llama_cpp 0.12.1 → 0.12.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +8 -0
- data/ext/llama_cpp/llama_cpp.cpp +64 -0
- data/lib/llama_cpp/version.rb +2 -2
- data/sig/llama_cpp.rbs +7 -0
- data/vendor/tmp/llama.cpp/Makefile +0 -9
- data/vendor/tmp/llama.cpp/ggml-alloc.c +28 -6
- data/vendor/tmp/llama.cpp/ggml-alloc.h +3 -1
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +36 -36
- data/vendor/tmp/llama.cpp/ggml-backend.c +510 -263
- data/vendor/tmp/llama.cpp/ggml-backend.h +42 -32
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +692 -476
- data/vendor/tmp/llama.cpp/ggml-cuda.h +18 -30
- data/vendor/tmp/llama.cpp/ggml-impl.h +2 -0
- data/vendor/tmp/llama.cpp/ggml-metal.h +4 -56
- data/vendor/tmp/llama.cpp/ggml-metal.m +1860 -2073
- data/vendor/tmp/llama.cpp/ggml-opencl.cpp +321 -14
- data/vendor/tmp/llama.cpp/ggml-opencl.h +13 -3
- data/vendor/tmp/llama.cpp/ggml-quants.c +1638 -134
- data/vendor/tmp/llama.cpp/ggml-quants.h +15 -4
- data/vendor/tmp/llama.cpp/ggml.c +142 -64
- data/vendor/tmp/llama.cpp/ggml.h +47 -29
- data/vendor/tmp/llama.cpp/llama.cpp +1219 -1615
- data/vendor/tmp/llama.cpp/llama.h +30 -8
- metadata +2 -2
@@ -18,46 +18,34 @@ extern "C" {
|
|
18
18
|
#define GGML_CUDA_MAX_DEVICES 16
|
19
19
|
|
20
20
|
// Always success. To check if CUDA is actually loaded, use `ggml_cublas_loaded`.
|
21
|
-
GGML_API void ggml_init_cublas(void);
|
21
|
+
GGML_API GGML_CALL void ggml_init_cublas(void);
|
22
22
|
|
23
23
|
// Returns `true` if there are available CUDA devices and cublas loads successfully; otherwise, it returns `false`.
|
24
|
-
GGML_API bool ggml_cublas_loaded(void);
|
24
|
+
GGML_API GGML_CALL bool ggml_cublas_loaded(void);
|
25
25
|
|
26
|
-
GGML_API void * ggml_cuda_host_malloc(size_t size);
|
27
|
-
GGML_API void ggml_cuda_host_free(void * ptr);
|
26
|
+
GGML_API GGML_CALL void * ggml_cuda_host_malloc(size_t size);
|
27
|
+
GGML_API GGML_CALL void ggml_cuda_host_free(void * ptr);
|
28
28
|
|
29
|
-
GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
30
|
-
GGML_API
|
31
|
-
GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
|
32
|
-
GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor);
|
29
|
+
GGML_API GGML_CALL bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
|
30
|
+
GGML_API GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
33
31
|
|
34
|
-
GGML_API void
|
35
|
-
GGML_API void
|
36
|
-
GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
|
37
|
-
|
38
|
-
GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor);
|
39
|
-
GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset);
|
40
|
-
GGML_API void ggml_cuda_copy_to_device(struct ggml_tensor * tensor);
|
41
|
-
|
42
|
-
GGML_API void ggml_cuda_set_main_device(int main_device);
|
43
|
-
GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q);
|
44
|
-
GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size);
|
45
|
-
GGML_API void ggml_cuda_free_scratch(void);
|
46
|
-
GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
|
47
|
-
|
48
|
-
GGML_API int ggml_cuda_get_device_count(void);
|
49
|
-
GGML_API void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
32
|
+
GGML_API GGML_CALL int ggml_cuda_get_device_count(void);
|
33
|
+
GGML_API GGML_CALL void ggml_cuda_get_device_description(int device, char * description, size_t description_size);
|
50
34
|
|
51
35
|
// backend API
|
52
|
-
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
|
36
|
+
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
53
37
|
|
54
|
-
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
55
|
-
GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend);
|
38
|
+
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
56
39
|
|
57
|
-
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
40
|
+
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
41
|
+
// split tensor buffer that splits matrices by rows across multiple devices
|
42
|
+
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
43
|
+
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
44
|
+
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
58
45
|
|
59
|
-
|
60
|
-
GGML_API
|
46
|
+
GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
|
47
|
+
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
48
|
+
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
61
49
|
|
62
50
|
#ifdef __cplusplus
|
63
51
|
}
|
@@ -228,6 +228,8 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
|
228
228
|
#define GGML_HASHTABLE_FULL ((size_t)-1)
|
229
229
|
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
|
230
230
|
|
231
|
+
struct ggml_hash_set ggml_hash_set_new(size_t size);
|
232
|
+
|
231
233
|
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
232
234
|
|
233
235
|
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
@@ -27,7 +27,6 @@
|
|
27
27
|
|
28
28
|
// max memory buffers that can be mapped to the device
|
29
29
|
#define GGML_METAL_MAX_BUFFERS 64
|
30
|
-
#define GGML_METAL_MAX_COMMAND_BUFFERS 32
|
31
30
|
|
32
31
|
struct ggml_tensor;
|
33
32
|
struct ggml_cgraph;
|
@@ -36,73 +35,22 @@ struct ggml_cgraph;
|
|
36
35
|
extern "C" {
|
37
36
|
#endif
|
38
37
|
|
39
|
-
//
|
40
|
-
// internal API
|
41
|
-
// temporary exposed to user-code
|
42
|
-
//
|
43
|
-
|
44
|
-
struct ggml_metal_context;
|
45
|
-
|
46
|
-
void ggml_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
|
47
|
-
|
48
|
-
// number of command buffers to use
|
49
|
-
struct ggml_metal_context * ggml_metal_init(int n_cb);
|
50
|
-
void ggml_metal_free(struct ggml_metal_context * ctx);
|
51
|
-
|
52
|
-
void * ggml_metal_host_malloc(size_t n);
|
53
|
-
void ggml_metal_host_free (void * data);
|
54
|
-
|
55
|
-
// set the number of command buffers to use
|
56
|
-
void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
|
57
|
-
|
58
|
-
// creates a mapping between a host memory buffer and a device memory buffer
|
59
|
-
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
|
60
|
-
// - the mapping is used during computation to determine the arguments of the compute kernels
|
61
|
-
// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
|
62
|
-
// - max_size specifies the maximum size of a tensor and is used to create shared views such
|
63
|
-
// that it is guaranteed that the tensor will fit in at least one of the views
|
64
|
-
//
|
65
|
-
bool ggml_metal_add_buffer(
|
66
|
-
struct ggml_metal_context * ctx,
|
67
|
-
const char * name,
|
68
|
-
void * data,
|
69
|
-
size_t size,
|
70
|
-
size_t max_size);
|
71
|
-
|
72
|
-
// set data from host memory into the device
|
73
|
-
void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
74
|
-
|
75
|
-
// get data from the device into host memory
|
76
|
-
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
|
77
|
-
|
78
|
-
// try to find operations that can be run concurrently in the graph
|
79
|
-
// you should run it again if the topology of your graph changes
|
80
|
-
void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf, bool check_mem);
|
81
|
-
|
82
|
-
// if the graph has been optimized for concurrently dispatch, return length of the concur_list if optimized
|
83
|
-
int ggml_metal_if_optimized(struct ggml_metal_context * ctx);
|
84
|
-
|
85
|
-
// output the concur_list for ggml_alloc
|
86
|
-
int * ggml_metal_get_concur_list(struct ggml_metal_context * ctx);
|
87
|
-
|
88
|
-
// same as ggml_graph_compute but uses Metal
|
89
|
-
// creates gf->n_threads command buffers in parallel
|
90
|
-
bool ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
|
91
|
-
|
92
38
|
//
|
93
39
|
// backend API
|
94
40
|
// user-code should use only these functions
|
95
41
|
//
|
96
42
|
|
43
|
+
GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data);
|
44
|
+
|
97
45
|
GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
98
46
|
|
99
47
|
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
100
48
|
|
101
|
-
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
|
49
|
+
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
|
102
50
|
|
103
51
|
GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb);
|
104
52
|
|
105
|
-
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
53
|
+
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
106
54
|
|
107
55
|
// helper to check if the device supports a specific family
|
108
56
|
// ideally, the user code should be doing these checks
|