llama_cpp 0.2.0 → 0.2.2

Sign up to get free protection for your applications and to get access to all the features.
@@ -52,18 +52,25 @@ struct ggml_metal_context {
52
52
  GGML_METAL_DECL_KERNEL(get_rows_q4_0);
53
53
  GGML_METAL_DECL_KERNEL(get_rows_q4_1);
54
54
  GGML_METAL_DECL_KERNEL(get_rows_q2_k);
55
+ GGML_METAL_DECL_KERNEL(get_rows_q3_k);
55
56
  GGML_METAL_DECL_KERNEL(get_rows_q4_k);
57
+ GGML_METAL_DECL_KERNEL(get_rows_q5_k);
56
58
  GGML_METAL_DECL_KERNEL(get_rows_q6_k);
57
59
  GGML_METAL_DECL_KERNEL(rms_norm);
60
+ GGML_METAL_DECL_KERNEL(norm);
58
61
  GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
59
62
  GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
60
63
  GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
61
64
  GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
65
+ GGML_METAL_DECL_KERNEL(mul_mat_q3_k_f32);
62
66
  GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
67
+ GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32);
63
68
  GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
64
69
  GGML_METAL_DECL_KERNEL(rope);
70
+ GGML_METAL_DECL_KERNEL(alibi_f32);
65
71
  GGML_METAL_DECL_KERNEL(cpy_f32_f16);
66
72
  GGML_METAL_DECL_KERNEL(cpy_f32_f32);
73
+ GGML_METAL_DECL_KERNEL(cpy_f16_f16);
67
74
 
68
75
  #undef GGML_METAL_DECL_KERNEL
69
76
  };
@@ -86,6 +93,7 @@ struct ggml_metal_context * ggml_metal_init(void) {
86
93
 
87
94
  ctx->device = MTLCreateSystemDefaultDevice();
88
95
  ctx->queue = [ctx->device newCommandQueue];
96
+ ctx->n_buffers = 0;
89
97
 
90
98
  // determine if we can use MPS
91
99
  if (MPSSupportsMTLDevice(ctx->device)) {
@@ -152,22 +160,37 @@ struct ggml_metal_context * ggml_metal_init(void) {
152
160
  GGML_METAL_ADD_KERNEL(get_rows_q4_0);
153
161
  GGML_METAL_ADD_KERNEL(get_rows_q4_1);
154
162
  GGML_METAL_ADD_KERNEL(get_rows_q2_k);
163
+ GGML_METAL_ADD_KERNEL(get_rows_q3_k);
155
164
  GGML_METAL_ADD_KERNEL(get_rows_q4_k);
165
+ GGML_METAL_ADD_KERNEL(get_rows_q5_k);
156
166
  GGML_METAL_ADD_KERNEL(get_rows_q6_k);
157
167
  GGML_METAL_ADD_KERNEL(rms_norm);
168
+ GGML_METAL_ADD_KERNEL(norm);
158
169
  GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
159
170
  GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
160
171
  GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
161
172
  GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
173
+ GGML_METAL_ADD_KERNEL(mul_mat_q3_k_f32);
162
174
  GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
175
+ GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32);
163
176
  GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
164
177
  GGML_METAL_ADD_KERNEL(rope);
178
+ GGML_METAL_ADD_KERNEL(alibi_f32);
165
179
  GGML_METAL_ADD_KERNEL(cpy_f32_f16);
166
180
  GGML_METAL_ADD_KERNEL(cpy_f32_f32);
181
+ GGML_METAL_ADD_KERNEL(cpy_f16_f16);
167
182
 
168
183
  #undef GGML_METAL_ADD_KERNEL
169
184
  }
170
185
 
186
+ fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
187
+ fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
188
+ if (ctx->device.maxTransferRate != 0) {
189
+ fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
190
+ } else {
191
+ fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__);
192
+ }
193
+
171
194
  return ctx;
172
195
  }
173
196
 
@@ -184,10 +207,13 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
184
207
  static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
185
208
  //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
186
209
 
210
+ const int64_t tsize = ggml_nbytes(t);
211
+
212
+ // find the view that contains the tensor fully
187
213
  for (int i = 0; i < ctx->n_buffers; ++i) {
188
214
  const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
189
215
 
190
- if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
216
+ if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
191
217
  *offs = (size_t) ioffs;
192
218
 
193
219
  //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
@@ -205,7 +231,8 @@ bool ggml_metal_add_buffer(
205
231
  struct ggml_metal_context * ctx,
206
232
  const char * name,
207
233
  void * data,
208
- size_t size) {
234
+ size_t size,
235
+ size_t max_size) {
209
236
  if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
210
237
  fprintf(stderr, "%s: too many buffers\n", __func__);
211
238
  return false;
@@ -222,30 +249,68 @@ bool ggml_metal_add_buffer(
222
249
  }
223
250
  }
224
251
 
225
- size_t page_size = getpagesize();
226
- size_t aligned_size = size;
227
- if ((aligned_size % page_size) != 0) {
228
- aligned_size += (page_size - (aligned_size % page_size));
252
+ const size_t size_page = getpagesize();
253
+
254
+ size_t size_aligned = size;
255
+ if ((size_aligned % size_page) != 0) {
256
+ size_aligned += (size_page - (size_aligned % size_page));
229
257
  }
230
258
 
231
- ctx->buffers[ctx->n_buffers].name = name;
232
- ctx->buffers[ctx->n_buffers].data = data;
233
- ctx->buffers[ctx->n_buffers].size = size;
259
+ // the buffer fits into the max buffer size allowed by the device
260
+ if (size_aligned <= ctx->device.maxBufferLength) {
261
+ ctx->buffers[ctx->n_buffers].name = name;
262
+ ctx->buffers[ctx->n_buffers].data = data;
263
+ ctx->buffers[ctx->n_buffers].size = size;
234
264
 
235
- if (ctx->device.maxBufferLength < aligned_size) {
236
- fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
237
- return false;
238
- }
239
- ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
265
+ ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
240
266
 
241
- if (ctx->buffers[ctx->n_buffers].metal == nil) {
242
- fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
243
- return false;
267
+ if (ctx->buffers[ctx->n_buffers].metal == nil) {
268
+ fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
269
+ return false;
270
+ }
271
+
272
+ fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
273
+
274
+ ++ctx->n_buffers;
244
275
  } else {
245
- fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
276
+ // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
277
+ // one of the views
278
+ const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
279
+ const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
280
+ const size_t size_view = ctx->device.maxBufferLength;
281
+
282
+ for (size_t i = 0; i < size; i += size_step) {
283
+ const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
284
+
285
+ ctx->buffers[ctx->n_buffers].name = name;
286
+ ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
287
+ ctx->buffers[ctx->n_buffers].size = size_step_aligned;
288
+
289
+ ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
290
+
291
+ if (ctx->buffers[ctx->n_buffers].metal == nil) {
292
+ fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
293
+ return false;
294
+ }
295
+
296
+ fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
297
+ if (i + size_step < size) {
298
+ fprintf(stderr, "\n");
299
+ }
300
+
301
+ ++ctx->n_buffers;
302
+ }
246
303
  }
247
304
 
248
- ++ctx->n_buffers;
305
+ fprintf(stderr, ", (%8.2f / %8.2f)",
306
+ ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
307
+ ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
308
+
309
+ if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
310
+ fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n");
311
+ } else {
312
+ fprintf(stderr, "\n");
313
+ }
249
314
  }
250
315
 
251
316
  return true;
@@ -275,509 +340,633 @@ void ggml_metal_get_tensor(
275
340
 
276
341
  void ggml_metal_graph_compute(
277
342
  struct ggml_metal_context * ctx,
278
- struct ggml_cgraph * gf) {
343
+ struct ggml_cgraph * gf) {
279
344
  metal_printf("%s: evaluating graph\n", __func__);
280
345
 
281
- size_t offs_src0 = 0;
282
- size_t offs_src1 = 0;
283
- size_t offs_dst = 0;
284
-
285
- id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
286
- id<MTLComputeCommandEncoder> encoder = nil;
287
-
288
- for (int i = 0; i < gf->n_nodes; ++i) {
289
- //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
290
-
291
- struct ggml_tensor * src0 = gf->nodes[i]->src0;
292
- struct ggml_tensor * src1 = gf->nodes[i]->src1;
293
- struct ggml_tensor * dst = gf->nodes[i];
294
-
295
- const int64_t ne00 = src0 ? src0->ne[0] : 0;
296
- const int64_t ne01 = src0 ? src0->ne[1] : 0;
297
- const int64_t ne02 = src0 ? src0->ne[2] : 0;
298
- const int64_t ne03 = src0 ? src0->ne[3] : 0;
299
-
300
- const uint64_t nb00 = src0 ? src0->nb[0] : 0;
301
- const uint64_t nb01 = src0 ? src0->nb[1] : 0;
302
- const uint64_t nb02 = src0 ? src0->nb[2] : 0;
303
- const uint64_t nb03 = src0 ? src0->nb[3] : 0;
304
-
305
- const int64_t ne10 = src1 ? src1->ne[0] : 0;
306
- const int64_t ne11 = src1 ? src1->ne[1] : 0;
307
- const int64_t ne12 = src1 ? src1->ne[2] : 0;
308
- const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
309
-
310
- const uint64_t nb10 = src1 ? src1->nb[0] : 0;
311
- const uint64_t nb11 = src1 ? src1->nb[1] : 0;
312
- const uint64_t nb12 = src1 ? src1->nb[2] : 0;
313
- const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
314
-
315
- const int64_t ne0 = dst ? dst->ne[0] : 0;
316
- const int64_t ne1 = dst ? dst->ne[1] : 0;
317
- const int64_t ne2 = dst ? dst->ne[2] : 0;
318
- const int64_t ne3 = dst ? dst->ne[3] : 0;
319
-
320
- const uint64_t nb0 = dst ? dst->nb[0] : 0;
321
- const uint64_t nb1 = dst ? dst->nb[1] : 0;
322
- const uint64_t nb2 = dst ? dst->nb[2] : 0;
323
- const uint64_t nb3 = dst ? dst->nb[3] : 0;
324
-
325
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
326
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
327
- const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
328
-
329
- id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
330
- id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
331
- id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
332
-
333
- //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
334
- //if (src0) {
335
- // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
336
- // ggml_is_contiguous(src0), src0->name);
337
- //}
338
- //if (src1) {
339
- // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
340
- // ggml_is_contiguous(src1), src1->name);
341
- //}
342
- //if (dst) {
343
- // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
344
- // dst->name);
345
- //}
346
-
347
- switch (dst->op) {
348
- case GGML_OP_RESHAPE:
349
- case GGML_OP_VIEW:
350
- case GGML_OP_TRANSPOSE:
351
- case GGML_OP_PERMUTE:
352
- {
353
- // noop
354
- } break;
355
- case GGML_OP_ADD:
356
- {
357
- if (encoder == nil) {
358
- encoder = [command_buffer computeCommandEncoder];
359
- }
360
-
361
- [encoder setComputePipelineState:ctx->pipeline_add];
362
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
363
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
364
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
365
-
366
- const int64_t n = ggml_nelements(dst);
367
-
368
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
369
- } break;
370
- case GGML_OP_MUL:
371
- {
372
- if (encoder == nil) {
373
- encoder = [command_buffer computeCommandEncoder];
374
- }
375
-
376
- if (ggml_nelements(src1) == ne10) {
377
- // src1 is a row
378
- [encoder setComputePipelineState:ctx->pipeline_mul_row];
379
- } else {
380
- [encoder setComputePipelineState:ctx->pipeline_mul];
381
- }
382
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
383
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
384
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
385
- [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
386
-
387
- const int64_t n = ggml_nelements(dst);
388
-
389
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
390
- } break;
391
- case GGML_OP_SCALE:
392
- {
393
- if (encoder == nil) {
394
- encoder = [command_buffer computeCommandEncoder];
395
- }
396
-
397
- const float scale = *(const float *) src1->data;
398
-
399
- [encoder setComputePipelineState:ctx->pipeline_scale];
400
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
401
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
402
- [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
403
-
404
- const int64_t n = ggml_nelements(dst);
405
-
406
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
407
- } break;
408
- case GGML_OP_SILU:
409
- {
410
- if (encoder == nil) {
411
- encoder = [command_buffer computeCommandEncoder];
412
- }
413
-
414
- [encoder setComputePipelineState:ctx->pipeline_silu];
415
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
416
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
417
-
418
- const int64_t n = ggml_nelements(dst);
419
-
420
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
421
- } break;
422
- case GGML_OP_RELU:
423
- {
424
- if (encoder == nil) {
425
- encoder = [command_buffer computeCommandEncoder];
426
- }
427
-
428
- [encoder setComputePipelineState:ctx->pipeline_relu];
429
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
430
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
431
-
432
- const int64_t n = ggml_nelements(dst);
433
-
434
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
435
- } break;
436
- case GGML_OP_GELU:
437
- {
438
- if (encoder == nil) {
439
- encoder = [command_buffer computeCommandEncoder];
440
- }
441
-
442
- [encoder setComputePipelineState:ctx->pipeline_gelu];
443
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
444
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
445
-
446
- const int64_t n = ggml_nelements(dst);
447
-
448
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
449
- } break;
450
- case GGML_OP_SOFT_MAX:
451
- {
452
- if (encoder == nil) {
453
- encoder = [command_buffer computeCommandEncoder];
454
- }
455
-
456
- const int nth = 32;
457
-
458
- [encoder setComputePipelineState:ctx->pipeline_soft_max];
459
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
460
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
461
- [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
462
- [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
463
- [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
464
- [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
465
-
466
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
467
- } break;
468
- case GGML_OP_DIAG_MASK_INF:
469
- {
470
- if (encoder == nil) {
471
- encoder = [command_buffer computeCommandEncoder];
472
- }
473
-
474
- const int n_past = ((int32_t *)(src1->data))[0];
475
-
476
- [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
477
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
478
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
479
- [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
480
- [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
481
- [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
482
-
483
- [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
484
- } break;
485
- case GGML_OP_MUL_MAT:
486
- {
487
- // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
488
-
489
- GGML_ASSERT(ne00 == ne10);
490
- GGML_ASSERT(ne02 == ne12);
491
-
492
- if (ggml_is_contiguous(src0) &&
493
- ggml_is_contiguous(src1) &&
494
- (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
495
-
496
- if (encoder != nil) {
497
- [encoder endEncoding];
498
- encoder = nil;
499
- }
500
-
501
- MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
502
- MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
503
-
504
- // for F32 x F32 we use MPS
505
- MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
506
- matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
507
-
508
- MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
509
- matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
510
-
511
- MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
512
- matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
513
-
514
- MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
515
- initWithDevice:ctx->device transposeLeft:false transposeRight:true
516
- resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
517
-
518
- // we need to do ne02 multiplications
519
- // TODO: is there a way to do this in parallel - currently very slow ..
520
- // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
521
- for (int64_t i02 = 0; i02 < ne02; ++i02) {
522
- size_t offs_src0_cur = offs_src0 + i02*nb02;
523
- size_t offs_src1_cur = offs_src1 + i02*nb12;
524
- size_t offs_dst_cur = offs_dst + i02*nb2;
525
-
526
- MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
527
- MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
528
- MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
529
-
530
- [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
531
- }
532
- } else {
533
- if (encoder == nil) {
534
- encoder = [command_buffer computeCommandEncoder];
535
- }
536
-
537
- int nth0 = 32;
538
- int nth1 = 1;
539
-
540
- // use custom matrix x vector kernel
541
- switch (src0t) {
542
- case GGML_TYPE_F16:
543
- {
544
- GGML_ASSERT(ne02 == ne12);
545
-
546
- nth0 = 64;
547
- nth1 = 1;
548
- [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
549
- } break;
550
- case GGML_TYPE_Q4_0:
551
- {
552
- GGML_ASSERT(ne02 == 1);
553
- GGML_ASSERT(ne12 == 1);
554
-
555
- nth0 = 8;
556
- nth1 = 8;
557
- [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
558
- } break;
559
- case GGML_TYPE_Q4_1:
560
- {
561
- GGML_ASSERT(ne02 == 1);
562
- GGML_ASSERT(ne12 == 1);
563
-
564
- nth0 = 8;
565
- nth1 = 8;
566
- [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
567
- } break;
568
- case GGML_TYPE_Q2_K:
569
- {
570
- GGML_ASSERT(ne02 == 1);
571
- GGML_ASSERT(ne12 == 1);
572
-
573
- nth0 = 4;
574
- nth1 = 16;
575
- [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
576
- } break;
577
- case GGML_TYPE_Q4_K:
578
- {
579
- GGML_ASSERT(ne02 == 1);
580
- GGML_ASSERT(ne12 == 1);
581
-
582
- nth0 = 4;
583
- nth1 = 16;
584
- [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
585
- } break;
586
- case GGML_TYPE_Q6_K:
587
- {
588
- GGML_ASSERT(ne02 == 1);
589
- GGML_ASSERT(ne12 == 1);
590
-
591
- nth0 = 4;
592
- nth1 = 16;
593
- [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
594
- } break;
595
- default:
596
- {
597
- fprintf(stderr, "Asserting on type %d\n",(int)src0t);
598
- GGML_ASSERT(false && "not implemented");
346
+ // create multiple command buffers and enqueue them
347
+ // then, we encode the graph into the command buffers in parallel
348
+
349
+ const int n_cb = gf->n_threads;
350
+
351
+ NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb];
352
+
353
+ for (int i = 0; i < n_cb; ++i) {
354
+ command_buffers[i] = [ctx->queue commandBuffer];
355
+
356
+ // enqueue the command buffers in order to specify their execution order
357
+ [command_buffers[i] enqueue];
358
+ }
359
+
360
+ // TODO: is this the best way to start threads?
361
+ dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
362
+
363
+ for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
364
+ const int n_nodes_per_cb = (gf->n_nodes + n_cb - 1) / n_cb;
365
+
366
+ dispatch_async(queue, ^{
367
+ size_t offs_src0 = 0;
368
+ size_t offs_src1 = 0;
369
+ size_t offs_dst = 0;
370
+
371
+ id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
372
+
373
+ id<MTLComputeCommandEncoder> encoder = nil;
374
+
375
+ const int node_start = (cb_idx + 0) * n_nodes_per_cb;
376
+ const int node_end = (cb_idx == n_cb - 1) ? gf->n_nodes : (cb_idx + 1) * n_nodes_per_cb;
377
+
378
+ for (int i = node_start; i < node_end; ++i) {
379
+ metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
380
+
381
+ struct ggml_tensor * src0 = gf->nodes[i]->src0;
382
+ struct ggml_tensor * src1 = gf->nodes[i]->src1;
383
+ struct ggml_tensor * dst = gf->nodes[i];
384
+
385
+ const int64_t ne00 = src0 ? src0->ne[0] : 0;
386
+ const int64_t ne01 = src0 ? src0->ne[1] : 0;
387
+ const int64_t ne02 = src0 ? src0->ne[2] : 0;
388
+ const int64_t ne03 = src0 ? src0->ne[3] : 0;
389
+
390
+ const uint64_t nb00 = src0 ? src0->nb[0] : 0;
391
+ const uint64_t nb01 = src0 ? src0->nb[1] : 0;
392
+ const uint64_t nb02 = src0 ? src0->nb[2] : 0;
393
+ const uint64_t nb03 = src0 ? src0->nb[3] : 0;
394
+
395
+ const int64_t ne10 = src1 ? src1->ne[0] : 0;
396
+ const int64_t ne11 = src1 ? src1->ne[1] : 0;
397
+ const int64_t ne12 = src1 ? src1->ne[2] : 0;
398
+ const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
399
+
400
+ const uint64_t nb10 = src1 ? src1->nb[0] : 0;
401
+ const uint64_t nb11 = src1 ? src1->nb[1] : 0;
402
+ const uint64_t nb12 = src1 ? src1->nb[2] : 0;
403
+ const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
404
+
405
+ const int64_t ne0 = dst ? dst->ne[0] : 0;
406
+ const int64_t ne1 = dst ? dst->ne[1] : 0;
407
+ const int64_t ne2 = dst ? dst->ne[2] : 0;
408
+ const int64_t ne3 = dst ? dst->ne[3] : 0;
409
+
410
+ const uint64_t nb0 = dst ? dst->nb[0] : 0;
411
+ const uint64_t nb1 = dst ? dst->nb[1] : 0;
412
+ const uint64_t nb2 = dst ? dst->nb[2] : 0;
413
+ const uint64_t nb3 = dst ? dst->nb[3] : 0;
414
+
415
+ const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
416
+ const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
417
+ const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
418
+
419
+ id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
420
+ id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
421
+ id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
422
+
423
+ //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
424
+ //if (src0) {
425
+ // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
426
+ // ggml_is_contiguous(src0), src0->name);
427
+ //}
428
+ //if (src1) {
429
+ // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
430
+ // ggml_is_contiguous(src1), src1->name);
431
+ //}
432
+ //if (dst) {
433
+ // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
434
+ // dst->name);
435
+ //}
436
+
437
+ switch (dst->op) {
438
+ case GGML_OP_RESHAPE:
439
+ case GGML_OP_VIEW:
440
+ case GGML_OP_TRANSPOSE:
441
+ case GGML_OP_PERMUTE:
442
+ {
443
+ // noop
444
+ } break;
445
+ case GGML_OP_ADD:
446
+ {
447
+ if (encoder == nil) {
448
+ encoder = [command_buffer computeCommandEncoder];
449
+ }
450
+
451
+ [encoder setComputePipelineState:ctx->pipeline_add];
452
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
453
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
454
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
455
+
456
+ const int64_t n = ggml_nelements(dst);
457
+
458
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
459
+ } break;
460
+ case GGML_OP_MUL:
461
+ {
462
+ if (encoder == nil) {
463
+ encoder = [command_buffer computeCommandEncoder];
464
+ }
465
+
466
+ if (ggml_nelements(src1) == ne10) {
467
+ // src1 is a row
468
+ [encoder setComputePipelineState:ctx->pipeline_mul_row];
469
+ } else {
470
+ [encoder setComputePipelineState:ctx->pipeline_mul];
471
+ }
472
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
473
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
474
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
475
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
476
+
477
+ const int64_t n = ggml_nelements(dst);
478
+
479
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
480
+ } break;
481
+ case GGML_OP_SCALE:
482
+ {
483
+ if (encoder == nil) {
484
+ encoder = [command_buffer computeCommandEncoder];
485
+ }
486
+
487
+ const float scale = *(const float *) src1->data;
488
+
489
+ [encoder setComputePipelineState:ctx->pipeline_scale];
490
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
491
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
492
+ [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
493
+
494
+ const int64_t n = ggml_nelements(dst);
495
+
496
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
497
+ } break;
498
+ case GGML_OP_SILU:
499
+ {
500
+ if (encoder == nil) {
501
+ encoder = [command_buffer computeCommandEncoder];
502
+ }
503
+
504
+ [encoder setComputePipelineState:ctx->pipeline_silu];
505
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
506
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
507
+
508
+ const int64_t n = ggml_nelements(dst);
509
+
510
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
511
+ } break;
512
+ case GGML_OP_RELU:
513
+ {
514
+ if (encoder == nil) {
515
+ encoder = [command_buffer computeCommandEncoder];
516
+ }
517
+
518
+ [encoder setComputePipelineState:ctx->pipeline_relu];
519
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
520
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
521
+
522
+ const int64_t n = ggml_nelements(dst);
523
+
524
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
525
+ } break;
526
+ case GGML_OP_GELU:
527
+ {
528
+ if (encoder == nil) {
529
+ encoder = [command_buffer computeCommandEncoder];
530
+ }
531
+
532
+ [encoder setComputePipelineState:ctx->pipeline_gelu];
533
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
534
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
535
+
536
+ const int64_t n = ggml_nelements(dst);
537
+
538
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
539
+ } break;
540
+ case GGML_OP_SOFT_MAX:
541
+ {
542
+ if (encoder == nil) {
543
+ encoder = [command_buffer computeCommandEncoder];
544
+ }
545
+
546
+ const int nth = 32;
547
+
548
+ [encoder setComputePipelineState:ctx->pipeline_soft_max];
549
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
550
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
551
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
552
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
553
+ [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
554
+ [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
555
+
556
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
557
+ } break;
558
+ case GGML_OP_DIAG_MASK_INF:
559
+ {
560
+ if (encoder == nil) {
561
+ encoder = [command_buffer computeCommandEncoder];
562
+ }
563
+
564
+ const int n_past = ((int32_t *)(src1->data))[0];
565
+
566
+ [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
567
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
568
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
569
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
570
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
571
+ [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
572
+
573
+ [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
574
+ } break;
575
+ case GGML_OP_MUL_MAT:
576
+ {
577
+ // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
578
+
579
+ GGML_ASSERT(ne00 == ne10);
580
+ GGML_ASSERT(ne02 == ne12);
581
+
582
+ if (ggml_is_contiguous(src0) &&
583
+ ggml_is_contiguous(src1) &&
584
+ (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
585
+
586
+ if (encoder != nil) {
587
+ [encoder endEncoding];
588
+ encoder = nil;
589
+ }
590
+
591
+ MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
592
+ MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
593
+
594
+ // for F32 x F32 we use MPS
595
+ MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
596
+ matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
597
+
598
+ MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
599
+ matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
600
+
601
+ MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
602
+ matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
603
+
604
+ MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
605
+ initWithDevice:ctx->device transposeLeft:false transposeRight:true
606
+ resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
607
+
608
+ // we need to do ne02 multiplications
609
+ // TODO: is there a way to do this in parallel - currently very slow ..
610
+ // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
611
+ for (int64_t i02 = 0; i02 < ne02; ++i02) {
612
+ size_t offs_src0_cur = offs_src0 + i02*nb02;
613
+ size_t offs_src1_cur = offs_src1 + i02*nb12;
614
+ size_t offs_dst_cur = offs_dst + i02*nb2;
615
+
616
+ MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
617
+ MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
618
+ MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
619
+
620
+ [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
621
+ }
622
+ } else {
623
+ if (encoder == nil) {
624
+ encoder = [command_buffer computeCommandEncoder];
599
625
  }
600
- };
601
-
602
-
603
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
604
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
605
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
606
- [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
607
- [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
608
- [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
609
- [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
610
- [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
611
- [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
612
- [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
613
- [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
614
- [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
615
- [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
616
- [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
617
- [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
618
-
619
- if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
620
- [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
621
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
622
- } else if (src0t == GGML_TYPE_Q2_K) {
623
- [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
624
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
625
- } else if (src0t == GGML_TYPE_Q4_K) {
626
- [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
627
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
628
- } else if (src0t == GGML_TYPE_Q6_K) {
629
- [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
630
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
631
- } else {
632
- [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
633
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
634
- }
635
- }
636
- } break;
637
- case GGML_OP_GET_ROWS:
638
- {
639
- if (encoder == nil) {
640
- encoder = [command_buffer computeCommandEncoder];
641
- }
642
-
643
- switch (src0->type) {
644
- case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
645
- case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
646
- case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
647
- case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
648
- case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
649
- case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
650
- default: GGML_ASSERT(false && "not implemented");
651
- }
652
-
653
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
654
- [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
655
- [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
656
- [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
657
- [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
658
- [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
659
-
660
- const int64_t n = ggml_nelements(src1);
661
-
662
- [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
663
- } break;
664
- case GGML_OP_RMS_NORM:
665
- {
666
- if (encoder == nil) {
667
- encoder = [command_buffer computeCommandEncoder];
668
- }
669
-
670
- const float eps = 1e-6f;
671
-
672
- const int nth = 256;
673
-
674
- [encoder setComputePipelineState:ctx->pipeline_rms_norm];
675
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
676
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
677
- [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
678
- [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
679
- [encoder setBytes:&eps length:sizeof( float) atIndex:4];
680
- [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
681
-
682
- const int64_t nrows = ggml_nrows(src0);
683
-
684
- [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
685
- } break;
686
- case GGML_OP_ROPE:
687
- {
688
- if (encoder == nil) {
689
- encoder = [command_buffer computeCommandEncoder];
690
- }
691
-
692
- const int n_dims = ((int32_t *) src1->data)[1];
693
- const int mode = ((int32_t *) src1->data)[2];
694
-
695
- const int n_past = ((int32_t *)(src1->data))[0];
696
-
697
- [encoder setComputePipelineState:ctx->pipeline_rope];
698
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
699
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
700
- [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
701
- [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
702
- [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
703
- [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
704
- [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
705
- [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
706
- [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
707
- [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
708
- [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
709
- [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
710
- [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
711
- [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
712
- [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
713
- [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
714
- [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
715
- [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
716
- [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
717
- [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
718
- [encoder setBytes:&mode length:sizeof( int) atIndex:20];
719
-
720
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
721
- } break;
722
- case GGML_OP_CPY:
723
- {
724
- if (encoder == nil) {
725
- encoder = [command_buffer computeCommandEncoder];
726
- }
727
-
728
- const int nth = 32;
729
-
730
- switch (src0t) {
731
- case GGML_TYPE_F32:
732
- {
733
- switch (dstt) {
734
- case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
735
- case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
736
- default: GGML_ASSERT(false && "not implemented");
626
+
627
+ int nth0 = 32;
628
+ int nth1 = 1;
629
+
630
+ // use custom matrix x vector kernel
631
+ switch (src0t) {
632
+ case GGML_TYPE_F16:
633
+ {
634
+ GGML_ASSERT(ne02 == ne12);
635
+
636
+ nth0 = 64;
637
+ nth1 = 1;
638
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
639
+ } break;
640
+ case GGML_TYPE_Q4_0:
641
+ {
642
+ GGML_ASSERT(ne02 == 1);
643
+ GGML_ASSERT(ne12 == 1);
644
+
645
+ nth0 = 8;
646
+ nth1 = 8;
647
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
648
+ } break;
649
+ case GGML_TYPE_Q4_1:
650
+ {
651
+ GGML_ASSERT(ne02 == 1);
652
+ GGML_ASSERT(ne12 == 1);
653
+
654
+ nth0 = 8;
655
+ nth1 = 8;
656
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
657
+ } break;
658
+ case GGML_TYPE_Q2_K:
659
+ {
660
+ GGML_ASSERT(ne02 == 1);
661
+ GGML_ASSERT(ne12 == 1);
662
+
663
+ nth0 = 4;
664
+ nth1 = 16;
665
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
666
+ } break;
667
+ case GGML_TYPE_Q3_K:
668
+ {
669
+ GGML_ASSERT(ne02 == 1);
670
+ GGML_ASSERT(ne12 == 1);
671
+
672
+ nth0 = 4;
673
+ nth1 = 16;
674
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32];
675
+ } break;
676
+ case GGML_TYPE_Q4_K:
677
+ {
678
+ GGML_ASSERT(ne02 == 1);
679
+ GGML_ASSERT(ne12 == 1);
680
+
681
+ nth0 = 4;
682
+ nth1 = 16;
683
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
684
+ } break;
685
+ case GGML_TYPE_Q5_K:
686
+ {
687
+ GGML_ASSERT(ne02 == 1);
688
+ GGML_ASSERT(ne12 == 1);
689
+
690
+ nth0 = 4;
691
+ nth1 = 16;
692
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32];
693
+ } break;
694
+ case GGML_TYPE_Q6_K:
695
+ {
696
+ GGML_ASSERT(ne02 == 1);
697
+ GGML_ASSERT(ne12 == 1);
698
+
699
+ nth0 = 4;
700
+ nth1 = 16;
701
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
702
+ } break;
703
+ default:
704
+ {
705
+ fprintf(stderr, "Asserting on type %d\n",(int)src0t);
706
+ GGML_ASSERT(false && "not implemented");
707
+ }
737
708
  };
738
- } break;
739
- default: GGML_ASSERT(false && "not implemented");
740
- }
741
-
742
- [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
743
- [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
744
- [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
745
- [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
746
- [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
747
- [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
748
- [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
749
- [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
750
- [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
751
- [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
752
- [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
753
- [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
754
- [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
755
- [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
756
- [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
757
- [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
758
- [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
759
- [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
760
-
761
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
762
- } break;
763
- default:
764
- fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
765
- GGML_ASSERT(false);
766
- }
767
- }
768
709
 
769
- if (encoder != nil) {
770
- [encoder endEncoding];
771
- encoder = nil;
710
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
711
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
712
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
713
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
714
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
715
+ [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
716
+ [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
717
+ [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
718
+ [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
719
+ [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
720
+ [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
721
+ [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
722
+ [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
723
+ [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
724
+ [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
725
+
726
+ if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
727
+ [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
728
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
729
+ }
730
+ else if (src0t == GGML_TYPE_Q2_K ||
731
+ src0t == GGML_TYPE_Q3_K ||
732
+ src0t == GGML_TYPE_Q4_K ||
733
+ src0t == GGML_TYPE_Q5_K ||
734
+ src0t == GGML_TYPE_Q6_K) {
735
+ [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
736
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
737
+ } else {
738
+ [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
739
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
740
+ }
741
+ }
742
+ } break;
743
+ case GGML_OP_GET_ROWS:
744
+ {
745
+ if (encoder == nil) {
746
+ encoder = [command_buffer computeCommandEncoder];
747
+ }
748
+
749
+ switch (src0->type) {
750
+ case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
751
+ case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
752
+ case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
753
+ case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
754
+ case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break;
755
+ case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
756
+ case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break;
757
+ case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
758
+ default: GGML_ASSERT(false && "not implemented");
759
+ }
760
+
761
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
762
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
763
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
764
+ [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
765
+ [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
766
+ [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
767
+
768
+ const int64_t n = ggml_nelements(src1);
769
+
770
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
771
+ } break;
772
+ case GGML_OP_RMS_NORM:
773
+ {
774
+ if (encoder == nil) {
775
+ encoder = [command_buffer computeCommandEncoder];
776
+ }
777
+
778
+ const float eps = 1e-6f;
779
+
780
+ const int nth = 256;
781
+
782
+ [encoder setComputePipelineState:ctx->pipeline_rms_norm];
783
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
784
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
785
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
786
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
787
+ [encoder setBytes:&eps length:sizeof( float) atIndex:4];
788
+ [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
789
+
790
+ const int64_t nrows = ggml_nrows(src0);
791
+
792
+ [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
793
+ } break;
794
+ case GGML_OP_NORM:
795
+ {
796
+ if (encoder == nil) {
797
+ encoder = [command_buffer computeCommandEncoder];
798
+ }
799
+
800
+ const float eps = 1e-5f;
801
+
802
+ const int nth = 256;
803
+
804
+ [encoder setComputePipelineState:ctx->pipeline_norm];
805
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
806
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
807
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
808
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
809
+ [encoder setBytes:&eps length:sizeof( float) atIndex:4];
810
+ [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
811
+
812
+ const int64_t nrows = ggml_nrows(src0);
813
+
814
+ [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
815
+ } break;
816
+ case GGML_OP_ALIBI:
817
+ {
818
+ if (encoder == nil) {
819
+ encoder = [command_buffer computeCommandEncoder];
820
+ }
821
+
822
+ GGML_ASSERT((src0t == GGML_TYPE_F32));
823
+
824
+ const int n_past = ((int32_t *) src1->data)[0]; UNUSED(n_past);
825
+ const int n_head = ((int32_t *) src1->data)[1];
826
+ const float max_bias = ((float *) src1->data)[2];
827
+
828
+ if (__builtin_popcount(n_head) != 1) {
829
+ GGML_ASSERT(false && "only power-of-two n_head implemented");
830
+ }
831
+
832
+ const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
833
+ const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
834
+
835
+ [encoder setComputePipelineState:ctx->pipeline_alibi_f32];
836
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
837
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
838
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
839
+ [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
840
+ [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
841
+ [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
842
+ [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
843
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
844
+ [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
845
+ [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
846
+ [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
847
+ [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
848
+ [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
849
+ [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
850
+ [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
851
+ [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
852
+ [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
853
+ [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
854
+ [encoder setBytes:&m0 length:sizeof( float) atIndex:18];
855
+ const int nth = 32;
856
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
857
+ } break;
858
+ case GGML_OP_ROPE:
859
+ {
860
+ if (encoder == nil) {
861
+ encoder = [command_buffer computeCommandEncoder];
862
+ }
863
+
864
+ const int n_dims = ((int32_t *) src1->data)[1];
865
+ const int mode = ((int32_t *) src1->data)[2];
866
+
867
+ const int n_past = ((int32_t *)(src1->data))[0];
868
+
869
+ [encoder setComputePipelineState:ctx->pipeline_rope];
870
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
871
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
872
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
873
+ [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
874
+ [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
875
+ [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
876
+ [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
877
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
878
+ [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
879
+ [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
880
+ [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
881
+ [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
882
+ [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
883
+ [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
884
+ [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
885
+ [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
886
+ [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
887
+ [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
888
+ [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
889
+ [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
890
+ [encoder setBytes:&mode length:sizeof( int) atIndex:20];
891
+
892
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
893
+ } break;
894
+ case GGML_OP_CPY:
895
+ {
896
+ if (encoder == nil) {
897
+ encoder = [command_buffer computeCommandEncoder];
898
+ }
899
+
900
+ const int nth = 32;
901
+
902
+ switch (src0t) {
903
+ case GGML_TYPE_F32:
904
+ {
905
+ switch (dstt) {
906
+ case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
907
+ case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
908
+ default: GGML_ASSERT(false && "not implemented");
909
+ };
910
+ } break;
911
+ case GGML_TYPE_F16:
912
+ {
913
+ switch (dstt) {
914
+ case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
915
+ case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
916
+ default: GGML_ASSERT(false && "not implemented");
917
+ };
918
+ } break;
919
+ default: GGML_ASSERT(false && "not implemented");
920
+ }
921
+
922
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
923
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
924
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
925
+ [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
926
+ [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
927
+ [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
928
+ [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
929
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
930
+ [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
931
+ [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
932
+ [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
933
+ [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
934
+ [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
935
+ [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
936
+ [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
937
+ [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
938
+ [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
939
+ [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
940
+
941
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
942
+ } break;
943
+ default:
944
+ fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
945
+ GGML_ASSERT(false);
946
+ }
947
+ }
948
+
949
+ if (encoder != nil) {
950
+ [encoder endEncoding];
951
+ encoder = nil;
952
+ }
953
+
954
+ [command_buffer commit];
955
+ });
772
956
  }
773
957
 
774
- [command_buffer commit];
775
- [command_buffer waitUntilCompleted];
958
+ // wait for all threads to finish
959
+ dispatch_barrier_sync(queue, ^{});
776
960
 
777
- {
778
- const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
779
- UNUSED(time_elapsed);
961
+ [command_buffers[n_cb - 1] waitUntilCompleted];
780
962
 
781
- metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
963
+ // check status of command buffers
964
+ // needed to detect if the device ran out-of-memory for example (#1881)
965
+ for (int i = 0; i < n_cb; i++) {
966
+ MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status];
967
+ if (status != MTLCommandBufferStatusCompleted) {
968
+ fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status);
969
+ GGML_ASSERT(false);
970
+ }
782
971
  }
783
972
  }