695
707
|
common.o: common/common.cpp $(COMMON_H_DEPS)
|
696
708
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
@@ -724,7 +736,7 @@ lib: llama.o ggml.o $(OBJS)
|
|
724
736
|
ar rcs libllama.a $^
|
725
737
|
|
726
738
|
clean:
|
727
|
-
rm -vrf *.o tests/*.o *.so *.a *.dll
|
739
|
+
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
728
740
|
rm -vrf ggml-cuda/*.o
|
729
741
|
|
730
742
|
#
|
@@ -761,7 +773,7 @@ batched: examples/batched/batched.cpp ggml.o llama.o $(C
|
|
761
773
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
762
774
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
763
775
|
|
764
|
-
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o
|
776
|
+
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
765
777
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
766
778
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
767
779
|
|
@@ -793,7 +805,7 @@ save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(C
|
|
793
805
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
794
806
|
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
795
807
|
|
796
|
-
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp
|
808
|
+
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
797
809
|
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
798
810
|
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
799
811
|
|
@@ -1231,7 +1231,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|
1231
1231
|
|
1232
1232
|
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
|
1233
1233
|
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
|
1234
|
-
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
|
1234
|
+
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
|
1235
1235
|
if (src0->type != GGML_TYPE_F16) {
|
1236
1236
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
|
1237
1237
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
@@ -1241,7 +1241,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|
1241
1241
|
}
|
1242
1242
|
const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
|
1243
1243
|
|
1244
|
-
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
|
1244
|
+
ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
|
1245
1245
|
if (src1->type != GGML_TYPE_F16) {
|
1246
1246
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
1247
1247
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
@@ -1250,7 +1250,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
|
1250
1250
|
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
|
1251
1251
|
}
|
1252
1252
|
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
|
1253
|
-
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
|
1253
|
+
ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
|
1254
1254
|
|
1255
1255
|
const half alpha_f16 = 1.0f;
|
1256
1256
|
const half beta_f16 = 0.0f;
|
@@ -1946,7 +1946,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|
1946
1946
|
} else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
1947
1947
|
// KQV single-batch
|
1948
1948
|
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
|
1949
|
-
} else if (!split &&
|
1949
|
+
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
1950
1950
|
// KQ + KQV multi-batch
|
1951
1951
|
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
|
1952
1952
|
} else if (use_dequantize_mul_mat_vec) {
|
@@ -1960,20 +1960,73 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|
1960
1960
|
}
|
1961
1961
|
}
|
1962
1962
|
|
1963
|
+
struct mmid_row_mapping {
|
1964
|
+
int32_t i1;
|
1965
|
+
int32_t i2;
|
1966
|
+
};
|
1967
|
+
|
1968
|
+
static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
|
1969
|
+
int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
|
1970
|
+
const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
|
1971
|
+
int64_t ne11, int64_t ne10,
|
1972
|
+
size_t nb11, size_t nb12) {
|
1973
|
+
int32_t iid1 = blockIdx.x;
|
1974
|
+
int32_t id = blockIdx.y;
|
1975
|
+
|
1976
|
+
const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
|
1977
|
+
|
1978
|
+
if (row_id_i != i02) {
|
1979
|
+
return;
|
1980
|
+
}
|
1981
|
+
|
1982
|
+
const int64_t i11 = id % ne11;
|
1983
|
+
const int64_t i12 = iid1;
|
1984
|
+
|
1985
|
+
__shared__ int src1_row;
|
1986
|
+
if (threadIdx.x == 0) {
|
1987
|
+
src1_row = atomicAdd(cur_src1_row, 1);
|
1988
|
+
row_mapping[src1_row] = {id, iid1};
|
1989
|
+
}
|
1990
|
+
__syncthreads();
|
1991
|
+
|
1992
|
+
const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
|
1993
|
+
float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
|
1994
|
+
|
1995
|
+
for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
|
1996
|
+
src1_row_contiguous[i] = src1_row_original[i];
|
1997
|
+
}
|
1998
|
+
}
|
1999
|
+
|
2000
|
+
static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
|
2001
|
+
const mmid_row_mapping * __restrict__ row_mapping,
|
2002
|
+
int64_t ne0,
|
2003
|
+
size_t nb1, size_t nb2) {
|
2004
|
+
int32_t i = blockIdx.x;
|
2005
|
+
|
2006
|
+
const int32_t i1 = row_mapping[i].i1;
|
2007
|
+
const int32_t i2 = row_mapping[i].i2;
|
2008
|
+
|
2009
|
+
const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
|
2010
|
+
float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
|
2011
|
+
|
2012
|
+
for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
|
2013
|
+
dst_row_original[j] = dst_row_contiguous[j];
|
2014
|
+
}
|
2015
|
+
}
|
2016
|
+
|
1963
2017
|
static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
1964
2018
|
const ggml_tensor * src0 = dst->src[0];
|
1965
2019
|
const ggml_tensor * src1 = dst->src[1];
|
1966
2020
|
const ggml_tensor * ids = dst->src[2];
|
1967
2021
|
|
2022
|
+
GGML_TENSOR_BINARY_OP_LOCALS
|
2023
|
+
|
1968
2024
|
GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers");
|
1969
2025
|
|
1970
2026
|
cudaStream_t stream = ctx.stream();
|
1971
2027
|
|
1972
|
-
const
|
1973
|
-
const
|
1974
|
-
|
1975
|
-
const int32_t id = ((int32_t *) dst->op_params)[0];
|
1976
|
-
const int32_t n_as = src0->ne[2];
|
2028
|
+
const int64_t n_as = ne02;
|
2029
|
+
const int64_t n_ids = ids->ne[0];
|
1977
2030
|
|
1978
2031
|
std::vector<char> ids_host(ggml_nbytes(ids));
|
1979
2032
|
const char * ids_dev = (const char *) ids->data;
|
@@ -1982,7 +2035,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|
1982
2035
|
|
1983
2036
|
ggml_tensor src0_row = *src0;
|
1984
2037
|
ggml_tensor src1_row = *src1;
|
1985
|
-
ggml_tensor dst_row
|
2038
|
+
ggml_tensor dst_row = *dst;
|
1986
2039
|
|
1987
2040
|
char * src0_original = (char *) src0->data;
|
1988
2041
|
char * src1_original = (char *) src1->data;
|
@@ -1990,19 +2043,39 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|
1990
2043
|
|
1991
2044
|
src0_row.ne[2] = 1;
|
1992
2045
|
src0_row.ne[3] = 1;
|
1993
|
-
src0_row.nb[3] =
|
2046
|
+
src0_row.nb[3] = nb02;
|
1994
2047
|
|
1995
|
-
|
1996
|
-
|
1997
|
-
|
2048
|
+
src1_row.ne[1] = 1;
|
2049
|
+
src1_row.ne[2] = 1;
|
2050
|
+
src1_row.ne[3] = 1;
|
2051
|
+
src1_row.nb[2] = nb11;
|
2052
|
+
src1_row.nb[3] = nb11;
|
1998
2053
|
|
1999
|
-
|
2054
|
+
dst_row.ne[1] = 1;
|
2055
|
+
dst_row.ne[2] = 1;
|
2056
|
+
dst_row.ne[3] = 1;
|
2057
|
+
dst_row.nb[2] = nb1;
|
2058
|
+
dst_row.nb[3] = nb1;
|
2000
2059
|
|
2001
|
-
|
2002
|
-
|
2003
|
-
|
2060
|
+
if (ne12 == 1) {
|
2061
|
+
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
2062
|
+
for (int64_t id = 0; id < n_ids; id++) {
|
2063
|
+
const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
2004
2064
|
|
2005
|
-
|
2065
|
+
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
2066
|
+
|
2067
|
+
const int64_t i11 = id % ne11;
|
2068
|
+
const int64_t i12 = iid1;
|
2069
|
+
|
2070
|
+
const int64_t i1 = id;
|
2071
|
+
const int64_t i2 = i12;
|
2072
|
+
|
2073
|
+
src0_row.data = src0_original + i02*nb02;
|
2074
|
+
src1_row.data = src1_original + i11*nb11 + i12*nb12;
|
2075
|
+
dst_row.data = dst_original + i1*nb1 + i2*nb2;
|
2076
|
+
|
2077
|
+
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
2078
|
+
}
|
2006
2079
|
}
|
2007
2080
|
} else {
|
2008
2081
|
ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
|
@@ -2011,54 +2084,69 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
|
2011
2084
|
src1_row.data = src1_contiguous.get();
|
2012
2085
|
dst_row.data = dst_contiguous.get();
|
2013
2086
|
|
2014
|
-
for (
|
2087
|
+
for (int64_t i02 = 0; i02 < n_as; i02++) {
|
2015
2088
|
int64_t num_src1_rows = 0;
|
2016
|
-
for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
|
2017
|
-
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
|
2018
2089
|
|
2019
|
-
|
2020
|
-
|
2021
|
-
|
2090
|
+
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
2091
|
+
for (int64_t id = 0; id < n_ids; id++) {
|
2092
|
+
const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
2022
2093
|
|
2023
|
-
|
2094
|
+
GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
|
2024
2095
|
|
2025
|
-
|
2026
|
-
|
2027
|
-
|
2096
|
+
if (row_id_i != i02) {
|
2097
|
+
continue;
|
2098
|
+
}
|
2099
|
+
|
2100
|
+
num_src1_rows++;
|
2101
|
+
}
|
2028
2102
|
}
|
2029
2103
|
|
2030
2104
|
if (num_src1_rows == 0) {
|
2031
2105
|
continue;
|
2032
2106
|
}
|
2033
2107
|
|
2034
|
-
|
2108
|
+
ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
|
2109
|
+
ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
|
2110
|
+
CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
|
2035
2111
|
|
2036
|
-
|
2037
|
-
|
2112
|
+
{
|
2113
|
+
dim3 block_dims(std::min((unsigned int)ne10, 768u));
|
2114
|
+
dim3 grid_dims(ids->ne[1], n_ids);
|
2115
|
+
k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
|
2116
|
+
src1_original, src1_contiguous.get(),
|
2117
|
+
dev_cur_src1_row.get(), dev_row_mapping.get(),
|
2118
|
+
ids_dev, i02, ids->nb[1], ids->nb[0],
|
2119
|
+
ne11, ne10,
|
2120
|
+
nb11, nb12);
|
2121
|
+
CUDA_CHECK(cudaGetLastError());
|
2122
|
+
}
|
2123
|
+
|
2124
|
+
src0_row.data = src0_original + i02*nb02;
|
2038
2125
|
|
2126
|
+
GGML_ASSERT(nb11 == sizeof(float)*ne10);
|
2127
|
+
GGML_ASSERT(nb1 == sizeof(float)*ne0);
|
2128
|
+
|
2129
|
+
src1_row.ne[1] = num_src1_rows;
|
2039
2130
|
src1_row.nb[1] = nb11;
|
2040
2131
|
src1_row.nb[2] = num_src1_rows*nb11;
|
2041
2132
|
src1_row.nb[3] = num_src1_rows*nb11;
|
2042
2133
|
|
2134
|
+
dst_row.ne[1] = num_src1_rows;
|
2043
2135
|
dst_row.nb[1] = nb1;
|
2044
2136
|
dst_row.nb[2] = num_src1_rows*nb1;
|
2045
2137
|
dst_row.nb[3] = num_src1_rows*nb1;
|
2046
2138
|
|
2047
2139
|
ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
|
2048
2140
|
|
2049
|
-
|
2050
|
-
|
2051
|
-
|
2052
|
-
|
2053
|
-
|
2054
|
-
|
2055
|
-
|
2056
|
-
|
2057
|
-
|
2058
|
-
|
2059
|
-
CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
|
2060
|
-
nb1, cudaMemcpyDeviceToDevice, stream));
|
2061
|
-
num_src1_rows++;
|
2141
|
+
{
|
2142
|
+
dim3 block_dims(std::min((unsigned int)ne0, 768u));
|
2143
|
+
dim3 grid_dims(num_src1_rows);
|
2144
|
+
k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
|
2145
|
+
dst_original, dst_contiguous.get(),
|
2146
|
+
dev_row_mapping.get(),
|
2147
|
+
ne0,
|
2148
|
+
nb1, nb2);
|
2149
|
+
CUDA_CHECK(cudaGetLastError());
|
2062
2150
|
}
|
2063
2151
|
}
|
2064
2152
|
}
|
@@ -2487,7 +2575,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|
2487
2575
|
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
2488
2576
|
const int min_batch_size = 32;
|
2489
2577
|
|
2490
|
-
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS
|
2578
|
+
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
2579
|
+
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
|
2491
2580
|
|
2492
2581
|
GGML_UNUSED(backend);
|
2493
2582
|
}
|
@@ -88,7 +88,7 @@ typedef uint16_t ggml_fp16_internal_t;
|
|
88
88
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
89
89
|
#include <intrin.h>
|
90
90
|
#else
|
91
|
-
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
|
91
|
+
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
92
92
|
#if !defined(__riscv)
|
93
93
|
#include <immintrin.h>
|
94
94
|
#endif
|