llama_cpp 0.3.6 → 0.3.7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/ext/llama_cpp/src/ggml-alloc.c +8 -0
- data/ext/llama_cpp/src/ggml-cuda.cu +1165 -721
- data/ext/llama_cpp/src/ggml-metal.m +39 -18
- data/ext/llama_cpp/src/ggml.c +396 -150
- data/ext/llama_cpp/src/ggml.h +113 -32
- data/ext/llama_cpp/src/llama-util.h +41 -1
- data/ext/llama_cpp/src/llama.cpp +214 -146
- data/ext/llama_cpp/src/llama.h +18 -1
- data/lib/llama_cpp/version.rb +2 -2
- metadata +2 -2
data/ext/llama_cpp/src/llama.cpp
CHANGED
@@ -56,6 +56,13 @@
|
|
56
56
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
57
57
|
#endif
|
58
58
|
|
59
|
+
static void llama_log_internal(llama_log_level level, const char* format, ...);
|
60
|
+
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
|
61
|
+
#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
|
62
|
+
#define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
|
63
|
+
#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
|
64
|
+
|
65
|
+
|
59
66
|
#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL)
|
60
67
|
#include "ggml-alloc.h"
|
61
68
|
#define LLAMA_USE_ALLOCATOR
|
@@ -149,7 +156,7 @@ static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
|
149
156
|
}
|
150
157
|
|
151
158
|
// amount of VRAM needed per batch size to hold temporary results
|
152
|
-
// the values for 3b
|
159
|
+
// the values for 3b are not derived from testing but instead chosen conservatively
|
153
160
|
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
154
161
|
{
|
155
162
|
static std::map<e_model, size_t> k_sizes = {
|
@@ -157,14 +164,14 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
|
157
164
|
{ MODEL_7B, 512ull * kB },
|
158
165
|
{ MODEL_13B, 640ull * kB },
|
159
166
|
{ MODEL_30B, 768ull * kB },
|
160
|
-
{ MODEL_65B,
|
161
|
-
{ MODEL_70B,
|
167
|
+
{ MODEL_65B, 1280ull * kB },
|
168
|
+
{ MODEL_70B, 1280ull * kB },
|
162
169
|
};
|
163
170
|
return k_sizes;
|
164
171
|
}
|
165
172
|
|
166
173
|
// amount of VRAM needed per batch size and context to hold temporary results
|
167
|
-
// the values for 3b
|
174
|
+
// the values for 3b are not derived from testing but instead chosen conservatively
|
168
175
|
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
169
176
|
{
|
170
177
|
static std::map<e_model, size_t> k_sizes = {
|
@@ -172,8 +179,8 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
|
172
179
|
{ MODEL_7B, 128ull },
|
173
180
|
{ MODEL_13B, 160ull },
|
174
181
|
{ MODEL_30B, 208ull },
|
175
|
-
{ MODEL_65B,
|
176
|
-
{ MODEL_70B,
|
182
|
+
{ MODEL_65B, 256ull },
|
183
|
+
{ MODEL_70B, 256ull },
|
177
184
|
};
|
178
185
|
return k_sizes;
|
179
186
|
}
|
@@ -438,6 +445,14 @@ struct llama_context {
|
|
438
445
|
}
|
439
446
|
};
|
440
447
|
|
448
|
+
struct llama_state {
|
449
|
+
// We save the log callback globally
|
450
|
+
llama_log_callback log_callback = llama_log_callback_default;
|
451
|
+
void * log_callback_user_data = nullptr;
|
452
|
+
};
|
453
|
+
// global state
|
454
|
+
static llama_state g_state;
|
455
|
+
|
441
456
|
template <typename T>
|
442
457
|
static T checked_mul(T a, T b) {
|
443
458
|
T ret = a * b;
|
@@ -504,7 +519,7 @@ struct llama_file_loader {
|
|
504
519
|
|
505
520
|
llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
|
506
521
|
: file(fname, "rb") {
|
507
|
-
|
522
|
+
LLAMA_LOG_INFO("llama.cpp: loading model from %s\n", fname);
|
508
523
|
read_magic();
|
509
524
|
read_hparams();
|
510
525
|
read_vocab();
|
@@ -619,7 +634,7 @@ struct llama_file_saver {
|
|
619
634
|
llama_file_loader * any_file_loader;
|
620
635
|
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
|
621
636
|
: file(fname, "wb"), any_file_loader(any_file_loader) {
|
622
|
-
|
637
|
+
LLAMA_LOG_INFO("llama.cpp: saving model to %s\n", fname);
|
623
638
|
write_magic();
|
624
639
|
write_hparams(new_ftype);
|
625
640
|
write_vocab();
|
@@ -640,7 +655,7 @@ struct llama_file_saver {
|
|
640
655
|
}
|
641
656
|
void write_vocab() {
|
642
657
|
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
|
643
|
-
|
658
|
+
LLAMA_LOG_WARN("llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
|
644
659
|
}
|
645
660
|
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
|
646
661
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
@@ -747,12 +762,12 @@ struct llama_model_loader {
|
|
747
762
|
|
748
763
|
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
749
764
|
size_t data_size = 0;
|
750
|
-
size_t prefetch_size =
|
765
|
+
size_t prefetch_size = file_loader->file.size;
|
751
766
|
size_t lock_size = 0;
|
752
767
|
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
753
768
|
data_size += lt.size;
|
754
|
-
if (lt.ggml_tensor->backend
|
755
|
-
prefetch_size
|
769
|
+
if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
|
770
|
+
prefetch_size -= lt.size;
|
756
771
|
}
|
757
772
|
}
|
758
773
|
|
@@ -831,7 +846,7 @@ struct llama_model_loader {
|
|
831
846
|
uint8_t byte = lt.data[i];
|
832
847
|
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
|
833
848
|
}
|
834
|
-
|
849
|
+
LLAMA_LOG_INFO("%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
|
835
850
|
llama_format_tensor_shape(lt.ne).c_str(), lt.size);
|
836
851
|
}
|
837
852
|
|
@@ -864,7 +879,7 @@ static bool kv_cache_init(
|
|
864
879
|
cache.ctx = ggml_init(params);
|
865
880
|
|
866
881
|
if (!cache.ctx) {
|
867
|
-
|
882
|
+
LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
|
868
883
|
return false;
|
869
884
|
}
|
870
885
|
|
@@ -1076,7 +1091,7 @@ static void llama_model_load_internal(
|
|
1076
1091
|
LLAMA_ASSERT(hparams.n_head % n_gqa == 0);
|
1077
1092
|
hparams.n_head_kv = hparams.n_head / n_gqa;
|
1078
1093
|
if (model.type == e_model::MODEL_65B && n_gqa == 8) {
|
1079
|
-
|
1094
|
+
LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
|
1080
1095
|
model.type = e_model::MODEL_70B;
|
1081
1096
|
hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
|
1082
1097
|
}
|
@@ -1092,22 +1107,22 @@ static void llama_model_load_internal(
|
|
1092
1107
|
//const uint32_t n_ff = 28672;
|
1093
1108
|
|
1094
1109
|
{
|
1095
|
-
|
1096
|
-
|
1097
|
-
|
1098
|
-
|
1099
|
-
|
1100
|
-
|
1101
|
-
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
1105
|
-
|
1106
|
-
|
1107
|
-
|
1108
|
-
|
1109
|
-
|
1110
|
-
|
1110
|
+
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
1111
|
+
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
1112
|
+
LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx);
|
1113
|
+
LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
|
1114
|
+
LLAMA_LOG_INFO("%s: n_mult = %u\n", __func__, hparams.n_mult);
|
1115
|
+
LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
|
1116
|
+
LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
|
1117
|
+
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
|
1118
|
+
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
|
1119
|
+
LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
1120
|
+
LLAMA_LOG_INFO("%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps);
|
1121
|
+
LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, n_ff);
|
1122
|
+
LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
1123
|
+
LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
1124
|
+
LLAMA_LOG_INFO("%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
1125
|
+
LLAMA_LOG_INFO("%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
1111
1126
|
}
|
1112
1127
|
|
1113
1128
|
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
|
@@ -1135,7 +1150,7 @@ static void llama_model_load_internal(
|
|
1135
1150
|
size_t ctx_size;
|
1136
1151
|
size_t mmapped_size;
|
1137
1152
|
ml->calc_sizes(&ctx_size, &mmapped_size);
|
1138
|
-
|
1153
|
+
LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
1139
1154
|
|
1140
1155
|
// create the ggml context
|
1141
1156
|
{
|
@@ -1160,13 +1175,13 @@ static void llama_model_load_internal(
|
|
1160
1175
|
(void) main_gpu;
|
1161
1176
|
(void) mul_mat_q;
|
1162
1177
|
#if defined(GGML_USE_CUBLAS)
|
1163
|
-
|
1178
|
+
LLAMA_LOG_INFO("%s: using CUDA for GPU acceleration\n", __func__);
|
1164
1179
|
ggml_cuda_set_main_device(main_gpu);
|
1165
1180
|
ggml_cuda_set_mul_mat_q(mul_mat_q);
|
1166
1181
|
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
1167
1182
|
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
|
1168
1183
|
#elif defined(GGML_USE_CLBLAST)
|
1169
|
-
|
1184
|
+
LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
|
1170
1185
|
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
|
1171
1186
|
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
|
1172
1187
|
#else
|
@@ -1271,14 +1286,14 @@ static void llama_model_load_internal(
|
|
1271
1286
|
const size_t mem_required_state =
|
1272
1287
|
scale*hparams.kv_size();
|
1273
1288
|
|
1274
|
-
|
1289
|
+
LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
1275
1290
|
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
1276
1291
|
|
1277
1292
|
(void) vram_scratch;
|
1278
1293
|
(void) n_batch;
|
1279
1294
|
#ifdef GGML_USE_CUBLAS
|
1280
1295
|
if (low_vram) {
|
1281
|
-
|
1296
|
+
LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
|
1282
1297
|
ggml_cuda_set_scratch_size(0); // disable scratch
|
1283
1298
|
} else {
|
1284
1299
|
const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
|
@@ -1286,7 +1301,7 @@ static void llama_model_load_internal(
|
|
1286
1301
|
vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
|
1287
1302
|
ggml_cuda_set_scratch_size(vram_scratch);
|
1288
1303
|
if (n_gpu_layers > 0) {
|
1289
|
-
|
1304
|
+
LLAMA_LOG_INFO("%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
|
1290
1305
|
__func__, vram_scratch_base / kB, vram_scratch_per_context,
|
1291
1306
|
(vram_scratch + MB - 1) / MB); // round up
|
1292
1307
|
}
|
@@ -1296,9 +1311,9 @@ static void llama_model_load_internal(
|
|
1296
1311
|
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
|
1297
1312
|
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
|
1298
1313
|
|
1299
|
-
|
1314
|
+
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
|
1300
1315
|
if (n_gpu_layers > (int) hparams.n_layer) {
|
1301
|
-
|
1316
|
+
LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
|
1302
1317
|
}
|
1303
1318
|
size_t vram_kv_cache = 0;
|
1304
1319
|
|
@@ -1307,17 +1322,17 @@ static void llama_model_load_internal(
|
|
1307
1322
|
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
|
1308
1323
|
if (n_gpu_layers > (int) hparams.n_layer + 1) {
|
1309
1324
|
if (low_vram) {
|
1310
|
-
|
1325
|
+
LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
|
1311
1326
|
} else {
|
1312
|
-
|
1327
|
+
LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
|
1313
1328
|
vram_kv_cache += hparams.kv_size() / 2;
|
1314
1329
|
}
|
1315
1330
|
}
|
1316
1331
|
if (n_gpu_layers > (int) hparams.n_layer + 2) {
|
1317
1332
|
if (low_vram) {
|
1318
|
-
|
1333
|
+
LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
|
1319
1334
|
} else {
|
1320
|
-
|
1335
|
+
LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
|
1321
1336
|
vram_kv_cache += hparams.kv_size() / 2;
|
1322
1337
|
}
|
1323
1338
|
}
|
@@ -1326,9 +1341,9 @@ static void llama_model_load_internal(
|
|
1326
1341
|
const int max_offloadable_layers = hparams.n_layer + 1;
|
1327
1342
|
#endif // GGML_USE_CUBLAS
|
1328
1343
|
|
1329
|
-
|
1344
|
+
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
|
1330
1345
|
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
|
1331
|
-
|
1346
|
+
LLAMA_LOG_INFO("%s: total VRAM used: %zu MB\n",
|
1332
1347
|
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
|
1333
1348
|
#else
|
1334
1349
|
(void) n_gpu_layers;
|
@@ -1387,7 +1402,7 @@ static bool llama_model_load(
|
|
1387
1402
|
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
1388
1403
|
return true;
|
1389
1404
|
} catch (const std::exception & err) {
|
1390
|
-
|
1405
|
+
LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
|
1391
1406
|
return false;
|
1392
1407
|
}
|
1393
1408
|
}
|
@@ -1751,7 +1766,7 @@ static struct ggml_cgraph * llama_build_graph(
|
|
1751
1766
|
}
|
1752
1767
|
|
1753
1768
|
#if 0
|
1754
|
-
|
1769
|
+
LLAMA_LOG_INFO("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
|
1755
1770
|
ggml_used_mem(ctx0)/1024.0/1024.0,
|
1756
1771
|
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
1757
1772
|
lctx.get_buf_max_mem(1)/1024.0/1024.0,
|
@@ -1812,7 +1827,7 @@ static bool llama_eval_internal(
|
|
1812
1827
|
ggml_allocr_alloc_graph(lctx.alloc, gf);
|
1813
1828
|
#endif
|
1814
1829
|
|
1815
|
-
//
|
1830
|
+
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
|
1816
1831
|
|
1817
1832
|
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
1818
1833
|
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
@@ -1999,7 +2014,7 @@ struct llama_tokenizer {
|
|
1999
2014
|
left_sym.n += right_sym.n;
|
2000
2015
|
right_sym.n = 0;
|
2001
2016
|
|
2002
|
-
//
|
2017
|
+
//LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
|
2003
2018
|
|
2004
2019
|
// remove the right sym from the chain
|
2005
2020
|
left_sym.next = right_sym.next;
|
@@ -3007,7 +3022,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
3007
3022
|
tensor.data = read_data.addr;
|
3008
3023
|
model_loader->load_data_for(tensor);
|
3009
3024
|
|
3010
|
-
|
3025
|
+
LLAMA_LOG_INFO("[%4zu/%4zu] %36s - %16s, type = %6s, ",
|
3011
3026
|
++idx, model_loader->tensors_map.tensors.size(),
|
3012
3027
|
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
|
3013
3028
|
ggml_type_name(tensor.type));
|
@@ -3029,7 +3044,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
3029
3044
|
new_type = tensor.type;
|
3030
3045
|
new_data = tensor.data;
|
3031
3046
|
new_size = tensor.size;
|
3032
|
-
|
3047
|
+
LLAMA_LOG_INFO("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
3033
3048
|
} else {
|
3034
3049
|
new_type = quantized_type;
|
3035
3050
|
#ifdef GGML_USE_K_QUANTS
|
@@ -3064,17 +3079,17 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
3064
3079
|
int nx = tensor.ne.at(0);
|
3065
3080
|
int ny = tensor.ne.at(1);
|
3066
3081
|
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
3067
|
-
|
3082
|
+
LLAMA_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
3068
3083
|
convert_incompatible_tensor = true;
|
3069
3084
|
}
|
3070
3085
|
}
|
3071
3086
|
if (convert_incompatible_tensor) {
|
3072
3087
|
if (tensor.name == "output.weight") {
|
3073
3088
|
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
3074
|
-
|
3089
|
+
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
|
3075
3090
|
} else if (tensor.name == "tok_embeddings.weight") {
|
3076
3091
|
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
3077
|
-
|
3092
|
+
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
|
3078
3093
|
} else {
|
3079
3094
|
throw std::runtime_error("Unsupported tensor size encountered\n");
|
3080
3095
|
}
|
@@ -3094,7 +3109,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
3094
3109
|
f32_data = (float *) f32_conv_buf.addr;
|
3095
3110
|
}
|
3096
3111
|
|
3097
|
-
|
3112
|
+
LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
|
3098
3113
|
fflush(stdout);
|
3099
3114
|
|
3100
3115
|
work.resize(nelements * 4); // upper bound on size
|
@@ -3144,7 +3159,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
3144
3159
|
}
|
3145
3160
|
}
|
3146
3161
|
|
3147
|
-
|
3162
|
+
LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
3148
3163
|
int64_t tot_count = 0;
|
3149
3164
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
3150
3165
|
hist_all[i] += hist_cur[i];
|
@@ -3153,18 +3168,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
3153
3168
|
|
3154
3169
|
if (tot_count > 0) {
|
3155
3170
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
3156
|
-
|
3171
|
+
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
|
3157
3172
|
}
|
3158
3173
|
}
|
3159
|
-
|
3174
|
+
LLAMA_LOG_INFO("\n");
|
3160
3175
|
}
|
3161
3176
|
total_size_org += tensor.size;
|
3162
3177
|
total_size_new += new_size;
|
3163
3178
|
file_saver.write_tensor(tensor, new_type, new_data, new_size);
|
3164
3179
|
}
|
3165
3180
|
|
3166
|
-
|
3167
|
-
|
3181
|
+
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
3182
|
+
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
3168
3183
|
|
3169
3184
|
{
|
3170
3185
|
int64_t sum_all = 0;
|
@@ -3173,11 +3188,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
3173
3188
|
}
|
3174
3189
|
|
3175
3190
|
if (sum_all > 0) {
|
3176
|
-
|
3191
|
+
LLAMA_LOG_INFO("%s: hist: ", __func__);
|
3177
3192
|
for (size_t i = 0; i < hist_all.size(); i++) {
|
3178
|
-
|
3193
|
+
LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
|
3179
3194
|
}
|
3180
|
-
|
3195
|
+
LLAMA_LOG_INFO("\n");
|
3181
3196
|
}
|
3182
3197
|
}
|
3183
3198
|
}
|
@@ -3201,8 +3216,8 @@ struct llama_model * llama_load_model_from_file(
|
|
3201
3216
|
params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
3202
3217
|
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
3203
3218
|
params.progress_callback_user_data)) {
|
3219
|
+
LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
|
3204
3220
|
delete model;
|
3205
|
-
fprintf(stderr, "%s: failed to load model\n", __func__);
|
3206
3221
|
return nullptr;
|
3207
3222
|
}
|
3208
3223
|
|
@@ -3235,10 +3250,9 @@ struct llama_context * llama_new_context_with_model(
|
|
3235
3250
|
unsigned percentage = (unsigned) (100 * progress);
|
3236
3251
|
while (percentage > *cur_percentage_p) {
|
3237
3252
|
*cur_percentage_p = percentage;
|
3238
|
-
|
3239
|
-
fflush(stderr);
|
3253
|
+
LLAMA_LOG_INFO(".");
|
3240
3254
|
if (percentage >= 100) {
|
3241
|
-
|
3255
|
+
LLAMA_LOG_INFO("\n");
|
3242
3256
|
}
|
3243
3257
|
}
|
3244
3258
|
};
|
@@ -3252,14 +3266,14 @@ struct llama_context * llama_new_context_with_model(
|
|
3252
3266
|
// reserve memory for context buffers
|
3253
3267
|
if (!params.vocab_only) {
|
3254
3268
|
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
|
3255
|
-
|
3269
|
+
LLAMA_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
3256
3270
|
llama_free(ctx);
|
3257
3271
|
return nullptr;
|
3258
3272
|
}
|
3259
3273
|
|
3260
3274
|
{
|
3261
3275
|
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
3262
|
-
|
3276
|
+
LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
3263
3277
|
}
|
3264
3278
|
|
3265
3279
|
const auto & hparams = ctx->model.hparams;
|
@@ -3293,14 +3307,14 @@ struct llama_context * llama_new_context_with_model(
|
|
3293
3307
|
// measure memory requirements for the graph
|
3294
3308
|
size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
|
3295
3309
|
|
3296
|
-
|
3310
|
+
LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
|
3297
3311
|
|
3298
3312
|
// debug - for comparison with scratch buffer
|
3299
3313
|
//size_t prev_req =
|
3300
3314
|
// MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
|
3301
3315
|
// MEM_REQ_SCRATCH1().at(ctx->model.type) +
|
3302
3316
|
// MEM_REQ_EVAL().at(ctx->model.type);
|
3303
|
-
//
|
3317
|
+
//LLAMA_LOG_INFO("%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
|
3304
3318
|
|
3305
3319
|
// recreate allocator with exact memory requirements
|
3306
3320
|
ggml_allocr_free(ctx->alloc);
|
@@ -3336,13 +3350,13 @@ struct llama_context * llama_new_context_with_model(
|
|
3336
3350
|
|
3337
3351
|
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
|
3338
3352
|
|
3339
|
-
|
3353
|
+
LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
|
3340
3354
|
|
3341
|
-
#define LLAMA_METAL_CHECK_BUF(result)
|
3342
|
-
if (!(result)) {
|
3343
|
-
|
3344
|
-
llama_free(ctx);
|
3345
|
-
return NULL;
|
3355
|
+
#define LLAMA_METAL_CHECK_BUF(result) \
|
3356
|
+
if (!(result)) { \
|
3357
|
+
LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
|
3358
|
+
llama_free(ctx); \
|
3359
|
+
return NULL; \
|
3346
3360
|
}
|
3347
3361
|
|
3348
3362
|
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
|
@@ -3396,19 +3410,19 @@ int llama_model_quantize(
|
|
3396
3410
|
llama_model_quantize_internal(fname_inp, fname_out, params);
|
3397
3411
|
return 0;
|
3398
3412
|
} catch (const std::exception & err) {
|
3399
|
-
|
3413
|
+
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
|
3400
3414
|
return 1;
|
3401
3415
|
}
|
3402
3416
|
}
|
3403
3417
|
|
3404
3418
|
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
|
3405
|
-
|
3419
|
+
LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
|
3406
3420
|
|
3407
3421
|
const int64_t t_start_lora_us = ggml_time_us();
|
3408
3422
|
|
3409
3423
|
auto fin = std::ifstream(path_lora, std::ios::binary);
|
3410
3424
|
if (!fin) {
|
3411
|
-
|
3425
|
+
LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
|
3412
3426
|
return 1;
|
3413
3427
|
}
|
3414
3428
|
|
@@ -3417,14 +3431,14 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3417
3431
|
uint32_t magic;
|
3418
3432
|
fin.read((char *) &magic, sizeof(magic));
|
3419
3433
|
if (magic != LLAMA_FILE_MAGIC_GGLA) {
|
3420
|
-
|
3434
|
+
LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
|
3421
3435
|
return 1;
|
3422
3436
|
}
|
3423
3437
|
uint32_t format_version;
|
3424
3438
|
fin.read((char *) &format_version, sizeof(format_version));
|
3425
3439
|
|
3426
3440
|
if (format_version != 1) {
|
3427
|
-
|
3441
|
+
LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
|
3428
3442
|
return 1;
|
3429
3443
|
}
|
3430
3444
|
}
|
@@ -3435,7 +3449,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3435
3449
|
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
|
3436
3450
|
float scaling = (float)lora_alpha / (float)lora_r;
|
3437
3451
|
|
3438
|
-
|
3452
|
+
LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
|
3439
3453
|
|
3440
3454
|
|
3441
3455
|
// create a temporary ggml context to store the lora tensors
|
@@ -3461,7 +3475,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3461
3475
|
ggml_context * base_ctx = NULL;
|
3462
3476
|
llama_buffer base_buf;
|
3463
3477
|
if (path_base_model) {
|
3464
|
-
|
3478
|
+
LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
|
3465
3479
|
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
|
3466
3480
|
|
3467
3481
|
size_t ctx_size;
|
@@ -3518,17 +3532,17 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3518
3532
|
const std::string lora_suffix = ".lora";
|
3519
3533
|
size_t pos = name.rfind(lora_suffix);
|
3520
3534
|
if (pos == std::string::npos) {
|
3521
|
-
|
3535
|
+
LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
|
3522
3536
|
return 1;
|
3523
3537
|
}
|
3524
3538
|
|
3525
3539
|
std::string lora_type = name.substr(pos + lora_suffix.length());
|
3526
3540
|
std::string base_name = name;
|
3527
3541
|
base_name.erase(pos);
|
3528
|
-
//
|
3542
|
+
// LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
|
3529
3543
|
|
3530
3544
|
if (model_tensors.find(base_name) == model_tensors.end()) {
|
3531
|
-
|
3545
|
+
LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
|
3532
3546
|
return 1;
|
3533
3547
|
}
|
3534
3548
|
|
@@ -3539,7 +3553,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3539
3553
|
case 1: wtype = GGML_TYPE_F16; break;
|
3540
3554
|
default:
|
3541
3555
|
{
|
3542
|
-
|
3556
|
+
LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
|
3543
3557
|
__func__, ftype);
|
3544
3558
|
return false;
|
3545
3559
|
}
|
@@ -3549,7 +3563,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3549
3563
|
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
|
3550
3564
|
}
|
3551
3565
|
else {
|
3552
|
-
|
3566
|
+
LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
|
3553
3567
|
return 1;
|
3554
3568
|
}
|
3555
3569
|
ggml_set_name(lora_tensor, "lora_tensor");
|
@@ -3587,7 +3601,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3587
3601
|
if (model_loader) {
|
3588
3602
|
// load from base model
|
3589
3603
|
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
|
3590
|
-
|
3604
|
+
LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
|
3591
3605
|
return 1;
|
3592
3606
|
}
|
3593
3607
|
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
|
@@ -3603,8 +3617,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3603
3617
|
|
3604
3618
|
if (ggml_is_quantized(base_t->type)) {
|
3605
3619
|
if (!warned) {
|
3606
|
-
|
3607
|
-
|
3620
|
+
LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
|
3621
|
+
"use a f16 or f32 base model with --lora-base\n", __func__);
|
3608
3622
|
warned = true;
|
3609
3623
|
}
|
3610
3624
|
}
|
@@ -3618,8 +3632,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3618
3632
|
ggml_set_name(loraB, "loraB");
|
3619
3633
|
|
3620
3634
|
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
|
3621
|
-
|
3622
|
-
|
3635
|
+
LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
|
3636
|
+
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
|
3623
3637
|
return 1;
|
3624
3638
|
}
|
3625
3639
|
|
@@ -3664,7 +3678,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3664
3678
|
|
3665
3679
|
n_tensors++;
|
3666
3680
|
if (n_tensors % 4 == 0) {
|
3667
|
-
|
3681
|
+
LLAMA_LOG_INFO(".");
|
3668
3682
|
}
|
3669
3683
|
}
|
3670
3684
|
}
|
@@ -3676,7 +3690,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
|
|
3676
3690
|
}
|
3677
3691
|
|
3678
3692
|
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
|
3679
|
-
|
3693
|
+
LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
|
3680
3694
|
|
3681
3695
|
return 0;
|
3682
3696
|
}
|
@@ -3685,7 +3699,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
|
|
3685
3699
|
try {
|
3686
3700
|
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
|
3687
3701
|
} catch (const std::exception & err) {
|
3688
|
-
|
3702
|
+
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
3689
3703
|
return 1;
|
3690
3704
|
}
|
3691
3705
|
}
|
@@ -3694,7 +3708,7 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha
|
|
3694
3708
|
try {
|
3695
3709
|
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
|
3696
3710
|
} catch (const std::exception & err) {
|
3697
|
-
|
3711
|
+
LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
|
3698
3712
|
return 1;
|
3699
3713
|
}
|
3700
3714
|
}
|
@@ -3743,10 +3757,20 @@ size_t llama_get_state_size(const struct llama_context * ctx) {
|
|
3743
3757
|
return s_total;
|
3744
3758
|
}
|
3745
3759
|
|
3746
|
-
|
3747
|
-
|
3748
|
-
|
3749
|
-
|
3760
|
+
/** copy state data into either a buffer or file depending on the passed in context
|
3761
|
+
*
|
3762
|
+
* file context:
|
3763
|
+
* llama_file file("/path", "wb");
|
3764
|
+
* llama_data_file_context data_ctx(&file);
|
3765
|
+
* llama_copy_state_data(ctx, &data_ctx);
|
3766
|
+
*
|
3767
|
+
* buffer context:
|
3768
|
+
* std::vector<uint8_t> buf(max_size, 0);
|
3769
|
+
* llama_data_buffer_context data_ctx(&buf.data());
|
3770
|
+
* llama_copy_state_data(ctx, &data_ctx);
|
3771
|
+
*
|
3772
|
+
*/
|
3773
|
+
void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
|
3750
3774
|
// copy rng
|
3751
3775
|
{
|
3752
3776
|
std::stringstream rng_ss;
|
@@ -3758,8 +3782,8 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
|
3758
3782
|
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
|
3759
3783
|
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
|
3760
3784
|
|
3761
|
-
|
3762
|
-
|
3785
|
+
data_ctx->write(&rng_size, sizeof(rng_size));
|
3786
|
+
data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
|
3763
3787
|
}
|
3764
3788
|
|
3765
3789
|
// copy logits
|
@@ -3767,25 +3791,29 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
|
3767
3791
|
const size_t logits_cap = ctx->logits.capacity();
|
3768
3792
|
const size_t logits_size = ctx->logits.size();
|
3769
3793
|
|
3770
|
-
|
3771
|
-
|
3794
|
+
data_ctx->write(&logits_cap, sizeof(logits_cap));
|
3795
|
+
data_ctx->write(&logits_size, sizeof(logits_size));
|
3772
3796
|
|
3773
3797
|
if (logits_size) {
|
3774
|
-
|
3798
|
+
data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
|
3775
3799
|
}
|
3776
3800
|
|
3777
|
-
|
3801
|
+
// If there is a gap between the size and the capacity, write padding
|
3802
|
+
size_t padding_size = (logits_cap - logits_size) * sizeof(float);
|
3803
|
+
if (padding_size > 0) {
|
3804
|
+
std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
|
3805
|
+
data_ctx->write(padding.data(), padding_size);
|
3806
|
+
}
|
3778
3807
|
}
|
3779
3808
|
|
3780
3809
|
// copy embeddings
|
3781
3810
|
{
|
3782
3811
|
const size_t embedding_size = ctx->embedding.size();
|
3783
3812
|
|
3784
|
-
|
3813
|
+
data_ctx->write(&embedding_size, sizeof(embedding_size));
|
3785
3814
|
|
3786
3815
|
if (embedding_size) {
|
3787
|
-
|
3788
|
-
out += embedding_size * sizeof(float);
|
3816
|
+
data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
|
3789
3817
|
}
|
3790
3818
|
}
|
3791
3819
|
|
@@ -3800,8 +3828,8 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
|
3800
3828
|
const size_t kv_size = kv_self.buf.size;
|
3801
3829
|
const int kv_ntok = llama_get_kv_cache_token_count(ctx);
|
3802
3830
|
|
3803
|
-
|
3804
|
-
|
3831
|
+
data_ctx->write(&kv_size, sizeof(kv_size));
|
3832
|
+
data_ctx->write(&kv_ntok, sizeof(kv_ntok));
|
3805
3833
|
|
3806
3834
|
if (kv_size) {
|
3807
3835
|
const size_t elt_size = ggml_element_size(kv_self.k);
|
@@ -3810,12 +3838,12 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
|
3810
3838
|
ggml_cgraph gf{};
|
3811
3839
|
|
3812
3840
|
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
|
3813
|
-
kout3d
|
3814
|
-
|
3841
|
+
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
|
3842
|
+
kout3d->data = kout3d_data.data();
|
3815
3843
|
|
3816
3844
|
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
|
3817
|
-
vout3d
|
3818
|
-
|
3845
|
+
std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
|
3846
|
+
vout3d->data = vout3d_data.data();
|
3819
3847
|
|
3820
3848
|
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
|
3821
3849
|
n_embd, kv_ntok, n_layer,
|
@@ -3830,15 +3858,20 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
|
3830
3858
|
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
|
3831
3859
|
|
3832
3860
|
ggml_free(cpy_ctx);
|
3861
|
+
|
3862
|
+
// our data is now in the kout3d_data and vout3d_data buffers
|
3863
|
+
// write them to file
|
3864
|
+
data_ctx->write(kout3d_data.data(), kout3d_data.size());
|
3865
|
+
data_ctx->write(vout3d_data.data(), vout3d_data.size());
|
3833
3866
|
}
|
3834
3867
|
}
|
3868
|
+
}
|
3835
3869
|
|
3836
|
-
|
3837
|
-
|
3838
|
-
|
3839
|
-
LLAMA_ASSERT(written <= max_size);
|
3870
|
+
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
3871
|
+
llama_data_buffer_context data_ctx(dst);
|
3872
|
+
llama_copy_state_data_internal(ctx, &data_ctx);
|
3840
3873
|
|
3841
|
-
return
|
3874
|
+
return data_ctx.get_size_written();
|
3842
3875
|
}
|
3843
3876
|
|
3844
3877
|
// Sets the state reading from the specified source address
|
@@ -3957,7 +3990,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
|
3957
3990
|
const uint32_t version = file.read_u32();
|
3958
3991
|
|
3959
3992
|
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
|
3960
|
-
|
3993
|
+
LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
|
3961
3994
|
return false;
|
3962
3995
|
}
|
3963
3996
|
|
@@ -3965,7 +3998,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
|
3965
3998
|
file.read_raw(&session_hparams, sizeof(llama_hparams));
|
3966
3999
|
|
3967
4000
|
if (session_hparams != ctx->model.hparams) {
|
3968
|
-
|
4001
|
+
LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
|
3969
4002
|
return false;
|
3970
4003
|
}
|
3971
4004
|
}
|
@@ -3975,7 +4008,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
|
3975
4008
|
const uint32_t n_token_count = file.read_u32();
|
3976
4009
|
|
3977
4010
|
if (n_token_count > n_token_capacity) {
|
3978
|
-
|
4011
|
+
LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
|
3979
4012
|
return false;
|
3980
4013
|
}
|
3981
4014
|
|
@@ -3989,7 +4022,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c
|
|
3989
4022
|
const size_t n_state_size_max = llama_get_state_size(ctx);
|
3990
4023
|
|
3991
4024
|
if (n_state_size_cur > n_state_size_max) {
|
3992
|
-
|
4025
|
+
LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
|
3993
4026
|
return false;
|
3994
4027
|
}
|
3995
4028
|
|
@@ -4006,7 +4039,7 @@ bool llama_load_session_file(struct llama_context * ctx, const char * path_sessi
|
|
4006
4039
|
try {
|
4007
4040
|
return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
|
4008
4041
|
} catch (const std::exception & err) {
|
4009
|
-
|
4042
|
+
LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
|
4010
4043
|
return false;
|
4011
4044
|
}
|
4012
4045
|
}
|
@@ -4023,15 +4056,9 @@ bool llama_save_session_file(struct llama_context * ctx, const char * path_sessi
|
|
4023
4056
|
file.write_u32((uint32_t) n_token_count);
|
4024
4057
|
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
|
4025
4058
|
|
4026
|
-
// save the context state
|
4027
|
-
|
4028
|
-
|
4029
|
-
|
4030
|
-
std::vector<uint8_t> state_data(n_state_size_max);
|
4031
|
-
const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
|
4032
|
-
|
4033
|
-
file.write_raw(state_data.data(), n_state_size_cur);
|
4034
|
-
}
|
4059
|
+
// save the context state using stream saving
|
4060
|
+
llama_data_file_context data_ctx(&file);
|
4061
|
+
llama_copy_state_data_internal(ctx, &data_ctx);
|
4035
4062
|
|
4036
4063
|
return true;
|
4037
4064
|
}
|
@@ -4043,7 +4070,7 @@ int llama_eval(
|
|
4043
4070
|
int n_past,
|
4044
4071
|
int n_threads) {
|
4045
4072
|
if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
|
4046
|
-
|
4073
|
+
LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
|
4047
4074
|
return 1;
|
4048
4075
|
}
|
4049
4076
|
|
@@ -4065,7 +4092,7 @@ int llama_eval_embd(
|
|
4065
4092
|
int n_past,
|
4066
4093
|
int n_threads) {
|
4067
4094
|
if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
|
4068
|
-
|
4095
|
+
LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
|
4069
4096
|
return 1;
|
4070
4097
|
}
|
4071
4098
|
|
@@ -4086,7 +4113,7 @@ int llama_eval_export(struct llama_context * ctx, const char * fname) {
|
|
4086
4113
|
const std::vector<llama_token> tmp(n_batch, llama_token_bos());
|
4087
4114
|
|
4088
4115
|
if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
|
4089
|
-
|
4116
|
+
LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
|
4090
4117
|
return 1;
|
4091
4118
|
}
|
4092
4119
|
|
@@ -4102,7 +4129,7 @@ int llama_tokenize_with_model(
|
|
4102
4129
|
auto res = llama_tokenize(model->vocab, text, add_bos);
|
4103
4130
|
|
4104
4131
|
if (n_max_tokens < (int) res.size()) {
|
4105
|
-
|
4132
|
+
LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
4106
4133
|
return -((int) res.size());
|
4107
4134
|
}
|
4108
4135
|
|
@@ -4219,15 +4246,15 @@ struct llama_timings llama_get_timings(struct llama_context * ctx) {
|
|
4219
4246
|
void llama_print_timings(struct llama_context * ctx) {
|
4220
4247
|
const llama_timings timings = llama_get_timings(ctx);
|
4221
4248
|
|
4222
|
-
|
4223
|
-
|
4224
|
-
|
4249
|
+
LLAMA_LOG_INFO("\n");
|
4250
|
+
LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
|
4251
|
+
LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
4225
4252
|
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
|
4226
|
-
|
4253
|
+
LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
4227
4254
|
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
|
4228
|
-
|
4255
|
+
LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
4229
4256
|
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
|
4230
|
-
|
4257
|
+
LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
|
4231
4258
|
}
|
4232
4259
|
|
4233
4260
|
void llama_reset_timings(struct llama_context * ctx) {
|
@@ -4263,3 +4290,44 @@ const char * llama_print_system_info(void) {
|
|
4263
4290
|
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
4264
4291
|
return ctx->model.tensors_by_name;
|
4265
4292
|
}
|
4293
|
+
|
4294
|
+
|
4295
|
+
void llama_log_set(llama_log_callback log_callback, void * user_data) {
|
4296
|
+
g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
|
4297
|
+
g_state.log_callback_user_data = user_data;
|
4298
|
+
}
|
4299
|
+
|
4300
|
+
#if defined(_MSC_VER) && !defined(vsnprintf)
|
4301
|
+
#define vsnprintf _vsnprintf
|
4302
|
+
#endif
|
4303
|
+
|
4304
|
+
static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) {
|
4305
|
+
va_list args_copy;
|
4306
|
+
va_copy(args_copy, args);
|
4307
|
+
char buffer[128];
|
4308
|
+
int len = vsnprintf(buffer, 128, format, args);
|
4309
|
+
if (len < 128) {
|
4310
|
+
g_state.log_callback(level, buffer, g_state.log_callback_user_data);
|
4311
|
+
} else {
|
4312
|
+
char* buffer2 = new char[len+1];
|
4313
|
+
vsnprintf(buffer2, len+1, format, args_copy);
|
4314
|
+
buffer2[len] = 0;
|
4315
|
+
g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
|
4316
|
+
delete[] buffer2;
|
4317
|
+
}
|
4318
|
+
va_end(args_copy);
|
4319
|
+
}
|
4320
|
+
|
4321
|
+
static void llama_log_internal(llama_log_level level, const char * format, ...) {
|
4322
|
+
va_list args;
|
4323
|
+
va_start(args, format);
|
4324
|
+
llama_log_internal_v(level, format, args);
|
4325
|
+
va_end(args);
|
4326
|
+
}
|
4327
|
+
|
4328
|
+
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) {
|
4329
|
+
(void) level;
|
4330
|
+
(void) user_data;
|
4331
|
+
fputs(text, stderr);
|
4332
|
+
fflush(stderr);
|
4333
|
+
}
|