llama_cpp 0.3.2 → 0.3.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,216 @@
1
+ #include "ggml-mpi.h"
2
+
3
+ #include "ggml.h"
4
+
5
+ #include <mpi.h>
6
+
7
+ #include <stdio.h>
8
+ #include <stdlib.h>
9
+
10
+ #define MIN(a, b) ((a) < (b) ? (a) : (b))
11
+
12
+ #define UNUSED GGML_UNUSED
13
+
14
+ struct ggml_mpi_context {
15
+ int rank;
16
+ int size;
17
+ };
18
+
19
+ void ggml_mpi_backend_init(void) {
20
+ MPI_Init(NULL, NULL);
21
+ }
22
+
23
+ void ggml_mpi_backend_free(void) {
24
+ MPI_Finalize();
25
+ }
26
+
27
+ struct ggml_mpi_context * ggml_mpi_init(void) {
28
+ struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
29
+
30
+ MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
31
+ MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
32
+
33
+ return ctx;
34
+ }
35
+
36
+ void ggml_mpi_free(struct ggml_mpi_context * ctx) {
37
+ free(ctx);
38
+ }
39
+
40
+ int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
41
+ return ctx->rank;
42
+ }
43
+
44
+ void ggml_mpi_eval_init(
45
+ struct ggml_mpi_context * ctx_mpi,
46
+ int * n_tokens,
47
+ int * n_past,
48
+ int * n_threads) {
49
+ UNUSED(ctx_mpi);
50
+
51
+ // synchronize the worker node parameters with the root node
52
+ MPI_Barrier(MPI_COMM_WORLD);
53
+
54
+ MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD);
55
+ MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD);
56
+ MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
57
+ }
58
+
59
+ static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
60
+ struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
61
+ if (t == NULL) {
62
+ fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
63
+ return -1;
64
+ }
65
+
66
+ for (int i = 0; i < gf->n_nodes; i++) {
67
+ if (gf->nodes[i] == t) {
68
+ return i;
69
+ }
70
+ }
71
+
72
+ fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
73
+ return -1;
74
+ }
75
+
76
+ static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
77
+ MPI_Datatype mpi_type;
78
+
79
+ switch (t->type) {
80
+ case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
81
+ case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
82
+ default: GGML_ASSERT(false && "not implemented");
83
+ }
84
+
85
+ const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
86
+ GGML_ASSERT(retval == MPI_SUCCESS);
87
+ }
88
+
89
+ static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
90
+ MPI_Datatype mpi_type;
91
+
92
+ switch (t->type) {
93
+ case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
94
+ case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
95
+ default: GGML_ASSERT(false && "not implemented");
96
+ }
97
+
98
+ MPI_Status status; UNUSED(status);
99
+
100
+ const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
101
+ GGML_ASSERT(retval == MPI_SUCCESS);
102
+ }
103
+
104
+ // TODO: there are many improvements that can be done to this implementation
105
+ void ggml_mpi_graph_compute_pre(
106
+ struct ggml_mpi_context * ctx_mpi,
107
+ struct ggml_cgraph * gf,
108
+ int n_layers) {
109
+ const int mpi_rank = ctx_mpi->rank;
110
+ const int mpi_size = ctx_mpi->size;
111
+
112
+ struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
113
+ if (inp_tokens == NULL) {
114
+ fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
115
+ return;
116
+ }
117
+
118
+ struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
119
+ if (inp0 == NULL) {
120
+ fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
121
+ return;
122
+ }
123
+
124
+ GGML_ASSERT(inp0 == gf->nodes[0]);
125
+
126
+ // distribute the compute graph into slices across the MPI nodes
127
+ //
128
+ // the main node (0) processes the last layers + the remainder of the compute graph
129
+ // and is responsible to pass the input tokens to the first node (1)
130
+ //
131
+ // node 1: [( 0) * n_per_node, ( 1) * n_per_node)
132
+ // node 2: [( 1) * n_per_node, ( 2) * n_per_node)
133
+ // ...
134
+ // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
135
+ // node 0: [(n-1) * n_per_node, n_nodes)
136
+ //
137
+ if (mpi_rank > 0) {
138
+ if (mpi_rank == 1) {
139
+ // the first node (1) receives the input tokens from the main node (0)
140
+ ggml_mpi_tensor_recv(inp_tokens, 0);
141
+ } else {
142
+ // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
143
+ ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
144
+ }
145
+ } else if (mpi_size > 1) {
146
+ // node 0 sends the input tokens to node 1
147
+ ggml_mpi_tensor_send(inp_tokens, 1);
148
+
149
+ // recv the output data from the last node
150
+ ggml_mpi_tensor_recv(inp0, mpi_size - 1);
151
+ }
152
+
153
+ {
154
+ const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
155
+
156
+ const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
157
+
158
+ const int il0 = (mpi_idx + 0) * n_per_node;
159
+ const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
160
+
161
+ char name_l0[GGML_MAX_NAME];
162
+ char name_l1[GGML_MAX_NAME];
163
+
164
+ snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
165
+ snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
166
+
167
+ const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0);
168
+ const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
169
+
170
+ if (idx_l0 < 0 || idx_l1 < 0) {
171
+ fprintf(stderr, "%s: layer input nodes not found\n", __func__);
172
+ return;
173
+ }
174
+
175
+ // attach the input data to all nodes that need it
176
+ // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
177
+ for (int i = idx_l0; i < idx_l1; i++) {
178
+ if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
179
+ gf->nodes[i]->src[0] = inp0;
180
+ }
181
+ if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
182
+ gf->nodes[i]->src[1] = inp0;
183
+ }
184
+ }
185
+
186
+ // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
187
+ for (int i = 1; i < idx_l1 - idx_l0; i++) {
188
+ gf->nodes[i] = gf->nodes[idx_l0 + i];
189
+ gf->grads[i] = gf->grads[idx_l0 + i];
190
+ }
191
+
192
+ // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
193
+ if (mpi_idx != 0) {
194
+ gf->nodes[0]->op = GGML_OP_NONE;
195
+ }
196
+
197
+ gf->n_nodes = idx_l1 - idx_l0;
198
+
199
+ //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
200
+ }
201
+ }
202
+
203
+ void ggml_mpi_graph_compute_post(
204
+ struct ggml_mpi_context * ctx_mpi,
205
+ struct ggml_cgraph * gf,
206
+ int n_layers) {
207
+ UNUSED(n_layers);
208
+
209
+ const int mpi_rank = ctx_mpi->rank;
210
+ const int mpi_size = ctx_mpi->size;
211
+
212
+ // send the output data to the next node
213
+ if (mpi_rank > 0) {
214
+ ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
215
+ }
216
+ }
@@ -0,0 +1,39 @@
1
+ #pragma once
2
+
3
+ struct ggml_context;
4
+ struct ggml_tensor;
5
+ struct ggml_cgraph;
6
+
7
+ #ifdef __cplusplus
8
+ extern "C" {
9
+ #endif
10
+
11
+ struct ggml_mpi_context;
12
+
13
+ void ggml_mpi_backend_init(void);
14
+ void ggml_mpi_backend_free(void);
15
+
16
+ struct ggml_mpi_context * ggml_mpi_init(void);
17
+ void ggml_mpi_free(struct ggml_mpi_context * ctx);
18
+
19
+ int ggml_mpi_rank(struct ggml_mpi_context * ctx);
20
+
21
+ void ggml_mpi_eval_init(
22
+ struct ggml_mpi_context * ctx_mpi,
23
+ int * n_tokens,
24
+ int * n_past,
25
+ int * n_threads);
26
+
27
+ void ggml_mpi_graph_compute_pre(
28
+ struct ggml_mpi_context * ctx_mpi,
29
+ struct ggml_cgraph * gf,
30
+ int n_layers);
31
+
32
+ void ggml_mpi_graph_compute_post(
33
+ struct ggml_mpi_context * ctx_mpi,
34
+ struct ggml_cgraph * gf,
35
+ int n_layers);
36
+
37
+ #ifdef __cplusplus
38
+ }
39
+ #endif