llama_cpp 0.14.5 → 0.14.6
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/lib/llama_cpp/version.rb +2 -2
- data/vendor/tmp/llama.cpp/Makefile +18 -6
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +135 -46
- data/vendor/tmp/llama.cpp/ggml-impl.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-metal.m +130 -83
- data/vendor/tmp/llama.cpp/ggml-metal.metal +505 -1467
- data/vendor/tmp/llama.cpp/ggml-quants.c +1 -1
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +65 -52
- data/vendor/tmp/llama.cpp/ggml.c +153 -87
- data/vendor/tmp/llama.cpp/ggml.h +5 -4
- data/vendor/tmp/llama.cpp/llama.cpp +885 -144
- data/vendor/tmp/llama.cpp/sgemm.cpp +1148 -0
- data/vendor/tmp/llama.cpp/sgemm.h +12 -0
- metadata +4 -2
@@ -0,0 +1,1148 @@
|
|
1
|
+
// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
|
2
|
+
// vi: set et ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi
|
3
|
+
//
|
4
|
+
// Copyright 2024 Mozilla Foundation
|
5
|
+
//
|
6
|
+
// Permission is hereby granted, free of charge, to any person obtaining
|
7
|
+
// a copy of this software and associated documentation files (the
|
8
|
+
// "Software"), to deal in the Software without restriction, including
|
9
|
+
// without limitation the rights to use, copy, modify, merge, publish,
|
10
|
+
// distribute, sublicense, and/or sell copies of the Software, and to
|
11
|
+
// permit persons to whom the Software is furnished to do so, subject to
|
12
|
+
// the following conditions:
|
13
|
+
//
|
14
|
+
// The above copyright notice and this permission notice shall be
|
15
|
+
// included in all copies or substantial portions of the Software.
|
16
|
+
//
|
17
|
+
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
18
|
+
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
19
|
+
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
20
|
+
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
21
|
+
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
22
|
+
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
23
|
+
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
24
|
+
// SOFTWARE.
|
25
|
+
|
26
|
+
//
|
27
|
+
// _ _ ___ _ _ ___
|
28
|
+
// | |_(_)_ _ _ _| _ ) | /_\ / __|
|
29
|
+
// | _| | ' \ || | _ \ |__ / _ \\__ \.
|
30
|
+
// \__|_|_||_\_, |___/____/_/ \_\___/
|
31
|
+
// |__/
|
32
|
+
//
|
33
|
+
// BASIC LINEAR ALGEBRA SUBPROGRAMS
|
34
|
+
//
|
35
|
+
//
|
36
|
+
// This file implements multithreaded CPU matrix multiplication for the
|
37
|
+
// common contiguous use case C = Aᵀ * B. These kernels are designed to
|
38
|
+
// have excellent performance[1] for matrices that fit in the CPU cache
|
39
|
+
// without imposing any overhead such as cache filling or malloc calls.
|
40
|
+
//
|
41
|
+
// This implementation does not guarantee any upper bound with rounding
|
42
|
+
// errors, which grow along with k. Our goal's to maximally exploit the
|
43
|
+
// hardware for performance, and then use whatever resources remain for
|
44
|
+
// improving numerical accuracy.
|
45
|
+
//
|
46
|
+
// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
|
47
|
+
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
|
48
|
+
|
49
|
+
#pragma GCC diagnostic ignored "-Wpedantic"
|
50
|
+
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
51
|
+
|
52
|
+
#include "sgemm.h"
|
53
|
+
#include "ggml-impl.h"
|
54
|
+
#include "ggml-quants.h"
|
55
|
+
|
56
|
+
#ifdef _MSC_VER
|
57
|
+
#define NOINLINE __declspec(noinline)
|
58
|
+
#else
|
59
|
+
#define NOINLINE __attribute__((__noinline__))
|
60
|
+
#endif
|
61
|
+
|
62
|
+
#if defined(__ARM_NEON) || defined(__AVX512F__)
|
63
|
+
#define VECTOR_REGISTERS 32
|
64
|
+
#else
|
65
|
+
#define VECTOR_REGISTERS 16
|
66
|
+
#endif
|
67
|
+
|
68
|
+
// there will be blocks
|
69
|
+
#define BEGIN_KERNEL(RM, RN) \
|
70
|
+
int ytiles = (m - m0) / RM; \
|
71
|
+
int xtiles = (n - n0) / RN; \
|
72
|
+
int tiles = ytiles * xtiles; \
|
73
|
+
int duty = (tiles + nth - 1) / nth; \
|
74
|
+
int start = duty * ith; \
|
75
|
+
int end = start + duty; \
|
76
|
+
if (end > tiles) \
|
77
|
+
end = tiles; \
|
78
|
+
for (int job = start; job < end; ++job) { \
|
79
|
+
int i = m0 + job / xtiles * RM; \
|
80
|
+
int j = n0 + job % xtiles * RN;
|
81
|
+
|
82
|
+
#define END_KERNEL() }
|
83
|
+
|
84
|
+
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
|
85
|
+
|
86
|
+
namespace {
|
87
|
+
|
88
|
+
inline float unhalf(ggml_fp16_t d) {
|
89
|
+
return GGML_FP16_TO_FP32(d);
|
90
|
+
}
|
91
|
+
|
92
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
93
|
+
// VECTORIZED ARITHMETIC OPERATIONS
|
94
|
+
|
95
|
+
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
96
|
+
inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
|
97
|
+
inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
|
98
|
+
inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
|
99
|
+
#endif // __SSE__
|
100
|
+
|
101
|
+
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
102
|
+
inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
|
103
|
+
inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
|
104
|
+
inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
|
105
|
+
#endif // __AVX__
|
106
|
+
|
107
|
+
#if defined(__AVX512F__)
|
108
|
+
inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
|
109
|
+
inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
|
110
|
+
inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
|
111
|
+
#endif // __AVX512F__
|
112
|
+
|
113
|
+
#if defined(__ARM_NEON)
|
114
|
+
inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
|
115
|
+
inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
|
116
|
+
inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
|
117
|
+
#endif // __ARM_NEON
|
118
|
+
|
119
|
+
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
120
|
+
inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
|
121
|
+
inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
|
122
|
+
inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
|
123
|
+
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
124
|
+
|
125
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
126
|
+
// VECTORIZED HORIZONTAL SUM
|
127
|
+
|
128
|
+
#if defined(__ARM_NEON)
|
129
|
+
inline float hsum(float32x4_t x) {
|
130
|
+
return vaddvq_f32(x);
|
131
|
+
}
|
132
|
+
#endif // __ARM_NEON
|
133
|
+
|
134
|
+
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
|
135
|
+
inline float hsum(float16x8_t x) {
|
136
|
+
return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
|
137
|
+
vcvt_f32_f16(vget_high_f16(x))));
|
138
|
+
}
|
139
|
+
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
140
|
+
|
141
|
+
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
142
|
+
inline float hsum(__m128 x) {
|
143
|
+
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
144
|
+
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
|
145
|
+
x = _mm_add_ss(x, _mm_movehdup_ps(x));
|
146
|
+
#else
|
147
|
+
__m128 t;
|
148
|
+
t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
|
149
|
+
x = _mm_add_ps(x, t);
|
150
|
+
t = _mm_movehl_ps(t, x);
|
151
|
+
x = _mm_add_ss(x, t);
|
152
|
+
#endif
|
153
|
+
return _mm_cvtss_f32(x);
|
154
|
+
}
|
155
|
+
#endif
|
156
|
+
|
157
|
+
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
158
|
+
inline float hsum(__m256 x) {
|
159
|
+
return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
|
160
|
+
_mm256_castps256_ps128(x)));
|
161
|
+
}
|
162
|
+
#endif // __AVX__
|
163
|
+
|
164
|
+
#if defined(__AVX512F__)
|
165
|
+
inline float hsum(__m512 x) {
|
166
|
+
return _mm512_reduce_add_ps(x);
|
167
|
+
}
|
168
|
+
#endif // __AVX512F__
|
169
|
+
|
170
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
171
|
+
// VECTORIZED MEMORY LOADING
|
172
|
+
|
173
|
+
template <typename T, typename U> T load(const U *);
|
174
|
+
|
175
|
+
#if defined(__ARM_NEON)
|
176
|
+
template <> inline float32x4_t load(const float *p) {
|
177
|
+
return vld1q_f32(p);
|
178
|
+
}
|
179
|
+
#if !defined(_MSC_VER)
|
180
|
+
template <> inline float16x8_t load(const ggml_fp16_t *p) {
|
181
|
+
return vld1q_f16((const float16_t *)p);
|
182
|
+
}
|
183
|
+
template <> inline float32x4_t load(const ggml_fp16_t *p) {
|
184
|
+
return vcvt_f32_f16(vld1_f16((const float16_t *)p));
|
185
|
+
}
|
186
|
+
#endif // _MSC_VER
|
187
|
+
#endif // __ARM_NEON
|
188
|
+
|
189
|
+
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
190
|
+
template <> inline __m128 load(const float *p) {
|
191
|
+
return _mm_loadu_ps(p);
|
192
|
+
}
|
193
|
+
#endif // __SSE__
|
194
|
+
|
195
|
+
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
196
|
+
template <> inline __m256 load(const float *p) {
|
197
|
+
return _mm256_loadu_ps(p);
|
198
|
+
}
|
199
|
+
#endif // __AVX__
|
200
|
+
|
201
|
+
#if defined(__F16C__)
|
202
|
+
template <> inline __m256 load(const ggml_fp16_t *p) {
|
203
|
+
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
|
204
|
+
}
|
205
|
+
#endif // __F16C__
|
206
|
+
|
207
|
+
#if defined(__AVX512F__)
|
208
|
+
template <> inline __m512 load(const float *p) {
|
209
|
+
return _mm512_loadu_ps(p);
|
210
|
+
}
|
211
|
+
template <> inline __m512 load(const ggml_fp16_t *p) {
|
212
|
+
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
|
213
|
+
}
|
214
|
+
#endif // __AVX512F__
|
215
|
+
|
216
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
217
|
+
// ABSTRACTIONS
|
218
|
+
|
219
|
+
/**
|
220
|
+
* Computes a * b + c.
|
221
|
+
*
|
222
|
+
* This operation will become fused into a single arithmetic instruction
|
223
|
+
* if the hardware has support for this feature, e.g. Intel Haswell+ (c.
|
224
|
+
* 2013), AMD Bulldozer+ (c. 2011), etc.
|
225
|
+
*/
|
226
|
+
template <typename T, typename U>
|
227
|
+
inline U madd(T a, T b, U c) {
|
228
|
+
return add(mul(a, b), c);
|
229
|
+
}
|
230
|
+
|
231
|
+
/**
|
232
|
+
* Computes a * b + c with error correction.
|
233
|
+
*
|
234
|
+
* @see W. Kahan, "Further remarks on reducing truncation errors,"
|
235
|
+
* Communications of the ACM, vol. 8, no. 1, p. 40, Jan. 1965,
|
236
|
+
* doi: 10.1145/363707.363723.
|
237
|
+
*/
|
238
|
+
template <typename T, typename U>
|
239
|
+
inline U madder(T a, T b, U c, U *e) {
|
240
|
+
U y = sub(mul(a, b), *e);
|
241
|
+
U t = add(c, y);
|
242
|
+
*e = sub(sub(t, c), y);
|
243
|
+
return t;
|
244
|
+
}
|
245
|
+
|
246
|
+
////////////////////////////////////////////////////////////////////////////////////////////////////
|
247
|
+
// FLOATING POINT MATRIX MULTIPLICATION
|
248
|
+
|
249
|
+
template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
|
250
|
+
class tinyBLAS {
|
251
|
+
public:
|
252
|
+
tinyBLAS(int k,
|
253
|
+
const TA *A, int lda,
|
254
|
+
const TB *B, int ldb,
|
255
|
+
TC *C, int ldc,
|
256
|
+
int ith, int nth)
|
257
|
+
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
258
|
+
}
|
259
|
+
|
260
|
+
void matmul(int m, int n, int task) {
|
261
|
+
if (task == GGML_TASK_TYPE_COMPUTE)
|
262
|
+
mnpack(0, m, 0, n);
|
263
|
+
}
|
264
|
+
|
265
|
+
private:
|
266
|
+
NOINLINE void mnpack(int m0, int m, int n0, int n) {
|
267
|
+
int mc, nc, mp, np;
|
268
|
+
if (m - m0 <= 0 || n - n0 <= 0)
|
269
|
+
return;
|
270
|
+
if (VECTOR_REGISTERS >= 32 && n - n0 >= 5 && m - m0 >= 5) {
|
271
|
+
mc = 5;
|
272
|
+
nc = 5;
|
273
|
+
gemm5x5(m0, m, n0, n);
|
274
|
+
} else if (n - n0 >= 4 && m - m0 >= 3) {
|
275
|
+
mc = 3;
|
276
|
+
nc = 4;
|
277
|
+
gemm3x4(m0, m, n0, n);
|
278
|
+
} else if (n - n0 >= 4) {
|
279
|
+
mc = 1;
|
280
|
+
nc = 4;
|
281
|
+
gemm1x4(m0, m, n0, n);
|
282
|
+
} else if (m - m0 >= 4) {
|
283
|
+
mc = 4;
|
284
|
+
nc = 1;
|
285
|
+
gemm4x1(m0, m, n0, n);
|
286
|
+
} else {
|
287
|
+
mc = 1;
|
288
|
+
nc = 1;
|
289
|
+
gemm1x1(m0, m, n0, n);
|
290
|
+
}
|
291
|
+
mp = m0 + (m - m0) / mc * mc;
|
292
|
+
np = n0 + (n - n0) / nc * nc;
|
293
|
+
mnpack(mp, m, n0, np);
|
294
|
+
mnpack(m0, mp, np, n);
|
295
|
+
mnpack(mp, m, np, n);
|
296
|
+
}
|
297
|
+
|
298
|
+
NOINLINE void gemm5x5(int m0, int m, int n0, int n) {
|
299
|
+
BEGIN_KERNEL(5, 5)
|
300
|
+
D c00 = {0};
|
301
|
+
D c01 = {0};
|
302
|
+
D c02 = {0};
|
303
|
+
D c03 = {0};
|
304
|
+
D c04 = {0};
|
305
|
+
D c10 = {0};
|
306
|
+
D c11 = {0};
|
307
|
+
D c12 = {0};
|
308
|
+
D c13 = {0};
|
309
|
+
D c14 = {0};
|
310
|
+
D c20 = {0};
|
311
|
+
D c21 = {0};
|
312
|
+
D c22 = {0};
|
313
|
+
D c23 = {0};
|
314
|
+
D c24 = {0};
|
315
|
+
D c30 = {0};
|
316
|
+
D c31 = {0};
|
317
|
+
D c32 = {0};
|
318
|
+
D c33 = {0};
|
319
|
+
D c34 = {0};
|
320
|
+
D c40 = {0};
|
321
|
+
D c41 = {0};
|
322
|
+
D c42 = {0};
|
323
|
+
D c43 = {0};
|
324
|
+
D c44 = {0};
|
325
|
+
for (int l = 0; l < k; l += KN) {
|
326
|
+
V k0 = load<V>(B + ldb * (j + 0) + l);
|
327
|
+
V k1 = load<V>(B + ldb * (j + 1) + l);
|
328
|
+
V k2 = load<V>(B + ldb * (j + 2) + l);
|
329
|
+
V k3 = load<V>(B + ldb * (j + 3) + l);
|
330
|
+
V k4 = load<V>(B + ldb * (j + 4) + l);
|
331
|
+
V a0 = load<V>(A + lda * (i + 0) + l);
|
332
|
+
c00 = madd(a0, k0, c00);
|
333
|
+
c01 = madd(a0, k1, c01);
|
334
|
+
c02 = madd(a0, k2, c02);
|
335
|
+
c03 = madd(a0, k3, c03);
|
336
|
+
c04 = madd(a0, k4, c04);
|
337
|
+
V a1 = load<V>(A + lda * (i + 1) + l);
|
338
|
+
c10 = madd(a1, k0, c10);
|
339
|
+
c11 = madd(a1, k1, c11);
|
340
|
+
c12 = madd(a1, k2, c12);
|
341
|
+
c13 = madd(a1, k3, c13);
|
342
|
+
c14 = madd(a1, k4, c14);
|
343
|
+
V a2 = load<V>(A + lda * (i + 2) + l);
|
344
|
+
c20 = madd(a2, k0, c20);
|
345
|
+
c21 = madd(a2, k1, c21);
|
346
|
+
c22 = madd(a2, k2, c22);
|
347
|
+
c23 = madd(a2, k3, c23);
|
348
|
+
c24 = madd(a2, k4, c24);
|
349
|
+
V a3 = load<V>(A + lda * (i + 3) + l);
|
350
|
+
c30 = madd(a3, k0, c30);
|
351
|
+
c31 = madd(a3, k1, c31);
|
352
|
+
c32 = madd(a3, k2, c32);
|
353
|
+
c33 = madd(a3, k3, c33);
|
354
|
+
c34 = madd(a3, k4, c34);
|
355
|
+
V a4 = load<V>(A + lda * (i + 4) + l);
|
356
|
+
c40 = madd(a4, k0, c40);
|
357
|
+
c41 = madd(a4, k1, c41);
|
358
|
+
c42 = madd(a4, k2, c42);
|
359
|
+
c43 = madd(a4, k3, c43);
|
360
|
+
c44 = madd(a4, k4, c44);
|
361
|
+
}
|
362
|
+
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
|
363
|
+
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
|
364
|
+
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
|
365
|
+
C[ldc * (j + 0) + (i + 3)] = hsum(c30);
|
366
|
+
C[ldc * (j + 0) + (i + 4)] = hsum(c40);
|
367
|
+
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
|
368
|
+
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
|
369
|
+
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
|
370
|
+
C[ldc * (j + 1) + (i + 3)] = hsum(c31);
|
371
|
+
C[ldc * (j + 1) + (i + 4)] = hsum(c41);
|
372
|
+
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
|
373
|
+
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
|
374
|
+
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
|
375
|
+
C[ldc * (j + 2) + (i + 3)] = hsum(c32);
|
376
|
+
C[ldc * (j + 2) + (i + 4)] = hsum(c42);
|
377
|
+
C[ldc * (j + 3) + (i + 0)] = hsum(c03);
|
378
|
+
C[ldc * (j + 3) + (i + 1)] = hsum(c13);
|
379
|
+
C[ldc * (j + 3) + (i + 2)] = hsum(c23);
|
380
|
+
C[ldc * (j + 3) + (i + 3)] = hsum(c33);
|
381
|
+
C[ldc * (j + 3) + (i + 4)] = hsum(c43);
|
382
|
+
C[ldc * (j + 4) + (i + 0)] = hsum(c04);
|
383
|
+
C[ldc * (j + 4) + (i + 1)] = hsum(c14);
|
384
|
+
C[ldc * (j + 4) + (i + 2)] = hsum(c24);
|
385
|
+
C[ldc * (j + 4) + (i + 3)] = hsum(c34);
|
386
|
+
C[ldc * (j + 4) + (i + 4)] = hsum(c44);
|
387
|
+
END_KERNEL()
|
388
|
+
}
|
389
|
+
|
390
|
+
NOINLINE void gemm3x4(int m0, int m, int n0, int n) {
|
391
|
+
BEGIN_KERNEL(3, 4)
|
392
|
+
D c00 = {0};
|
393
|
+
D c01 = {0};
|
394
|
+
D c02 = {0};
|
395
|
+
D c03 = {0};
|
396
|
+
D c10 = {0};
|
397
|
+
D c11 = {0};
|
398
|
+
D c12 = {0};
|
399
|
+
D c13 = {0};
|
400
|
+
D c20 = {0};
|
401
|
+
D c21 = {0};
|
402
|
+
D c22 = {0};
|
403
|
+
D c23 = {0};
|
404
|
+
for (int l = 0; l < k; l += KN) {
|
405
|
+
V k0 = load<V>(B + ldb * (j + 0) + l);
|
406
|
+
V k1 = load<V>(B + ldb * (j + 1) + l);
|
407
|
+
V k2 = load<V>(B + ldb * (j + 2) + l);
|
408
|
+
V k3 = load<V>(B + ldb * (j + 3) + l);
|
409
|
+
V a0 = load<V>(A + lda * (i + 0) + l);
|
410
|
+
c00 = madd(a0, k0, c00);
|
411
|
+
c01 = madd(a0, k1, c01);
|
412
|
+
c02 = madd(a0, k2, c02);
|
413
|
+
c03 = madd(a0, k3, c03);
|
414
|
+
V a1 = load<V>(A + lda * (i + 1) + l);
|
415
|
+
c10 = madd(a1, k0, c10);
|
416
|
+
c11 = madd(a1, k1, c11);
|
417
|
+
c12 = madd(a1, k2, c12);
|
418
|
+
c13 = madd(a1, k3, c13);
|
419
|
+
V a2 = load<V>(A + lda * (i + 2) + l);
|
420
|
+
c20 = madd(a2, k0, c20);
|
421
|
+
c21 = madd(a2, k1, c21);
|
422
|
+
c22 = madd(a2, k2, c22);
|
423
|
+
c23 = madd(a2, k3, c23);
|
424
|
+
}
|
425
|
+
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
|
426
|
+
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
|
427
|
+
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
|
428
|
+
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
|
429
|
+
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
|
430
|
+
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
|
431
|
+
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
|
432
|
+
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
|
433
|
+
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
|
434
|
+
C[ldc * (j + 3) + (i + 0)] = hsum(c03);
|
435
|
+
C[ldc * (j + 3) + (i + 1)] = hsum(c13);
|
436
|
+
C[ldc * (j + 3) + (i + 2)] = hsum(c23);
|
437
|
+
END_KERNEL()
|
438
|
+
}
|
439
|
+
|
440
|
+
NOINLINE void gemm1x4(int m0, int m, int n0, int n) {
|
441
|
+
BEGIN_KERNEL(1, 4)
|
442
|
+
D c00 = {0}, e00 = {0};
|
443
|
+
D c01 = {0}, e01 = {0};
|
444
|
+
D c02 = {0}, e02 = {0};
|
445
|
+
D c03 = {0}, e03 = {0};
|
446
|
+
for (int l = 0; l < k; l += KN) {
|
447
|
+
V a = load<V>(A + lda * (i + 0) + l);
|
448
|
+
c00 = madder(a, load<V>(B + ldb * (j + 0) + l), c00, &e00);
|
449
|
+
c01 = madder(a, load<V>(B + ldb * (j + 1) + l), c01, &e01);
|
450
|
+
c02 = madder(a, load<V>(B + ldb * (j + 2) + l), c02, &e02);
|
451
|
+
c03 = madder(a, load<V>(B + ldb * (j + 3) + l), c03, &e03);
|
452
|
+
}
|
453
|
+
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
|
454
|
+
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
|
455
|
+
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
|
456
|
+
C[ldc * (j + 3) + (i + 0)] = hsum(c03);
|
457
|
+
END_KERNEL()
|
458
|
+
}
|
459
|
+
|
460
|
+
NOINLINE void gemm4x1(int m0, int m, int n0, int n) {
|
461
|
+
BEGIN_KERNEL(4, 1)
|
462
|
+
D c00 = {0}, e00 = {0};
|
463
|
+
D c10 = {0}, e10 = {0};
|
464
|
+
D c20 = {0}, e20 = {0};
|
465
|
+
D c30 = {0}, e30 = {0};
|
466
|
+
for (int l = 0; l < k; l += KN) {
|
467
|
+
V b = load<V>(B + ldb * (j + 0) + l);
|
468
|
+
c00 = madder(load<V>(A + lda * (i + 0) + l), b, c00, &e00);
|
469
|
+
c10 = madder(load<V>(A + lda * (i + 1) + l), b, c10, &e10);
|
470
|
+
c20 = madder(load<V>(A + lda * (i + 2) + l), b, c20, &e20);
|
471
|
+
c30 = madder(load<V>(A + lda * (i + 3) + l), b, c30, &e30);
|
472
|
+
}
|
473
|
+
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
|
474
|
+
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
|
475
|
+
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
|
476
|
+
C[ldc * (j + 0) + (i + 3)] = hsum(c30);
|
477
|
+
END_KERNEL()
|
478
|
+
}
|
479
|
+
|
480
|
+
NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
|
481
|
+
BEGIN_KERNEL(1, 1)
|
482
|
+
D c = {0}, e = {0};
|
483
|
+
for (int l = 0; l < k; l += KN)
|
484
|
+
c = madder(load<V>(A + lda * i + l),
|
485
|
+
load<V>(B + ldb * j + l), c, &e);
|
486
|
+
C[ldc * j + i] = hsum(c);
|
487
|
+
END_KERNEL()
|
488
|
+
}
|
489
|
+
|
490
|
+
const TA *const A;
|
491
|
+
const TB *const B;
|
492
|
+
TC *const C;
|
493
|
+
const int k;
|
494
|
+
const int lda;
|
495
|
+
const int ldb;
|
496
|
+
const int ldc;
|
497
|
+
const int ith;
|
498
|
+
const int nth;
|
499
|
+
};
|
500
|
+
|
501
|
+
//////////////////////////////////////////////////////////////////////////////////////////
|
502
|
+
// QUANT ZERO MATRIX MULTIPLICATION
|
503
|
+
|
504
|
+
#if defined(__ARM_FEATURE_DOTPROD)
|
505
|
+
template <typename TA>
|
506
|
+
class tinyBLAS_Q0_ARM {
|
507
|
+
public:
|
508
|
+
tinyBLAS_Q0_ARM(int k,
|
509
|
+
const TA *A, int lda,
|
510
|
+
const block_q8_0 *B, int ldb,
|
511
|
+
float *C, int ldc,
|
512
|
+
int ith, int nth)
|
513
|
+
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
514
|
+
}
|
515
|
+
|
516
|
+
void matmul(int m, int n, int task) {
|
517
|
+
if (task == GGML_TASK_TYPE_COMPUTE)
|
518
|
+
mnpack(0, m, 0, n);
|
519
|
+
}
|
520
|
+
|
521
|
+
private:
|
522
|
+
NOINLINE void mnpack(int m0, int m, int n0, int n) {
|
523
|
+
int mc, nc, mp, np;
|
524
|
+
if (m - m0 <= 0 || n - n0 <= 0)
|
525
|
+
return;
|
526
|
+
if (m - m0 >= 3 && n - n0 >= 3) {
|
527
|
+
mc = 3;
|
528
|
+
nc = 3;
|
529
|
+
gemm3x3(m0, m, n0, n);
|
530
|
+
} else {
|
531
|
+
mc = 1;
|
532
|
+
nc = 1;
|
533
|
+
gemm1x1(m0, m, n0, n);
|
534
|
+
}
|
535
|
+
mp = m0 + (m - m0) / mc * mc;
|
536
|
+
np = n0 + (n - n0) / nc * nc;
|
537
|
+
mnpack(mp, m, n0, np);
|
538
|
+
mnpack(m0, mp, np, n);
|
539
|
+
mnpack(mp, m, np, n);
|
540
|
+
}
|
541
|
+
|
542
|
+
NOINLINE void gemm3x3(int m0, int m, int n0, int n) {
|
543
|
+
BEGIN_KERNEL(3, 3)
|
544
|
+
int32x4_t zero = vdupq_n_s32(0);
|
545
|
+
float32x4_t c00 = vdupq_n_f32(0.f);
|
546
|
+
float32x4_t c01 = vdupq_n_f32(0.f);
|
547
|
+
float32x4_t c02 = vdupq_n_f32(0.f);
|
548
|
+
float32x4_t c10 = vdupq_n_f32(0.f);
|
549
|
+
float32x4_t c11 = vdupq_n_f32(0.f);
|
550
|
+
float32x4_t c12 = vdupq_n_f32(0.f);
|
551
|
+
float32x4_t c20 = vdupq_n_f32(0.f);
|
552
|
+
float32x4_t c21 = vdupq_n_f32(0.f);
|
553
|
+
float32x4_t c22 = vdupq_n_f32(0.f);
|
554
|
+
const TA *Ap0 = A + lda * (i + 0);
|
555
|
+
const TA *Ap1 = A + lda * (i + 1);
|
556
|
+
const TA *Ap2 = A + lda * (i + 2);
|
557
|
+
const block_q8_0 *Bp0 = B + ldb * (j + 0);
|
558
|
+
const block_q8_0 *Bp1 = B + ldb * (j + 1);
|
559
|
+
const block_q8_0 *Bp2 = B + ldb * (j + 2);
|
560
|
+
for (int l = 0; l < k; ++l) {
|
561
|
+
c00 = vmlaq_n_f32(
|
562
|
+
c00,
|
563
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp0 + l)),
|
564
|
+
load_hi(Ap0 + l), load_hi(Bp0 + l))),
|
565
|
+
unhalf(Ap0[l].d) * unhalf(Bp0[l].d));
|
566
|
+
c01 = vmlaq_n_f32(
|
567
|
+
c01,
|
568
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp1 + l)),
|
569
|
+
load_hi(Ap0 + l), load_hi(Bp1 + l))),
|
570
|
+
unhalf(Ap0[l].d) * unhalf(Bp1[l].d));
|
571
|
+
c02 = vmlaq_n_f32(
|
572
|
+
c02,
|
573
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp2 + l)),
|
574
|
+
load_hi(Ap0 + l), load_hi(Bp2 + l))),
|
575
|
+
unhalf(Ap0[l].d) * unhalf(Bp2[l].d));
|
576
|
+
c10 = vmlaq_n_f32(
|
577
|
+
c10,
|
578
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp0 + l)),
|
579
|
+
load_hi(Ap1 + l), load_hi(Bp0 + l))),
|
580
|
+
unhalf(Ap1[l].d) * unhalf(Bp0[l].d));
|
581
|
+
c11 = vmlaq_n_f32(
|
582
|
+
c11,
|
583
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp1 + l)),
|
584
|
+
load_hi(Ap1 + l), load_hi(Bp1 + l))),
|
585
|
+
unhalf(Ap1[l].d) * unhalf(Bp1[l].d));
|
586
|
+
c12 = vmlaq_n_f32(
|
587
|
+
c12,
|
588
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp2 + l)),
|
589
|
+
load_hi(Ap1 + l), load_hi(Bp2 + l))),
|
590
|
+
unhalf(Ap1[l].d) * unhalf(Bp2[l].d));
|
591
|
+
c20 = vmlaq_n_f32(
|
592
|
+
c20,
|
593
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp0 + l)),
|
594
|
+
load_hi(Ap2 + l), load_hi(Bp0 + l))),
|
595
|
+
unhalf(Ap2[l].d) * unhalf(Bp0[l].d));
|
596
|
+
c21 = vmlaq_n_f32(
|
597
|
+
c21,
|
598
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp1 + l)),
|
599
|
+
load_hi(Ap2 + l), load_hi(Bp1 + l))),
|
600
|
+
unhalf(Ap2[l].d) * unhalf(Bp1[l].d));
|
601
|
+
c22 = vmlaq_n_f32(
|
602
|
+
c22,
|
603
|
+
vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp2 + l)),
|
604
|
+
load_hi(Ap2 + l), load_hi(Bp2 + l))),
|
605
|
+
unhalf(Ap2[l].d) * unhalf(Bp2[l].d));
|
606
|
+
}
|
607
|
+
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
|
608
|
+
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
|
609
|
+
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
|
610
|
+
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
|
611
|
+
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
|
612
|
+
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
|
613
|
+
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
|
614
|
+
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
|
615
|
+
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
|
616
|
+
END_KERNEL()
|
617
|
+
}
|
618
|
+
|
619
|
+
NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
|
620
|
+
BEGIN_KERNEL(1, 1)
|
621
|
+
float32x4_t acc = vdupq_n_f32(0.f);
|
622
|
+
const TA *Ap = A + lda * i;
|
623
|
+
const block_q8_0 *Bp = B + ldb * j;
|
624
|
+
for (int l = 0; l < k; ++l) {
|
625
|
+
acc = vmlaq_n_f32(acc,
|
626
|
+
vcvtq_f32_s32(vdotq_s32(
|
627
|
+
vdotq_s32(vdupq_n_s32(0), load_lo(Ap + l), load_lo(Bp + l)),
|
628
|
+
load_hi(Ap + l), load_hi(Bp + l))),
|
629
|
+
unhalf(Ap[l].d) * unhalf(Bp[l].d));
|
630
|
+
}
|
631
|
+
C[ldc * j + i] = hsum(acc);
|
632
|
+
END_KERNEL()
|
633
|
+
}
|
634
|
+
|
635
|
+
inline int8x16_t load_lo(const block_q8_0 *b) {
|
636
|
+
return vld1q_s8(b->qs);
|
637
|
+
}
|
638
|
+
inline int8x16_t load_hi(const block_q8_0 *b) {
|
639
|
+
return vld1q_s8(b->qs + 16);
|
640
|
+
}
|
641
|
+
|
642
|
+
inline int8x16_t load_lo(const block_q4_0 *b) {
|
643
|
+
return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
|
644
|
+
vdupq_n_u8(0x0f))),
|
645
|
+
vdupq_n_s8(0x8));
|
646
|
+
}
|
647
|
+
inline int8x16_t load_hi(const block_q4_0 *b) {
|
648
|
+
return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
|
649
|
+
vdupq_n_s8(0x8));
|
650
|
+
}
|
651
|
+
|
652
|
+
const TA *const A;
|
653
|
+
const block_q8_0 *const B;
|
654
|
+
float *const C;
|
655
|
+
const int k;
|
656
|
+
const int lda;
|
657
|
+
const int ldb;
|
658
|
+
const int ldc;
|
659
|
+
const int ith;
|
660
|
+
const int nth;
|
661
|
+
};
|
662
|
+
#endif // __ARM_FEATURE_DOTPROD
|
663
|
+
|
664
|
+
#if defined(__AVX2__) || defined(__AVX512F__)
|
665
|
+
template <typename TA, typename TB, typename TC>
|
666
|
+
class tinyBLAS_Q0_AVX2 {
|
667
|
+
public:
|
668
|
+
tinyBLAS_Q0_AVX2(int k,
|
669
|
+
const TA *A, int lda,
|
670
|
+
const TB *B, int ldb,
|
671
|
+
TC *C, int ldc,
|
672
|
+
int ith, int nth)
|
673
|
+
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
674
|
+
}
|
675
|
+
|
676
|
+
void matmul(int m, int n, int task) {
|
677
|
+
if (task == GGML_TASK_TYPE_COMPUTE)
|
678
|
+
mnpack(0, m, 0, n);
|
679
|
+
}
|
680
|
+
|
681
|
+
private:
|
682
|
+
NOINLINE void mnpack(int m0, int m, int n0, int n) {
|
683
|
+
int mc, nc, mp, np;
|
684
|
+
if (m - m0 <= 0 || n - n0 <= 0)
|
685
|
+
return;
|
686
|
+
if (m - m0 >= 4 && n - n0 >= 3) {
|
687
|
+
mc = 4;
|
688
|
+
nc = 3;
|
689
|
+
gemm4x3(m0, m, n0, n);
|
690
|
+
} else if (m - m0 >= 4 && n - n0 >= 1) {
|
691
|
+
mc = 4;
|
692
|
+
nc = 1;
|
693
|
+
gemm4x1(m0, m, n0, n);
|
694
|
+
} else if (m - m0 >= 1 && n - n0 >= 4) {
|
695
|
+
mc = 1;
|
696
|
+
nc = 4;
|
697
|
+
gemm1x4(m0, m, n0, n);
|
698
|
+
} else {
|
699
|
+
mc = 1;
|
700
|
+
nc = 1;
|
701
|
+
gemm1x1(m0, m, n0, n);
|
702
|
+
}
|
703
|
+
mp = m0 + (m - m0) / mc * mc;
|
704
|
+
np = n0 + (n - n0) / nc * nc;
|
705
|
+
mnpack(mp, m, n0, np);
|
706
|
+
mnpack(m0, mp, np, n);
|
707
|
+
mnpack(mp, m, np, n);
|
708
|
+
}
|
709
|
+
|
710
|
+
NOINLINE void gemm4x3(int m0, int m, int n0, int n) {
|
711
|
+
BEGIN_KERNEL(4, 3)
|
712
|
+
__m256 c00 = _mm256_setzero_ps();
|
713
|
+
__m256 c10 = _mm256_setzero_ps();
|
714
|
+
__m256 c20 = _mm256_setzero_ps();
|
715
|
+
__m256 c30 = _mm256_setzero_ps();
|
716
|
+
__m256 c01 = _mm256_setzero_ps();
|
717
|
+
__m256 c11 = _mm256_setzero_ps();
|
718
|
+
__m256 c21 = _mm256_setzero_ps();
|
719
|
+
__m256 c31 = _mm256_setzero_ps();
|
720
|
+
__m256 c02 = _mm256_setzero_ps();
|
721
|
+
__m256 c12 = _mm256_setzero_ps();
|
722
|
+
__m256 c22 = _mm256_setzero_ps();
|
723
|
+
__m256 c32 = _mm256_setzero_ps();
|
724
|
+
const TA *Ap0 = A + lda * (i + 0);
|
725
|
+
const TA *Ap1 = A + lda * (i + 1);
|
726
|
+
const TA *Ap2 = A + lda * (i + 2);
|
727
|
+
const TA *Ap3 = A + lda * (i + 3);
|
728
|
+
const TB *Bp0 = B + ldb * (j + 0);
|
729
|
+
const TB *Bp1 = B + ldb * (j + 1);
|
730
|
+
const TB *Bp2 = B + ldb * (j + 2);
|
731
|
+
for (int l = 0; l < k; ++l) {
|
732
|
+
float da0 = unhalf(Ap0[l].d);
|
733
|
+
float da1 = unhalf(Ap1[l].d);
|
734
|
+
float da2 = unhalf(Ap2[l].d);
|
735
|
+
float da3 = unhalf(Ap3[l].d);
|
736
|
+
__m256i e0 = load(Ap0 + l);
|
737
|
+
__m256i e1 = load(Ap1 + l);
|
738
|
+
__m256i e2 = load(Ap2 + l);
|
739
|
+
__m256i e3 = load(Ap3 + l);
|
740
|
+
float db0 = unhalf(Bp0[l].d);
|
741
|
+
__m256 d00 = _mm256_set1_ps(da0 * db0);
|
742
|
+
__m256 d10 = _mm256_set1_ps(da1 * db0);
|
743
|
+
__m256 d20 = _mm256_set1_ps(da2 * db0);
|
744
|
+
__m256 d30 = _mm256_set1_ps(da3 * db0);
|
745
|
+
__m256i f0 = load(Bp0 + l);
|
746
|
+
__m256i u0 = _mm256_sign_epi8(f0, f0);
|
747
|
+
__m256i s00 = _mm256_sign_epi8(e0, f0);
|
748
|
+
__m256i s10 = _mm256_sign_epi8(e1, f0);
|
749
|
+
__m256i s20 = _mm256_sign_epi8(e2, f0);
|
750
|
+
__m256i s30 = _mm256_sign_epi8(e3, f0);
|
751
|
+
c00 = madd(d00, updot(u0, s00), c00);
|
752
|
+
c10 = madd(d10, updot(u0, s10), c10);
|
753
|
+
c20 = madd(d20, updot(u0, s20), c20);
|
754
|
+
c30 = madd(d30, updot(u0, s30), c30);
|
755
|
+
float db1 = unhalf(Bp1[l].d);
|
756
|
+
__m256 d01 = _mm256_set1_ps(da0 * db1);
|
757
|
+
__m256 d11 = _mm256_set1_ps(da1 * db1);
|
758
|
+
__m256 d21 = _mm256_set1_ps(da2 * db1);
|
759
|
+
__m256 d31 = _mm256_set1_ps(da3 * db1);
|
760
|
+
__m256i f1 = load(Bp1 + l);
|
761
|
+
__m256i u1 = _mm256_sign_epi8(f1, f1);
|
762
|
+
__m256i s01 = _mm256_sign_epi8(e0, f1);
|
763
|
+
__m256i s11 = _mm256_sign_epi8(e1, f1);
|
764
|
+
__m256i s21 = _mm256_sign_epi8(e2, f1);
|
765
|
+
__m256i s31 = _mm256_sign_epi8(e3, f1);
|
766
|
+
c01 = madd(d01, updot(u1, s01), c01);
|
767
|
+
c11 = madd(d11, updot(u1, s11), c11);
|
768
|
+
c21 = madd(d21, updot(u1, s21), c21);
|
769
|
+
c31 = madd(d31, updot(u1, s31), c31);
|
770
|
+
float db2 = unhalf(Bp2[l].d);
|
771
|
+
__m256 d02 = _mm256_set1_ps(da0 * db2);
|
772
|
+
__m256 d12 = _mm256_set1_ps(da1 * db2);
|
773
|
+
__m256 d22 = _mm256_set1_ps(da2 * db2);
|
774
|
+
__m256 d32 = _mm256_set1_ps(da3 * db2);
|
775
|
+
__m256i f2 = load(Bp2 + l);
|
776
|
+
__m256i u2 = _mm256_sign_epi8(f2, f2);
|
777
|
+
__m256i s02 = _mm256_sign_epi8(e0, f2);
|
778
|
+
__m256i s12 = _mm256_sign_epi8(e1, f2);
|
779
|
+
__m256i s22 = _mm256_sign_epi8(e2, f2);
|
780
|
+
__m256i s32 = _mm256_sign_epi8(e3, f2);
|
781
|
+
c02 = madd(d02, updot(u2, s02), c02);
|
782
|
+
c12 = madd(d12, updot(u2, s12), c12);
|
783
|
+
c22 = madd(d22, updot(u2, s22), c22);
|
784
|
+
c32 = madd(d32, updot(u2, s32), c32);
|
785
|
+
}
|
786
|
+
C[ldc * (j + 0) + (i + 0)] = hsum(c00);
|
787
|
+
C[ldc * (j + 0) + (i + 1)] = hsum(c10);
|
788
|
+
C[ldc * (j + 0) + (i + 2)] = hsum(c20);
|
789
|
+
C[ldc * (j + 0) + (i + 3)] = hsum(c30);
|
790
|
+
C[ldc * (j + 1) + (i + 0)] = hsum(c01);
|
791
|
+
C[ldc * (j + 1) + (i + 1)] = hsum(c11);
|
792
|
+
C[ldc * (j + 1) + (i + 2)] = hsum(c21);
|
793
|
+
C[ldc * (j + 1) + (i + 3)] = hsum(c31);
|
794
|
+
C[ldc * (j + 2) + (i + 0)] = hsum(c02);
|
795
|
+
C[ldc * (j + 2) + (i + 1)] = hsum(c12);
|
796
|
+
C[ldc * (j + 2) + (i + 2)] = hsum(c22);
|
797
|
+
C[ldc * (j + 2) + (i + 3)] = hsum(c32);
|
798
|
+
END_KERNEL()
|
799
|
+
}
|
800
|
+
|
801
|
+
NOINLINE void gemm4x1(int m0, int m, int n0, int n) {
|
802
|
+
BEGIN_KERNEL(4, 1)
|
803
|
+
__m256 c0 = _mm256_setzero_ps();
|
804
|
+
__m256 c1 = _mm256_setzero_ps();
|
805
|
+
__m256 c2 = _mm256_setzero_ps();
|
806
|
+
__m256 c3 = _mm256_setzero_ps();
|
807
|
+
const TA *Ap0 = A + lda * (i + 0);
|
808
|
+
const TA *Ap1 = A + lda * (i + 1);
|
809
|
+
const TA *Ap2 = A + lda * (i + 2);
|
810
|
+
const TA *Ap3 = A + lda * (i + 3);
|
811
|
+
const TB *Bp = B + ldb * j;
|
812
|
+
for (int l = 0; l < k; ++l) {
|
813
|
+
float db0 = unhalf(Bp[l].d);
|
814
|
+
__m256i f = load(Bp + l);
|
815
|
+
__m256i u = _mm256_sign_epi8(f, f);
|
816
|
+
__m256 d0 = _mm256_set1_ps(unhalf(Ap0[l].d) * db0);
|
817
|
+
__m256 d1 = _mm256_set1_ps(unhalf(Ap1[l].d) * db0);
|
818
|
+
__m256 d2 = _mm256_set1_ps(unhalf(Ap2[l].d) * db0);
|
819
|
+
__m256 d3 = _mm256_set1_ps(unhalf(Ap3[l].d) * db0);
|
820
|
+
__m256i e0 = load(Ap0 + l);
|
821
|
+
__m256i e1 = load(Ap1 + l);
|
822
|
+
__m256i e2 = load(Ap2 + l);
|
823
|
+
__m256i e3 = load(Ap3 + l);
|
824
|
+
__m256i s0 = _mm256_sign_epi8(e0, f);
|
825
|
+
__m256i s1 = _mm256_sign_epi8(e1, f);
|
826
|
+
__m256i s2 = _mm256_sign_epi8(e2, f);
|
827
|
+
__m256i s3 = _mm256_sign_epi8(e3, f);
|
828
|
+
__m256 g0 = updot(u, s0);
|
829
|
+
__m256 g1 = updot(u, s1);
|
830
|
+
__m256 g2 = updot(u, s2);
|
831
|
+
__m256 g3 = updot(u, s3);
|
832
|
+
c0 = madd(d0, g0, c0);
|
833
|
+
c1 = madd(d1, g1, c1);
|
834
|
+
c2 = madd(d2, g2, c2);
|
835
|
+
c3 = madd(d3, g3, c3);
|
836
|
+
}
|
837
|
+
C[ldc * j + (i + 0)] = hsum(c0);
|
838
|
+
C[ldc * j + (i + 1)] = hsum(c1);
|
839
|
+
C[ldc * j + (i + 2)] = hsum(c2);
|
840
|
+
C[ldc * j + (i + 3)] = hsum(c3);
|
841
|
+
END_KERNEL()
|
842
|
+
}
|
843
|
+
|
844
|
+
NOINLINE void gemm1x4(int m0, int m, int n0, int n) {
|
845
|
+
BEGIN_KERNEL(1, 4)
|
846
|
+
__m256 c0 = _mm256_setzero_ps();
|
847
|
+
__m256 c1 = _mm256_setzero_ps();
|
848
|
+
__m256 c2 = _mm256_setzero_ps();
|
849
|
+
__m256 c3 = _mm256_setzero_ps();
|
850
|
+
const TB *Bp0 = B + ldb * (j + 0);
|
851
|
+
const TB *Bp1 = B + ldb * (j + 1);
|
852
|
+
const TB *Bp2 = B + ldb * (j + 2);
|
853
|
+
const TB *Bp3 = B + ldb * (j + 3);
|
854
|
+
const TA *Ap = A + lda * i;
|
855
|
+
for (int l = 0; l < k; ++l) {
|
856
|
+
float da0 = unhalf(Ap[l].d);
|
857
|
+
__m256i f = load(Ap + l);
|
858
|
+
__m256i u = _mm256_sign_epi8(f, f);
|
859
|
+
__m256 d0 = _mm256_set1_ps(unhalf(Bp0[l].d) * da0);
|
860
|
+
__m256 d1 = _mm256_set1_ps(unhalf(Bp1[l].d) * da0);
|
861
|
+
__m256 d2 = _mm256_set1_ps(unhalf(Bp2[l].d) * da0);
|
862
|
+
__m256 d3 = _mm256_set1_ps(unhalf(Bp3[l].d) * da0);
|
863
|
+
__m256 g0 = updot(u, _mm256_sign_epi8(load(Bp0 + l), f));
|
864
|
+
__m256 g1 = updot(u, _mm256_sign_epi8(load(Bp1 + l), f));
|
865
|
+
__m256 g2 = updot(u, _mm256_sign_epi8(load(Bp2 + l), f));
|
866
|
+
__m256 g3 = updot(u, _mm256_sign_epi8(load(Bp3 + l), f));
|
867
|
+
c0 = madd(d0, g0, c0);
|
868
|
+
c1 = madd(d1, g1, c1);
|
869
|
+
c2 = madd(d2, g2, c2);
|
870
|
+
c3 = madd(d3, g3, c3);
|
871
|
+
}
|
872
|
+
C[ldc * (j + 0) + i] = hsum(c0);
|
873
|
+
C[ldc * (j + 1) + i] = hsum(c1);
|
874
|
+
C[ldc * (j + 2) + i] = hsum(c2);
|
875
|
+
C[ldc * (j + 3) + i] = hsum(c3);
|
876
|
+
END_KERNEL()
|
877
|
+
}
|
878
|
+
|
879
|
+
NOINLINE void gemm1x1(int m0, int m, int n0, int n) {
|
880
|
+
BEGIN_KERNEL(1, 1)
|
881
|
+
__m256 c = _mm256_setzero_ps();
|
882
|
+
const TA *Ap = A + lda * i;
|
883
|
+
const TB *Bp = B + ldb * j;
|
884
|
+
for (int l = 0; l < k; ++l) {
|
885
|
+
__m256 d = _mm256_set1_ps(unhalf(Ap[l].d) * unhalf(Bp[l].d));
|
886
|
+
__m256i e = load(Ap + l);
|
887
|
+
__m256i f = load(Bp + l);
|
888
|
+
__m256 g = updot(_mm256_sign_epi8(e, e), _mm256_sign_epi8(f, e));
|
889
|
+
c = madd(d, g, c);
|
890
|
+
}
|
891
|
+
C[ldc * j + i] = hsum(c);
|
892
|
+
END_KERNEL()
|
893
|
+
}
|
894
|
+
|
895
|
+
inline __m256i load(const block_q8_0 *b) {
|
896
|
+
return _mm256_loadu_si256((const __m256i *)b->qs);
|
897
|
+
}
|
898
|
+
|
899
|
+
inline __m256i load(const block_q4_0 *b) {
|
900
|
+
return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
|
901
|
+
}
|
902
|
+
|
903
|
+
inline __m256 updot(__m256i u, __m256i s) {
|
904
|
+
__m256i res;
|
905
|
+
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
|
906
|
+
res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
|
907
|
+
#else
|
908
|
+
res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
|
909
|
+
#endif
|
910
|
+
return _mm256_cvtepi32_ps(res);
|
911
|
+
}
|
912
|
+
|
913
|
+
static inline __m256i denibble(const uint8_t *p) {
|
914
|
+
const __m128i tmp = _mm_loadu_si128((const __m128i *)p);
|
915
|
+
const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
|
916
|
+
const __m256i lowMask = _mm256_set1_epi8(15);
|
917
|
+
return _mm256_and_si256(lowMask, bytes);
|
918
|
+
}
|
919
|
+
|
920
|
+
const TA *const A;
|
921
|
+
const TB *const B;
|
922
|
+
TC *const C;
|
923
|
+
const int k;
|
924
|
+
const int lda;
|
925
|
+
const int ldb;
|
926
|
+
const int ldc;
|
927
|
+
const int ith;
|
928
|
+
const int nth;
|
929
|
+
};
|
930
|
+
#endif // __AVX2__
|
931
|
+
|
932
|
+
} // namespace
|
933
|
+
|
934
|
+
/**
|
935
|
+
* Performs optimized matrix multiplication on CPU.
|
936
|
+
*
|
937
|
+
* This subroutine may compute C = Aᵀ * B with column major ordering.
|
938
|
+
* Despite its name, this isn't a generalized implementation. Work is
|
939
|
+
* only performed when a handwritten kernel is written and available.
|
940
|
+
* Otherwise the caller should fall back to a general matmul routine.
|
941
|
+
*
|
942
|
+
* For example, for single-threaded single-precision GEMM you can say
|
943
|
+
*
|
944
|
+
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
|
945
|
+
* 0, 1, GGML_TASK_TYPE_COMPUTE,
|
946
|
+
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
|
947
|
+
*
|
948
|
+
* @param m is rows in `A` and `C`
|
949
|
+
* @param n is cols in `B` and `C`
|
950
|
+
* @param k is cols in `A` and rows in `B`
|
951
|
+
* @param A is first input matrix (always transposed)
|
952
|
+
* @param lda is row stride of `A`
|
953
|
+
* @param B is second input matrix (never transposed)
|
954
|
+
* @param ldb is row stride of `B`
|
955
|
+
* @param C is input/output array of output matrices
|
956
|
+
* @param ldc is row stride of `C`
|
957
|
+
* @param ith is thread id (must be less than `nth`)
|
958
|
+
* @param nth is number of threads (must be greater than zero)
|
959
|
+
* @param task is GGML task type
|
960
|
+
* @param Atype is GGML data type of `A`
|
961
|
+
* @param Btype is GGML data type of `B`
|
962
|
+
* @param Ctype is GGML data type of `C`
|
963
|
+
* @return true if this function was able to service the matmul request
|
964
|
+
*/
|
965
|
+
bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, int ldb, void *C,
|
966
|
+
int ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
|
967
|
+
|
968
|
+
assert(m >= 0);
|
969
|
+
assert(n >= 0);
|
970
|
+
assert(k >= 0);
|
971
|
+
assert(lda >= k);
|
972
|
+
assert(ldb >= k);
|
973
|
+
assert(ldc >= m);
|
974
|
+
assert(nth > 0);
|
975
|
+
assert(ith < nth);
|
976
|
+
assert(1ll * lda * m <= 0x7fffffff);
|
977
|
+
assert(1ll * ldb * n <= 0x7fffffff);
|
978
|
+
assert(1ll * ldc * n <= 0x7fffffff);
|
979
|
+
|
980
|
+
if (Ctype != GGML_TYPE_F32)
|
981
|
+
return false;
|
982
|
+
|
983
|
+
switch (Atype) {
|
984
|
+
|
985
|
+
case GGML_TYPE_F32: {
|
986
|
+
if (Btype != GGML_TYPE_F32)
|
987
|
+
return false;
|
988
|
+
#if defined(__AVX512F__)
|
989
|
+
if (k % 16)
|
990
|
+
return false;
|
991
|
+
tinyBLAS<16, __m512, __m512, float, float, float> tb{
|
992
|
+
k, (const float *)A, lda,
|
993
|
+
(const float *)B, ldb,
|
994
|
+
(float *)C, ldc,
|
995
|
+
ith, nth};
|
996
|
+
tb.matmul(m, n, task);
|
997
|
+
return true;
|
998
|
+
#elif defined(__AVX__) || defined(__AVX2__)
|
999
|
+
if (k % 8)
|
1000
|
+
return false;
|
1001
|
+
tinyBLAS<8, __m256, __m256, float, float, float> tb{
|
1002
|
+
k, (const float *)A, lda,
|
1003
|
+
(const float *)B, ldb,
|
1004
|
+
(float *)C, ldc,
|
1005
|
+
ith, nth};
|
1006
|
+
tb.matmul(m, n, task);
|
1007
|
+
return true;
|
1008
|
+
#elif defined(__ARM_NEON)
|
1009
|
+
if (n < 4)
|
1010
|
+
return false;
|
1011
|
+
if (k % 4)
|
1012
|
+
return false;
|
1013
|
+
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
|
1014
|
+
k, (const float *)A, lda,
|
1015
|
+
(const float *)B, ldb,
|
1016
|
+
(float *)C, ldc,
|
1017
|
+
ith, nth};
|
1018
|
+
tb.matmul(m, n, task);
|
1019
|
+
return true;
|
1020
|
+
#else
|
1021
|
+
return false;
|
1022
|
+
#endif
|
1023
|
+
}
|
1024
|
+
|
1025
|
+
case GGML_TYPE_F16: {
|
1026
|
+
#if defined(__AVX512F__)
|
1027
|
+
if (k % 16)
|
1028
|
+
return false;
|
1029
|
+
if (Btype != GGML_TYPE_F32)
|
1030
|
+
return false;
|
1031
|
+
tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
|
1032
|
+
k, (const ggml_fp16_t *)A, lda,
|
1033
|
+
(const float *)B, ldb,
|
1034
|
+
(float *)C, ldc,
|
1035
|
+
ith, nth};
|
1036
|
+
tb.matmul(m, n, task);
|
1037
|
+
return true;
|
1038
|
+
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
|
1039
|
+
if (k % 8)
|
1040
|
+
return false;
|
1041
|
+
if (Btype != GGML_TYPE_F32)
|
1042
|
+
return false;
|
1043
|
+
tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
|
1044
|
+
k, (const ggml_fp16_t *)A, lda,
|
1045
|
+
(const float *)B, ldb,
|
1046
|
+
(float *)C, ldc,
|
1047
|
+
ith, nth};
|
1048
|
+
tb.matmul(m, n, task);
|
1049
|
+
return true;
|
1050
|
+
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
|
1051
|
+
if (n < 8)
|
1052
|
+
return false;
|
1053
|
+
if (k % 8)
|
1054
|
+
return false;
|
1055
|
+
if (Btype != GGML_TYPE_F16)
|
1056
|
+
return false;
|
1057
|
+
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
|
1058
|
+
k, (const ggml_fp16_t *)A, lda,
|
1059
|
+
(const ggml_fp16_t *)B, ldb,
|
1060
|
+
(float *)C, ldc,
|
1061
|
+
ith, nth};
|
1062
|
+
tb.matmul(m, n, task);
|
1063
|
+
return true;
|
1064
|
+
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
|
1065
|
+
if (k % 4)
|
1066
|
+
return false;
|
1067
|
+
if (Btype != GGML_TYPE_F32)
|
1068
|
+
return false;
|
1069
|
+
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
|
1070
|
+
k, (const ggml_fp16_t *)A, lda,
|
1071
|
+
(const float *)B, ldb,
|
1072
|
+
(float *)C, ldc,
|
1073
|
+
ith, nth};
|
1074
|
+
tb.matmul(m, n, task);
|
1075
|
+
return true;
|
1076
|
+
#else
|
1077
|
+
return false;
|
1078
|
+
#endif
|
1079
|
+
}
|
1080
|
+
|
1081
|
+
case GGML_TYPE_Q8_0: {
|
1082
|
+
if (Btype != GGML_TYPE_Q8_0)
|
1083
|
+
return false;
|
1084
|
+
#if defined(__AVX2__) || defined(__AVX512F__)
|
1085
|
+
tinyBLAS_Q0_AVX2<block_q8_0, block_q8_0, float> tb{
|
1086
|
+
k, (const block_q8_0 *)A, lda,
|
1087
|
+
(const block_q8_0 *)B, ldb,
|
1088
|
+
(float *)C, ldc,
|
1089
|
+
ith, nth};
|
1090
|
+
tb.matmul(m, n, task);
|
1091
|
+
return true;
|
1092
|
+
#elif defined(__ARM_FEATURE_DOTPROD)
|
1093
|
+
tinyBLAS_Q0_ARM<block_q8_0> tb{
|
1094
|
+
k, (const block_q8_0 *)A, lda,
|
1095
|
+
(const block_q8_0 *)B, ldb,
|
1096
|
+
(float *)C, ldc,
|
1097
|
+
ith, nth};
|
1098
|
+
tb.matmul(m, n, task);
|
1099
|
+
return true;
|
1100
|
+
#else
|
1101
|
+
return false;
|
1102
|
+
#endif
|
1103
|
+
}
|
1104
|
+
|
1105
|
+
case GGML_TYPE_Q4_0: {
|
1106
|
+
if (Btype != GGML_TYPE_Q8_0)
|
1107
|
+
return false;
|
1108
|
+
#if defined(__AVX2__) || defined(__AVX512F__)
|
1109
|
+
tinyBLAS_Q0_AVX2<block_q4_0, block_q8_0, float> tb{
|
1110
|
+
k, (const block_q4_0 *)A, lda,
|
1111
|
+
(const block_q8_0 *)B, ldb,
|
1112
|
+
(float *)C, ldc,
|
1113
|
+
ith, nth};
|
1114
|
+
tb.matmul(m, n, task);
|
1115
|
+
return true;
|
1116
|
+
#elif defined(__ARM_FEATURE_DOTPROD)
|
1117
|
+
tinyBLAS_Q0_ARM<block_q4_0> tb{
|
1118
|
+
k, (const block_q4_0 *)A, lda,
|
1119
|
+
(const block_q8_0 *)B, ldb,
|
1120
|
+
(float *)C, ldc,
|
1121
|
+
ith, nth};
|
1122
|
+
tb.matmul(m, n, task);
|
1123
|
+
return true;
|
1124
|
+
#else
|
1125
|
+
return false;
|
1126
|
+
#endif
|
1127
|
+
}
|
1128
|
+
|
1129
|
+
default:
|
1130
|
+
return false;
|
1131
|
+
}
|
1132
|
+
|
1133
|
+
(void)m;
|
1134
|
+
(void)n;
|
1135
|
+
(void)k;
|
1136
|
+
(void)A;
|
1137
|
+
(void)lda;
|
1138
|
+
(void)B;
|
1139
|
+
(void)ldb;
|
1140
|
+
(void)C;
|
1141
|
+
(void)ldc;
|
1142
|
+
(void)ith;
|
1143
|
+
(void)nth;
|
1144
|
+
(void)task;
|
1145
|
+
(void)Atype;
|
1146
|
+
(void)Btype;
|
1147
|
+
(void)Ctype;
|
1148
|
+
}
|