llama_cpp 0.9.5 → 0.10.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/llama_cpp/llama_cpp.cpp +121 -15
- data/ext/llama_cpp/src/ggml-alloc.c +42 -7
- data/ext/llama_cpp/src/ggml-alloc.h +7 -0
- data/ext/llama_cpp/src/ggml-backend-impl.h +46 -21
- data/ext/llama_cpp/src/ggml-backend.c +563 -156
- data/ext/llama_cpp/src/ggml-backend.h +62 -17
- data/ext/llama_cpp/src/ggml-cuda.cu +1140 -355
- data/ext/llama_cpp/src/ggml-cuda.h +9 -1
- data/ext/llama_cpp/src/ggml-impl.h +1 -1
- data/ext/llama_cpp/src/ggml-metal.h +6 -0
- data/ext/llama_cpp/src/ggml-metal.m +506 -158
- data/ext/llama_cpp/src/ggml-metal.metal +795 -144
- data/ext/llama_cpp/src/ggml.c +331 -111
- data/ext/llama_cpp/src/ggml.h +49 -4
- data/ext/llama_cpp/src/llama.cpp +749 -329
- data/ext/llama_cpp/src/llama.h +28 -5
- data/lib/llama_cpp/version.rb +2 -2
- data/sig/llama_cpp.rbs +20 -2
- metadata +2 -2
@@ -9,14 +9,36 @@
|
|
9
9
|
#include <stdlib.h>
|
10
10
|
#include <string.h>
|
11
11
|
|
12
|
-
#define UNUSED GGML_UNUSED
|
13
12
|
|
14
13
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
15
14
|
|
15
|
+
|
16
|
+
// backend buffer type
|
17
|
+
|
18
|
+
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
19
|
+
return buft->iface.alloc_buffer(buft, size);
|
20
|
+
}
|
21
|
+
|
22
|
+
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
|
23
|
+
return buft->iface.get_alignment(buft);
|
24
|
+
}
|
25
|
+
|
26
|
+
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
|
27
|
+
// get_alloc_size is optional, defaults to ggml_nbytes
|
28
|
+
if (buft->iface.get_alloc_size) {
|
29
|
+
return buft->iface.get_alloc_size(buft, tensor);
|
30
|
+
}
|
31
|
+
return ggml_nbytes(tensor);
|
32
|
+
}
|
33
|
+
|
34
|
+
bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
35
|
+
return buft->iface.supports_backend(buft, backend);
|
36
|
+
}
|
37
|
+
|
16
38
|
// backend buffer
|
17
39
|
|
18
40
|
ggml_backend_buffer_t ggml_backend_buffer_init(
|
19
|
-
|
41
|
+
ggml_backend_buffer_type_t buft,
|
20
42
|
struct ggml_backend_buffer_i iface,
|
21
43
|
ggml_backend_buffer_context_t context,
|
22
44
|
size_t size) {
|
@@ -26,7 +48,7 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
|
|
26
48
|
|
27
49
|
(*buffer) = (struct ggml_backend_buffer) {
|
28
50
|
/* .interface = */ iface,
|
29
|
-
/* .
|
51
|
+
/* .buft = */ buft,
|
30
52
|
/* .context = */ context,
|
31
53
|
/* .size = */ size,
|
32
54
|
};
|
@@ -45,10 +67,6 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
|
45
67
|
free(buffer);
|
46
68
|
}
|
47
69
|
|
48
|
-
size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
|
49
|
-
return ggml_backend_get_alignment(buffer->backend);
|
50
|
-
}
|
51
|
-
|
52
70
|
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
53
71
|
return buffer->size;
|
54
72
|
}
|
@@ -61,14 +79,6 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
61
79
|
return base;
|
62
80
|
}
|
63
81
|
|
64
|
-
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
65
|
-
// get_alloc_size is optional, defaults to ggml_nbytes
|
66
|
-
if (buffer->iface.get_alloc_size) {
|
67
|
-
return buffer->iface.get_alloc_size(buffer, tensor);
|
68
|
-
}
|
69
|
-
return ggml_nbytes(tensor);
|
70
|
-
}
|
71
|
-
|
72
82
|
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
73
83
|
// init_tensor is optional
|
74
84
|
if (buffer->iface.init_tensor) {
|
@@ -76,19 +86,20 @@ void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_t
|
|
76
86
|
}
|
77
87
|
}
|
78
88
|
|
79
|
-
|
80
|
-
|
81
|
-
if (buffer->iface.free_tensor) {
|
82
|
-
buffer->iface.free_tensor(buffer, tensor);
|
83
|
-
}
|
89
|
+
size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
|
90
|
+
return ggml_backend_buft_get_alignment(ggml_backend_buffer_type(buffer));
|
84
91
|
}
|
85
92
|
|
86
|
-
|
93
|
+
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
94
|
+
return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type(buffer), tensor);
|
95
|
+
}
|
87
96
|
|
88
|
-
|
89
|
-
return
|
97
|
+
ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) {
|
98
|
+
return buffer->buft;
|
90
99
|
}
|
91
100
|
|
101
|
+
// backend
|
102
|
+
|
92
103
|
const char * ggml_backend_name(ggml_backend_t backend) {
|
93
104
|
if (backend == NULL) {
|
94
105
|
return "NULL";
|
@@ -104,43 +115,53 @@ void ggml_backend_free(ggml_backend_t backend) {
|
|
104
115
|
backend->iface.free(backend);
|
105
116
|
}
|
106
117
|
|
118
|
+
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
|
119
|
+
return backend->iface.get_default_buffer_type(backend);
|
120
|
+
}
|
121
|
+
|
107
122
|
ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
|
108
|
-
return
|
123
|
+
return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
|
109
124
|
}
|
110
125
|
|
111
126
|
size_t ggml_backend_get_alignment(ggml_backend_t backend) {
|
112
|
-
return
|
127
|
+
return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
|
113
128
|
}
|
114
129
|
|
115
|
-
void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
116
|
-
|
130
|
+
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
131
|
+
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
132
|
+
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
133
|
+
|
134
|
+
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
117
135
|
}
|
118
136
|
|
119
|
-
void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
120
|
-
|
137
|
+
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
138
|
+
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
139
|
+
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
140
|
+
|
141
|
+
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
121
142
|
}
|
122
143
|
|
123
144
|
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
124
|
-
ggml_backend_t backend = ggml_get_backend(tensor);
|
125
|
-
|
126
145
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
127
|
-
GGML_ASSERT(
|
146
|
+
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
|
147
|
+
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
128
148
|
|
129
|
-
|
130
|
-
backend->iface.synchronize(backend);
|
149
|
+
tensor->buffer->iface.set_tensor(tensor->buffer, tensor, data, offset, size);
|
131
150
|
}
|
132
151
|
|
133
152
|
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
134
|
-
ggml_backend_t backend = ggml_get_backend(tensor);
|
135
|
-
|
136
153
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
137
|
-
GGML_ASSERT(
|
154
|
+
GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
|
155
|
+
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
138
156
|
|
139
|
-
|
140
|
-
backend->iface.synchronize(backend);
|
157
|
+
tensor->buffer->iface.get_tensor(tensor->buffer, tensor, data, offset, size);
|
141
158
|
}
|
142
159
|
|
143
160
|
void ggml_backend_synchronize(ggml_backend_t backend) {
|
161
|
+
if (backend->iface.synchronize == NULL) {
|
162
|
+
return;
|
163
|
+
}
|
164
|
+
|
144
165
|
backend->iface.synchronize(backend);
|
145
166
|
}
|
146
167
|
|
@@ -154,10 +175,16 @@ void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_pla
|
|
154
175
|
|
155
176
|
void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
156
177
|
backend->iface.graph_plan_compute(backend, plan);
|
178
|
+
|
179
|
+
// TODO: optional sync
|
180
|
+
ggml_backend_synchronize(backend);
|
157
181
|
}
|
158
182
|
|
159
183
|
void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
160
184
|
backend->iface.graph_compute(backend, cgraph);
|
185
|
+
|
186
|
+
// TODO: optional sync
|
187
|
+
ggml_backend_synchronize(backend);
|
161
188
|
}
|
162
189
|
|
163
190
|
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
@@ -194,14 +221,15 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
|
|
194
221
|
|
195
222
|
// TODO: allow backends to support copy to/from same backend
|
196
223
|
|
197
|
-
if (
|
198
|
-
|
199
|
-
} else if (
|
200
|
-
|
224
|
+
if (dst->buffer->iface.cpy_tensor_from != NULL) {
|
225
|
+
dst->buffer->iface.cpy_tensor_from(dst->buffer, src, dst);
|
226
|
+
} else if (src->buffer->iface.cpy_tensor_to != NULL) {
|
227
|
+
src->buffer->iface.cpy_tensor_to(src->buffer, src, dst);
|
201
228
|
} else {
|
202
229
|
// shouldn't be hit when copying from/to CPU
|
203
230
|
#ifndef NDEBUG
|
204
|
-
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to
|
231
|
+
fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to "
|
232
|
+
"are implemented for %s and %s, falling back to get/set\n", src->name, dst->name);
|
205
233
|
#endif
|
206
234
|
size_t nbytes = ggml_nbytes(src);
|
207
235
|
void * data = malloc(nbytes);
|
@@ -211,101 +239,259 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
|
|
211
239
|
}
|
212
240
|
}
|
213
241
|
|
214
|
-
// backend
|
242
|
+
// backend registry
|
215
243
|
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
244
|
+
#define GGML_MAX_BACKENDS_REG 16
|
245
|
+
|
246
|
+
struct ggml_backend_reg {
|
247
|
+
char name[128];
|
248
|
+
ggml_backend_init_fn init_fn;
|
249
|
+
ggml_backend_buffer_type_t default_buffer_type;
|
250
|
+
void * user_data;
|
220
251
|
};
|
221
252
|
|
222
|
-
static
|
223
|
-
|
253
|
+
static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
|
254
|
+
static size_t ggml_backend_registry_count = 0;
|
255
|
+
|
256
|
+
static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
|
257
|
+
|
258
|
+
static void ggml_backend_registry_init(void) {
|
259
|
+
static bool initialized = false;
|
260
|
+
|
261
|
+
if (initialized) {
|
262
|
+
return;
|
263
|
+
}
|
264
|
+
|
265
|
+
initialized = true;
|
224
266
|
|
225
|
-
|
267
|
+
ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
|
268
|
+
|
269
|
+
// add forward decls here to avoid including the backend headers
|
270
|
+
#ifdef GGML_USE_CUBLAS
|
271
|
+
extern void ggml_backend_cuda_reg_devices(void);
|
272
|
+
ggml_backend_cuda_reg_devices();
|
273
|
+
#endif
|
274
|
+
|
275
|
+
#ifdef GGML_USE_METAL
|
276
|
+
extern ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
|
277
|
+
extern ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
278
|
+
ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
|
279
|
+
#endif
|
226
280
|
}
|
227
281
|
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
282
|
+
void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
|
283
|
+
GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
|
284
|
+
|
285
|
+
int id = ggml_backend_registry_count;
|
286
|
+
|
287
|
+
ggml_backend_registry[id] = (struct ggml_backend_reg) {
|
288
|
+
/* .name = */ {0},
|
289
|
+
/* .fn = */ init_fn,
|
290
|
+
/* .default_buffer_type = */ default_buffer_type,
|
291
|
+
/* .user_data = */ user_data,
|
292
|
+
};
|
293
|
+
|
294
|
+
snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
|
295
|
+
|
296
|
+
#ifndef NDEBUG
|
297
|
+
fprintf(stderr, "%s: registered backend %s\n", __func__, name);
|
298
|
+
#endif
|
299
|
+
|
300
|
+
ggml_backend_registry_count++;
|
301
|
+
}
|
302
|
+
|
303
|
+
size_t ggml_backend_reg_get_count(void) {
|
304
|
+
ggml_backend_registry_init();
|
305
|
+
|
306
|
+
return ggml_backend_registry_count;
|
307
|
+
}
|
308
|
+
|
309
|
+
size_t ggml_backend_reg_find_by_name(const char * name) {
|
310
|
+
ggml_backend_registry_init();
|
311
|
+
|
312
|
+
for (size_t i = 0; i < ggml_backend_registry_count; i++) {
|
313
|
+
// TODO: case insensitive in a portable way
|
314
|
+
if (strcmp(ggml_backend_registry[i].name, name) == 0) {
|
315
|
+
return i;
|
316
|
+
}
|
317
|
+
}
|
318
|
+
return SIZE_MAX;
|
319
|
+
}
|
320
|
+
|
321
|
+
// init from backend:params string
|
322
|
+
ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
|
323
|
+
ggml_backend_registry_init();
|
324
|
+
|
325
|
+
const char * params = strchr(backend_str, ':');
|
326
|
+
char backend_name[128];
|
327
|
+
if (params == NULL) {
|
328
|
+
strcpy(backend_name, backend_str);
|
329
|
+
params = "";
|
330
|
+
} else {
|
331
|
+
strncpy(backend_name, backend_str, params - backend_str);
|
332
|
+
backend_name[params - backend_str] = '\0';
|
333
|
+
params++;
|
334
|
+
}
|
335
|
+
|
336
|
+
size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
|
337
|
+
if (backend_i == SIZE_MAX) {
|
338
|
+
fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
|
339
|
+
return NULL;
|
340
|
+
}
|
341
|
+
|
342
|
+
return ggml_backend_reg_init_backend(backend_i, params);
|
343
|
+
}
|
344
|
+
|
345
|
+
const char * ggml_backend_reg_get_name(size_t i) {
|
346
|
+
ggml_backend_registry_init();
|
347
|
+
|
348
|
+
GGML_ASSERT(i < ggml_backend_registry_count);
|
349
|
+
return ggml_backend_registry[i].name;
|
350
|
+
}
|
351
|
+
|
352
|
+
ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
|
353
|
+
ggml_backend_registry_init();
|
354
|
+
|
355
|
+
GGML_ASSERT(i < ggml_backend_registry_count);
|
356
|
+
return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
|
357
|
+
}
|
358
|
+
|
359
|
+
ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
|
360
|
+
ggml_backend_registry_init();
|
361
|
+
|
362
|
+
GGML_ASSERT(i < ggml_backend_registry_count);
|
363
|
+
return ggml_backend_registry[i].default_buffer_type;
|
364
|
+
}
|
365
|
+
|
366
|
+
ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
|
367
|
+
ggml_backend_registry_init();
|
368
|
+
|
369
|
+
GGML_ASSERT(i < ggml_backend_registry_count);
|
370
|
+
return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
|
233
371
|
}
|
234
372
|
|
373
|
+
// backend CPU
|
374
|
+
|
235
375
|
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
236
376
|
return (void *)buffer->context;
|
237
377
|
}
|
238
378
|
|
239
379
|
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
240
380
|
free(buffer->context);
|
241
|
-
|
381
|
+
GGML_UNUSED(buffer);
|
382
|
+
}
|
383
|
+
|
384
|
+
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
385
|
+
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
386
|
+
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
387
|
+
|
388
|
+
memcpy((char *)tensor->data + offset, data, size);
|
389
|
+
|
390
|
+
GGML_UNUSED(buffer);
|
391
|
+
}
|
392
|
+
|
393
|
+
static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
394
|
+
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
395
|
+
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
396
|
+
|
397
|
+
memcpy(data, (const char *)tensor->data + offset, size);
|
398
|
+
|
399
|
+
GGML_UNUSED(buffer);
|
400
|
+
}
|
401
|
+
|
402
|
+
static void ggml_backend_cpu_buffer_cpy_tensor_from(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
403
|
+
ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
|
404
|
+
|
405
|
+
GGML_UNUSED(buffer);
|
406
|
+
}
|
407
|
+
|
408
|
+
static void ggml_backend_cpu_buffer_cpy_tensor_to(ggml_backend_buffer_t buffer, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
409
|
+
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
410
|
+
|
411
|
+
GGML_UNUSED(buffer);
|
242
412
|
}
|
243
413
|
|
244
414
|
static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
|
245
|
-
/* .free_buffer
|
246
|
-
/* .get_base
|
247
|
-
/* .
|
248
|
-
/* .
|
249
|
-
/* .
|
415
|
+
/* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
|
416
|
+
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
417
|
+
/* .init_tensor = */ NULL, // no initialization required
|
418
|
+
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
419
|
+
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
420
|
+
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
421
|
+
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
250
422
|
};
|
251
423
|
|
252
424
|
// for buffers from ptr, free is not called
|
253
425
|
static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
|
254
|
-
/* .free_buffer
|
255
|
-
/* .get_base
|
256
|
-
/* .
|
257
|
-
/* .
|
258
|
-
/* .
|
426
|
+
/* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
|
427
|
+
/* .get_base = */ ggml_backend_cpu_buffer_get_base,
|
428
|
+
/* .init_tensor = */ NULL, // no initialization required
|
429
|
+
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
|
430
|
+
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
|
431
|
+
/* .cpy_tensor_from = */ ggml_backend_cpu_buffer_cpy_tensor_from,
|
432
|
+
/* .cpy_tensor_to = */ ggml_backend_cpu_buffer_cpy_tensor_to,
|
259
433
|
};
|
260
434
|
|
261
435
|
static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
|
262
436
|
|
263
|
-
static ggml_backend_buffer_t
|
437
|
+
static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
264
438
|
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
265
439
|
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
|
266
440
|
|
267
441
|
GGML_ASSERT(data != NULL && "failed to allocate buffer");
|
268
442
|
|
269
|
-
return ggml_backend_buffer_init(
|
443
|
+
return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
|
270
444
|
}
|
271
445
|
|
272
|
-
static size_t
|
446
|
+
static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
273
447
|
return TENSOR_ALIGNMENT;
|
274
|
-
UNUSED(backend);
|
275
|
-
}
|
276
448
|
|
277
|
-
|
278
|
-
|
279
|
-
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
449
|
+
GGML_UNUSED(buft);
|
450
|
+
}
|
280
451
|
|
281
|
-
|
452
|
+
static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
453
|
+
return ggml_backend_is_cpu(backend);
|
282
454
|
|
283
|
-
|
455
|
+
GGML_UNUSED(buft);
|
284
456
|
}
|
285
457
|
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
458
|
+
ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
|
459
|
+
static struct ggml_backend_buffer_type ggml_backend_buffer_type_cpu = {
|
460
|
+
/* .iface = */ {
|
461
|
+
/* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
|
462
|
+
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
|
463
|
+
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
464
|
+
/* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
|
465
|
+
},
|
466
|
+
/* .context = */ NULL,
|
467
|
+
};
|
291
468
|
|
292
|
-
|
469
|
+
return &ggml_backend_buffer_type_cpu;
|
293
470
|
}
|
294
471
|
|
295
|
-
|
296
|
-
|
297
|
-
|
472
|
+
struct ggml_backend_cpu_context {
|
473
|
+
int n_threads;
|
474
|
+
void * work_data;
|
475
|
+
size_t work_size;
|
476
|
+
};
|
298
477
|
|
299
|
-
static
|
300
|
-
|
478
|
+
static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
|
479
|
+
return "CPU";
|
301
480
|
|
302
|
-
|
481
|
+
GGML_UNUSED(backend);
|
303
482
|
}
|
304
483
|
|
305
|
-
static void
|
306
|
-
|
484
|
+
static void ggml_backend_cpu_free(ggml_backend_t backend) {
|
485
|
+
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
|
486
|
+
free(cpu_ctx->work_data);
|
487
|
+
free(cpu_ctx);
|
488
|
+
free(backend);
|
489
|
+
}
|
490
|
+
|
491
|
+
static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
|
492
|
+
return ggml_backend_cpu_buffer_type();
|
307
493
|
|
308
|
-
|
494
|
+
GGML_UNUSED(backend);
|
309
495
|
}
|
310
496
|
|
311
497
|
struct ggml_backend_plan_cpu {
|
@@ -334,7 +520,7 @@ static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backen
|
|
334
520
|
free(cpu_plan->cplan.work_data);
|
335
521
|
free(cpu_plan);
|
336
522
|
|
337
|
-
|
523
|
+
GGML_UNUSED(backend);
|
338
524
|
}
|
339
525
|
|
340
526
|
static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
@@ -342,7 +528,7 @@ static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_bac
|
|
342
528
|
|
343
529
|
ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
|
344
530
|
|
345
|
-
|
531
|
+
GGML_UNUSED(backend);
|
346
532
|
}
|
347
533
|
|
348
534
|
static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
@@ -363,25 +549,25 @@ static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_c
|
|
363
549
|
|
364
550
|
static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
365
551
|
return true;
|
366
|
-
|
367
|
-
|
552
|
+
|
553
|
+
GGML_UNUSED(backend);
|
554
|
+
GGML_UNUSED(op);
|
368
555
|
}
|
369
556
|
|
370
557
|
static struct ggml_backend_i cpu_backend_i = {
|
371
|
-
/* .get_name
|
372
|
-
/* .free
|
373
|
-
/* .
|
374
|
-
/* .
|
375
|
-
/* .
|
376
|
-
/* .
|
377
|
-
/* .
|
378
|
-
/* .
|
379
|
-
/* .
|
380
|
-
/* .
|
381
|
-
/* .
|
382
|
-
/* .
|
383
|
-
/* .
|
384
|
-
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
558
|
+
/* .get_name = */ ggml_backend_cpu_name,
|
559
|
+
/* .free = */ ggml_backend_cpu_free,
|
560
|
+
/* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
|
561
|
+
/* .set_tensor_async = */ NULL,
|
562
|
+
/* .get_tensor_async = */ NULL,
|
563
|
+
/* .cpy_tensor_from_async = */ NULL,
|
564
|
+
/* .cpy_tensor_to_async = */ NULL,
|
565
|
+
/* .synchronize = */ NULL,
|
566
|
+
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
|
567
|
+
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
|
568
|
+
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
|
569
|
+
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
570
|
+
/* .supports_op = */ ggml_backend_cpu_supports_op,
|
385
571
|
};
|
386
572
|
|
387
573
|
ggml_backend_t ggml_backend_cpu_init(void) {
|
@@ -411,10 +597,18 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
|
411
597
|
ctx->n_threads = n_threads;
|
412
598
|
}
|
413
599
|
|
414
|
-
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(
|
415
|
-
return ggml_backend_buffer_init(
|
600
|
+
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
|
601
|
+
return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
|
602
|
+
}
|
603
|
+
|
604
|
+
static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
|
605
|
+
return ggml_backend_cpu_init();
|
606
|
+
|
607
|
+
GGML_UNUSED(params);
|
608
|
+
GGML_UNUSED(user_data);
|
416
609
|
}
|
417
610
|
|
611
|
+
|
418
612
|
// scheduler
|
419
613
|
|
420
614
|
#define GGML_MAX_BACKENDS 4
|
@@ -427,7 +621,7 @@ struct ggml_backend_sched_split {
|
|
427
621
|
int i_end;
|
428
622
|
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
|
429
623
|
int n_inputs;
|
430
|
-
struct ggml_cgraph
|
624
|
+
struct ggml_cgraph graph;
|
431
625
|
};
|
432
626
|
|
433
627
|
struct ggml_backend_sched {
|
@@ -453,7 +647,7 @@ struct ggml_backend_sched {
|
|
453
647
|
#else
|
454
648
|
__attribute__((aligned(GGML_MEM_ALIGN)))
|
455
649
|
#endif
|
456
|
-
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) +
|
650
|
+
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
457
651
|
};
|
458
652
|
|
459
653
|
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
@@ -482,23 +676,57 @@ static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr)
|
|
482
676
|
return INT_MAX;
|
483
677
|
}
|
484
678
|
|
679
|
+
static ggml_backend_t get_buffer_backend(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
|
680
|
+
if (buffer == NULL) {
|
681
|
+
return NULL;
|
682
|
+
}
|
683
|
+
// find highest prio backend that supports the buffer type
|
684
|
+
for (int i = 0; i < sched->n_backends; i++) {
|
685
|
+
if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
|
686
|
+
return sched->backends[i];
|
687
|
+
}
|
688
|
+
}
|
689
|
+
GGML_ASSERT(false && "tensor buffer type not supported by any backend");
|
690
|
+
}
|
691
|
+
|
692
|
+
static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
|
693
|
+
if (allocr == NULL) {
|
694
|
+
return NULL;
|
695
|
+
}
|
696
|
+
// find highest prio backend that supports the buffer type
|
697
|
+
for (int i = 0; i < sched->n_backends; i++) {
|
698
|
+
if (sched->tallocs[i] == allocr) {
|
699
|
+
return sched->backends[i];
|
700
|
+
}
|
701
|
+
}
|
702
|
+
GGML_UNREACHABLE();
|
703
|
+
}
|
704
|
+
|
705
|
+
#if 0
|
706
|
+
static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
707
|
+
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
|
708
|
+
#define GET_CAUSE(node) causes[hash_id(node)]
|
709
|
+
#else
|
710
|
+
#define SET_CAUSE(node, ...)
|
711
|
+
#define GET_CAUSE(node) ""
|
712
|
+
#endif
|
713
|
+
|
485
714
|
// returns the backend that should be used for the node based on the current locations
|
486
|
-
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
487
715
|
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
488
716
|
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
|
489
717
|
// ie. kv cache updates
|
490
718
|
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
|
491
719
|
// dst
|
492
|
-
ggml_backend_t cur_backend =
|
720
|
+
ggml_backend_t cur_backend = get_buffer_backend(sched, node->buffer);
|
493
721
|
if (cur_backend != NULL) {
|
494
|
-
|
722
|
+
SET_CAUSE(node, "1.dst");
|
495
723
|
return cur_backend;
|
496
724
|
}
|
497
725
|
|
498
726
|
// view_src
|
499
|
-
if (node->view_src != NULL &&
|
500
|
-
|
501
|
-
return
|
727
|
+
if (node->view_src != NULL && get_buffer_backend(sched, node->view_src->buffer) != NULL) {
|
728
|
+
SET_CAUSE(node, "1.vsrc");
|
729
|
+
return get_buffer_backend(sched, node->view_src->buffer);
|
502
730
|
}
|
503
731
|
|
504
732
|
// src
|
@@ -510,7 +738,7 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
|
|
510
738
|
if (src == NULL) {
|
511
739
|
break;
|
512
740
|
}
|
513
|
-
ggml_backend_t src_backend =
|
741
|
+
ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer);
|
514
742
|
if (src_backend != NULL) {
|
515
743
|
int src_prio = sched_backend_prio(sched, src_backend);
|
516
744
|
size_t src_size = ggml_nbytes(src);
|
@@ -518,7 +746,7 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct
|
|
518
746
|
cur_prio = src_prio;
|
519
747
|
cur_size = src_size;
|
520
748
|
cur_backend = src_backend;
|
521
|
-
|
749
|
+
SET_CAUSE(node, "1.src%d", i);
|
522
750
|
}
|
523
751
|
}
|
524
752
|
}
|
@@ -539,10 +767,12 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
|
539
767
|
int cur_split = 0;
|
540
768
|
for (int i = 0; i < graph->n_nodes; i++) {
|
541
769
|
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
|
542
|
-
ggml_backend_t split_backend =
|
543
|
-
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
|
770
|
+
ggml_backend_t split_backend = get_allocr_backend(sched, sched->splits[cur_split].tallocr);
|
771
|
+
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
|
772
|
+
sched->splits[cur_split].n_inputs);
|
544
773
|
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
|
545
|
-
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
|
774
|
+
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
|
775
|
+
fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
|
546
776
|
}
|
547
777
|
fprintf(stderr, "\n");
|
548
778
|
cur_split++;
|
@@ -552,16 +782,18 @@ static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgra
|
|
552
782
|
continue;
|
553
783
|
}
|
554
784
|
ggml_tallocr_t node_allocr = node_allocr(node);
|
555
|
-
ggml_backend_t node_backend = node_allocr ?
|
556
|
-
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
785
|
+
ggml_backend_t node_backend = node_allocr ? get_allocr_backend(sched, node_allocr) : NULL; // FIXME:
|
786
|
+
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
787
|
+
fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", GET_CAUSE(node));
|
557
788
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
558
789
|
struct ggml_tensor * src = node->src[j];
|
559
790
|
if (src == NULL) {
|
560
791
|
break;
|
561
792
|
}
|
562
793
|
ggml_tallocr_t src_allocr = node_allocr(src);
|
563
|
-
ggml_backend_t src_backend = src_allocr ?
|
564
|
-
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
|
794
|
+
ggml_backend_t src_backend = src_allocr ? get_allocr_backend(sched, src_allocr) : NULL;
|
795
|
+
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name,
|
796
|
+
fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
|
565
797
|
}
|
566
798
|
fprintf(stderr, "\n");
|
567
799
|
}
|
@@ -587,9 +819,9 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|
587
819
|
sched->n_splits = 0;
|
588
820
|
|
589
821
|
struct ggml_init_params params = {
|
590
|
-
|
591
|
-
|
592
|
-
|
822
|
+
/* .mem_size = */ sizeof(sched->context_buffer),
|
823
|
+
/* .mem_buffer = */ sched->context_buffer,
|
824
|
+
/* .no_alloc = */ true
|
593
825
|
};
|
594
826
|
|
595
827
|
if (sched->ctx != NULL) {
|
@@ -605,9 +837,9 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|
605
837
|
// do not overwrite user assignments
|
606
838
|
continue;
|
607
839
|
}
|
608
|
-
ggml_backend_t leaf_backend =
|
840
|
+
ggml_backend_t leaf_backend = get_buffer_backend(sched, leaf->buffer);
|
609
841
|
if (leaf_backend == NULL && leaf->view_src != NULL) {
|
610
|
-
leaf_backend =
|
842
|
+
leaf_backend = get_buffer_backend(sched, leaf->view_src->buffer);
|
611
843
|
}
|
612
844
|
if (leaf_backend != NULL) {
|
613
845
|
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
|
@@ -649,7 +881,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|
649
881
|
cur_prio = src_prio;
|
650
882
|
cur_size = src_size;
|
651
883
|
node_allocr = src_allocr;
|
652
|
-
|
884
|
+
SET_CAUSE(node, "2.src%d", j);
|
653
885
|
}
|
654
886
|
}
|
655
887
|
}
|
@@ -733,7 +965,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|
733
965
|
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
734
966
|
sched->node_copies[id][cur_backend_id] = tensor_copy;
|
735
967
|
node_allocr(tensor_copy) = cur_allocr;
|
736
|
-
ggml_backend_t backend =
|
968
|
+
ggml_backend_t backend = get_allocr_backend(sched, cur_allocr);
|
737
969
|
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
738
970
|
}
|
739
971
|
node->src[j] = sched->node_copies[id][cur_backend_id];
|
@@ -761,8 +993,8 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|
761
993
|
ggml_tallocr_t src_allocr = node_allocr(src);
|
762
994
|
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
|
763
995
|
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
|
764
|
-
node->name, node_allocr ? ggml_backend_name(
|
765
|
-
j, src->name, src_allocr ? ggml_backend_name(
|
996
|
+
node->name, node_allocr ? ggml_backend_name(get_allocr_backend(sched, node_allocr)) : "NULL",
|
997
|
+
j, src->name, src_allocr ? ggml_backend_name(get_allocr_backend(sched, src_allocr)) : "NULL");
|
766
998
|
}
|
767
999
|
}
|
768
1000
|
}
|
@@ -773,7 +1005,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g
|
|
773
1005
|
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
|
774
1006
|
for (int i = 0; i < sched->n_splits; i++) {
|
775
1007
|
struct ggml_backend_sched_split * split = &sched->splits[i];
|
776
|
-
split->graph = ggml_graph_view(
|
1008
|
+
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
777
1009
|
|
778
1010
|
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
779
1011
|
for (int j = 0; j < split->n_inputs; j++) {
|
@@ -806,31 +1038,29 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|
806
1038
|
|
807
1039
|
for (int i = 0; i < sched->n_splits; i++) {
|
808
1040
|
struct ggml_backend_sched_split * split = &splits[i];
|
809
|
-
ggml_backend_t split_backend =
|
1041
|
+
ggml_backend_t split_backend = get_allocr_backend(sched, split->tallocr);
|
810
1042
|
int split_backend_id = sched_backend_prio(sched, split_backend);
|
811
1043
|
|
812
1044
|
// copy the input tensors to the split backend
|
813
1045
|
uint64_t copy_start_us = ggml_time_us();
|
814
1046
|
for (int j = 0; j < split->n_inputs; j++) {
|
815
|
-
struct ggml_tensor *
|
816
|
-
|
817
|
-
|
818
|
-
|
1047
|
+
struct ggml_tensor * input = split->inputs[j];
|
1048
|
+
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_backend_prio(sched, split_backend)];
|
1049
|
+
if (input->buffer == NULL) {
|
1050
|
+
if (input->view_src == NULL) {
|
1051
|
+
fprintf(stderr, "input %s has no buffer and no view_src\n", input->name);
|
819
1052
|
exit(1);
|
820
1053
|
}
|
821
|
-
|
822
|
-
|
823
|
-
view->buffer = view->view_src->buffer;
|
824
|
-
view->data = (char *)view->view_src->data + view->view_offs;
|
825
|
-
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
|
1054
|
+
// FIXME: may need to use the sched buffer instead
|
1055
|
+
ggml_backend_view_init(input->view_src->buffer, input);
|
826
1056
|
}
|
827
1057
|
if (input_cpy->buffer == NULL) {
|
828
1058
|
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
|
829
1059
|
exit(1);
|
830
1060
|
}
|
831
|
-
GGML_ASSERT(
|
832
|
-
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
|
833
|
-
ggml_backend_tensor_copy(
|
1061
|
+
//GGML_ASSERT(input->buffer->backend != input_cpy->buffer->backend);
|
1062
|
+
//GGML_ASSERT(input_cpy->buffer->backend == split_backend);
|
1063
|
+
ggml_backend_tensor_copy(input, input_cpy);
|
834
1064
|
}
|
835
1065
|
// ggml_backend_synchronize(split_backend);
|
836
1066
|
int64_t copy_end_us = ggml_time_us();
|
@@ -843,7 +1073,7 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|
843
1073
|
#endif
|
844
1074
|
|
845
1075
|
uint64_t compute_start_us = ggml_time_us();
|
846
|
-
ggml_backend_graph_compute(split_backend, split->graph);
|
1076
|
+
ggml_backend_graph_compute(split_backend, &split->graph);
|
847
1077
|
// ggml_backend_synchronize(split_backend);
|
848
1078
|
uint64_t compute_end_us = ggml_time_us();
|
849
1079
|
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
@@ -872,8 +1102,6 @@ ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_bac
|
|
872
1102
|
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
|
873
1103
|
memset(sched, 0, sizeof(struct ggml_backend_sched));
|
874
1104
|
|
875
|
-
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
|
876
|
-
|
877
1105
|
sched->n_backends = n_backends;
|
878
1106
|
for (int i = 0; i < n_backends; i++) {
|
879
1107
|
sched->backends[i] = backends[i];
|
@@ -948,3 +1176,182 @@ void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml
|
|
948
1176
|
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
949
1177
|
node_allocr(node) = sched->tallocs[backend_index];
|
950
1178
|
}
|
1179
|
+
|
1180
|
+
// utils
|
1181
|
+
void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
1182
|
+
GGML_ASSERT(tensor->buffer == NULL);
|
1183
|
+
GGML_ASSERT(tensor->data == NULL);
|
1184
|
+
GGML_ASSERT(tensor->view_src != NULL);
|
1185
|
+
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
1186
|
+
GGML_ASSERT(tensor->view_src->data != NULL);
|
1187
|
+
|
1188
|
+
tensor->buffer = buffer;
|
1189
|
+
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
1190
|
+
tensor->backend = tensor->view_src->backend;
|
1191
|
+
ggml_backend_buffer_init_tensor(buffer, tensor);
|
1192
|
+
}
|
1193
|
+
|
1194
|
+
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
1195
|
+
GGML_ASSERT(tensor->buffer == NULL);
|
1196
|
+
GGML_ASSERT(tensor->data == NULL);
|
1197
|
+
GGML_ASSERT(tensor->view_src == NULL);
|
1198
|
+
GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
|
1199
|
+
GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
|
1200
|
+
(char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
|
1201
|
+
|
1202
|
+
tensor->buffer = buffer;
|
1203
|
+
tensor->data = addr;
|
1204
|
+
ggml_backend_buffer_init_tensor(buffer, tensor);
|
1205
|
+
}
|
1206
|
+
|
1207
|
+
static struct ggml_tensor * graph_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
|
1208
|
+
struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
|
1209
|
+
|
1210
|
+
GGML_ASSERT(src != NULL);
|
1211
|
+
GGML_ASSERT(src->data && "graph must be allocated");
|
1212
|
+
|
1213
|
+
size_t id = ggml_hash_insert(hash_set, src);
|
1214
|
+
if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
|
1215
|
+
return node_copies[ggml_hash_find(hash_set, src)];
|
1216
|
+
}
|
1217
|
+
|
1218
|
+
struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
|
1219
|
+
if (src->view_src != NULL) {
|
1220
|
+
dst->view_src = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
|
1221
|
+
dst->view_offs = src->view_offs;
|
1222
|
+
}
|
1223
|
+
dst->op = src->op;
|
1224
|
+
memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
|
1225
|
+
ggml_set_name(dst, src->name);
|
1226
|
+
|
1227
|
+
// copy src
|
1228
|
+
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
1229
|
+
struct ggml_tensor * s = src->src[i];
|
1230
|
+
if (s == NULL) {
|
1231
|
+
break;
|
1232
|
+
}
|
1233
|
+
dst->src[i] = graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
|
1234
|
+
}
|
1235
|
+
|
1236
|
+
node_copies[id] = dst;
|
1237
|
+
return dst;
|
1238
|
+
}
|
1239
|
+
|
1240
|
+
static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
|
1241
|
+
size_t id = ggml_hash_find(hash_set, src);
|
1242
|
+
if (node_init[id]) {
|
1243
|
+
return;
|
1244
|
+
}
|
1245
|
+
node_init[id] = true;
|
1246
|
+
|
1247
|
+
struct ggml_tensor * dst = node_copies[id];
|
1248
|
+
if (dst->view_src != NULL) {
|
1249
|
+
ggml_backend_view_init(dst->view_src->buffer, dst);
|
1250
|
+
}
|
1251
|
+
else {
|
1252
|
+
ggml_backend_tensor_copy(src, dst);
|
1253
|
+
}
|
1254
|
+
|
1255
|
+
// init src
|
1256
|
+
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
1257
|
+
struct ggml_tensor * s = src->src[i];
|
1258
|
+
if (s == NULL) {
|
1259
|
+
break;
|
1260
|
+
}
|
1261
|
+
graph_init_tensor(hash_set, node_copies, node_init, s);
|
1262
|
+
}
|
1263
|
+
}
|
1264
|
+
|
1265
|
+
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
1266
|
+
struct ggml_hash_set hash_set = {
|
1267
|
+
/* .size = */ graph->visited_hash_table.size,
|
1268
|
+
/* .keys = */ calloc(sizeof(hash_set.keys[0]) * graph->visited_hash_table.size, 1)
|
1269
|
+
};
|
1270
|
+
struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]) * hash_set.size, 1);
|
1271
|
+
bool * node_init = calloc(sizeof(node_init[0]) * hash_set.size, 1);
|
1272
|
+
|
1273
|
+
struct ggml_init_params params = {
|
1274
|
+
/* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
|
1275
|
+
/* .mem_buffer = */ NULL,
|
1276
|
+
/* .no_alloc = */ true
|
1277
|
+
};
|
1278
|
+
|
1279
|
+
struct ggml_context * ctx_allocated = ggml_init(params);
|
1280
|
+
struct ggml_context * ctx_unallocated = ggml_init(params);
|
1281
|
+
|
1282
|
+
// dup nodes
|
1283
|
+
for (int i = 0; i < graph->n_nodes; i++) {
|
1284
|
+
struct ggml_tensor * node = graph->nodes[i];
|
1285
|
+
graph_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
|
1286
|
+
}
|
1287
|
+
|
1288
|
+
// allocate nodes
|
1289
|
+
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
|
1290
|
+
|
1291
|
+
//printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
|
1292
|
+
|
1293
|
+
// copy data and init views
|
1294
|
+
for (int i = 0; i < graph->n_nodes; i++) {
|
1295
|
+
struct ggml_tensor * node = graph->nodes[i];
|
1296
|
+
graph_init_tensor(hash_set, node_copies, node_init, node);
|
1297
|
+
}
|
1298
|
+
|
1299
|
+
// build graph copy
|
1300
|
+
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
|
1301
|
+
for (int i = 0; i < graph->n_nodes; i++) {
|
1302
|
+
struct ggml_tensor * node = graph->nodes[i];
|
1303
|
+
struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
|
1304
|
+
graph_copy->nodes[i] = node_copy;
|
1305
|
+
}
|
1306
|
+
graph_copy->n_nodes = graph->n_nodes;
|
1307
|
+
|
1308
|
+
free(hash_set.keys);
|
1309
|
+
free(node_copies);
|
1310
|
+
free(node_init);
|
1311
|
+
|
1312
|
+
return (struct ggml_backend_graph_copy) {
|
1313
|
+
/* .buffer = */ buffer,
|
1314
|
+
/* .ctx_allocated = */ ctx_allocated,
|
1315
|
+
/* .ctx_unallocated = */ ctx_unallocated,
|
1316
|
+
/* .graph = */ graph_copy,
|
1317
|
+
};
|
1318
|
+
}
|
1319
|
+
|
1320
|
+
void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
1321
|
+
ggml_backend_buffer_free(copy.buffer);
|
1322
|
+
ggml_free(copy.ctx_allocated);
|
1323
|
+
ggml_free(copy.ctx_unallocated);
|
1324
|
+
}
|
1325
|
+
|
1326
|
+
void ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
1327
|
+
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
1328
|
+
struct ggml_cgraph * g1 = graph;
|
1329
|
+
struct ggml_cgraph * g2 = copy.graph;
|
1330
|
+
|
1331
|
+
assert(g1->n_nodes == g2->n_nodes);
|
1332
|
+
|
1333
|
+
for (int i = 0; i < g1->n_nodes; i++) {
|
1334
|
+
//printf("eval %d/%d\n", i, g1->n_nodes);
|
1335
|
+
struct ggml_tensor * t1 = g1->nodes[i];
|
1336
|
+
struct ggml_tensor * t2 = g2->nodes[i];
|
1337
|
+
|
1338
|
+
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
|
1339
|
+
|
1340
|
+
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
|
1341
|
+
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
|
1342
|
+
|
1343
|
+
ggml_backend_graph_compute(backend1, &g1v);
|
1344
|
+
ggml_backend_graph_compute(backend2, &g2v);
|
1345
|
+
|
1346
|
+
if (ggml_is_view_op(t1->op)) {
|
1347
|
+
continue;
|
1348
|
+
}
|
1349
|
+
|
1350
|
+
// compare results, calculate rms etc
|
1351
|
+
if (!callback(i, t1, t2, user_data)) {
|
1352
|
+
break;
|
1353
|
+
}
|
1354
|
+
}
|
1355
|
+
|
1356
|
+
ggml_backend_graph_copy_free(copy);
|
1357
|
+
}
|