llama_cpp 0.1.4 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,783 @@
1
+ #import "ggml-metal.h"
2
+
3
+ #import "ggml.h"
4
+
5
+ #import <Foundation/Foundation.h>
6
+
7
+ #import <Metal/Metal.h>
8
+ #import <MetalPerformanceShaders/MetalPerformanceShaders.h>
9
+
10
+ #ifdef GGML_METAL_NDEBUG
11
+ #define metal_printf(...)
12
+ #else
13
+ #define metal_printf(...) fprintf(stderr, __VA_ARGS__)
14
+ #endif
15
+
16
+ #define UNUSED(x) (void)(x)
17
+
18
+ struct ggml_metal_buffer {
19
+ const char * name;
20
+
21
+ void * data;
22
+ size_t size;
23
+
24
+ id<MTLBuffer> metal;
25
+ };
26
+
27
+ struct ggml_metal_context {
28
+ float * logits;
29
+
30
+ id<MTLDevice> device;
31
+ id<MTLCommandQueue> queue;
32
+ id<MTLLibrary> library;
33
+
34
+ int n_buffers;
35
+ struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
36
+
37
+ // custom kernels
38
+ #define GGML_METAL_DECL_KERNEL(name) \
39
+ id<MTLFunction> function_##name; \
40
+ id<MTLComputePipelineState> pipeline_##name
41
+
42
+ GGML_METAL_DECL_KERNEL(add);
43
+ GGML_METAL_DECL_KERNEL(mul);
44
+ GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
45
+ GGML_METAL_DECL_KERNEL(scale);
46
+ GGML_METAL_DECL_KERNEL(silu);
47
+ GGML_METAL_DECL_KERNEL(relu);
48
+ GGML_METAL_DECL_KERNEL(gelu);
49
+ GGML_METAL_DECL_KERNEL(soft_max);
50
+ GGML_METAL_DECL_KERNEL(diag_mask_inf);
51
+ GGML_METAL_DECL_KERNEL(get_rows_f16);
52
+ GGML_METAL_DECL_KERNEL(get_rows_q4_0);
53
+ GGML_METAL_DECL_KERNEL(get_rows_q4_1);
54
+ GGML_METAL_DECL_KERNEL(get_rows_q2_k);
55
+ GGML_METAL_DECL_KERNEL(get_rows_q4_k);
56
+ GGML_METAL_DECL_KERNEL(get_rows_q6_k);
57
+ GGML_METAL_DECL_KERNEL(rms_norm);
58
+ GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
59
+ GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
60
+ GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
61
+ GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
62
+ GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
63
+ GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
64
+ GGML_METAL_DECL_KERNEL(rope);
65
+ GGML_METAL_DECL_KERNEL(cpy_f32_f16);
66
+ GGML_METAL_DECL_KERNEL(cpy_f32_f32);
67
+
68
+ #undef GGML_METAL_DECL_KERNEL
69
+ };
70
+
71
+ // MSL code
72
+ // TODO: move the contents here when ready
73
+ // for now it is easier to work in a separate file
74
+ static NSString * const msl_library_source = @"see metal.metal";
75
+
76
+ // Here to assist with NSBundle Path Hack
77
+ @interface GGMLMetalClass : NSObject
78
+ @end
79
+ @implementation GGMLMetalClass
80
+ @end
81
+
82
+ struct ggml_metal_context * ggml_metal_init(void) {
83
+ fprintf(stderr, "%s: allocating\n", __func__);
84
+
85
+ struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
86
+
87
+ ctx->device = MTLCreateSystemDefaultDevice();
88
+ ctx->queue = [ctx->device newCommandQueue];
89
+
90
+ // determine if we can use MPS
91
+ if (MPSSupportsMTLDevice(ctx->device)) {
92
+ fprintf(stderr, "%s: using MPS\n", __func__);
93
+ } else {
94
+ fprintf(stderr, "%s: not using MPS\n", __func__);
95
+ GGML_ASSERT(false && "MPS not supported");
96
+ }
97
+
98
+ #if 0
99
+ // compile from source string and show compile log
100
+ {
101
+ NSError * error = nil;
102
+
103
+ ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
104
+ if (error) {
105
+ fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
106
+ exit(1);
107
+ }
108
+ }
109
+ #else
110
+ UNUSED(msl_library_source);
111
+
112
+ // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
113
+ {
114
+ NSError * error = nil;
115
+
116
+ //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
117
+ NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
118
+ NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
119
+ fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
120
+
121
+ NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
122
+ if (error) {
123
+ fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
124
+ exit(1);
125
+ }
126
+
127
+ ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
128
+ if (error) {
129
+ fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
130
+ exit(1);
131
+ }
132
+ }
133
+ #endif
134
+
135
+ // load kernels
136
+ {
137
+ #define GGML_METAL_ADD_KERNEL(name) \
138
+ ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
139
+ ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
140
+ fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
141
+
142
+ GGML_METAL_ADD_KERNEL(add);
143
+ GGML_METAL_ADD_KERNEL(mul);
144
+ GGML_METAL_ADD_KERNEL(mul_row);
145
+ GGML_METAL_ADD_KERNEL(scale);
146
+ GGML_METAL_ADD_KERNEL(silu);
147
+ GGML_METAL_ADD_KERNEL(relu);
148
+ GGML_METAL_ADD_KERNEL(gelu);
149
+ GGML_METAL_ADD_KERNEL(soft_max);
150
+ GGML_METAL_ADD_KERNEL(diag_mask_inf);
151
+ GGML_METAL_ADD_KERNEL(get_rows_f16);
152
+ GGML_METAL_ADD_KERNEL(get_rows_q4_0);
153
+ GGML_METAL_ADD_KERNEL(get_rows_q4_1);
154
+ GGML_METAL_ADD_KERNEL(get_rows_q2_k);
155
+ GGML_METAL_ADD_KERNEL(get_rows_q4_k);
156
+ GGML_METAL_ADD_KERNEL(get_rows_q6_k);
157
+ GGML_METAL_ADD_KERNEL(rms_norm);
158
+ GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
159
+ GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
160
+ GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
161
+ GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
162
+ GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
163
+ GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
164
+ GGML_METAL_ADD_KERNEL(rope);
165
+ GGML_METAL_ADD_KERNEL(cpy_f32_f16);
166
+ GGML_METAL_ADD_KERNEL(cpy_f32_f32);
167
+
168
+ #undef GGML_METAL_ADD_KERNEL
169
+ }
170
+
171
+ return ctx;
172
+ }
173
+
174
+ void ggml_metal_free(struct ggml_metal_context * ctx) {
175
+ fprintf(stderr, "%s: deallocating\n", __func__);
176
+
177
+ free(ctx);
178
+ }
179
+
180
+ // finds the Metal buffer that contains the tensor data on the GPU device
181
+ // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
182
+ // Metal buffer based on the host memory pointer
183
+ //
184
+ static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
185
+ //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
186
+
187
+ for (int i = 0; i < ctx->n_buffers; ++i) {
188
+ const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
189
+
190
+ if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
191
+ *offs = (size_t) ioffs;
192
+
193
+ //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
194
+
195
+ return ctx->buffers[i].metal;
196
+ }
197
+ }
198
+
199
+ fprintf(stderr, "%s: error: buffer is nil\n", __func__);
200
+
201
+ return nil;
202
+ }
203
+
204
+ bool ggml_metal_add_buffer(
205
+ struct ggml_metal_context * ctx,
206
+ const char * name,
207
+ void * data,
208
+ size_t size) {
209
+ if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
210
+ fprintf(stderr, "%s: too many buffers\n", __func__);
211
+ return false;
212
+ }
213
+
214
+ if (data) {
215
+ // verify that the buffer does not overlap with any of the existing buffers
216
+ for (int i = 0; i < ctx->n_buffers; ++i) {
217
+ const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
218
+
219
+ if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
220
+ fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
221
+ return false;
222
+ }
223
+ }
224
+
225
+ size_t page_size = getpagesize();
226
+ size_t aligned_size = size;
227
+ if ((aligned_size % page_size) != 0) {
228
+ aligned_size += (page_size - (aligned_size % page_size));
229
+ }
230
+
231
+ ctx->buffers[ctx->n_buffers].name = name;
232
+ ctx->buffers[ctx->n_buffers].data = data;
233
+ ctx->buffers[ctx->n_buffers].size = size;
234
+
235
+ if (ctx->device.maxBufferLength < aligned_size) {
236
+ fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
237
+ return false;
238
+ }
239
+ ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
240
+
241
+ if (ctx->buffers[ctx->n_buffers].metal == nil) {
242
+ fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
243
+ return false;
244
+ } else {
245
+ fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
246
+ }
247
+
248
+ ++ctx->n_buffers;
249
+ }
250
+
251
+ return true;
252
+ }
253
+
254
+ void ggml_metal_set_tensor(
255
+ struct ggml_metal_context * ctx,
256
+ struct ggml_tensor * t) {
257
+ metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
258
+
259
+ size_t offs;
260
+ id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
261
+
262
+ memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
263
+ }
264
+
265
+ void ggml_metal_get_tensor(
266
+ struct ggml_metal_context * ctx,
267
+ struct ggml_tensor * t) {
268
+ metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
269
+
270
+ size_t offs;
271
+ id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
272
+
273
+ memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
274
+ }
275
+
276
+ void ggml_metal_graph_compute(
277
+ struct ggml_metal_context * ctx,
278
+ struct ggml_cgraph * gf) {
279
+ metal_printf("%s: evaluating graph\n", __func__);
280
+
281
+ size_t offs_src0 = 0;
282
+ size_t offs_src1 = 0;
283
+ size_t offs_dst = 0;
284
+
285
+ id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
286
+ id<MTLComputeCommandEncoder> encoder = nil;
287
+
288
+ for (int i = 0; i < gf->n_nodes; ++i) {
289
+ //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
290
+
291
+ struct ggml_tensor * src0 = gf->nodes[i]->src0;
292
+ struct ggml_tensor * src1 = gf->nodes[i]->src1;
293
+ struct ggml_tensor * dst = gf->nodes[i];
294
+
295
+ const int64_t ne00 = src0 ? src0->ne[0] : 0;
296
+ const int64_t ne01 = src0 ? src0->ne[1] : 0;
297
+ const int64_t ne02 = src0 ? src0->ne[2] : 0;
298
+ const int64_t ne03 = src0 ? src0->ne[3] : 0;
299
+
300
+ const uint64_t nb00 = src0 ? src0->nb[0] : 0;
301
+ const uint64_t nb01 = src0 ? src0->nb[1] : 0;
302
+ const uint64_t nb02 = src0 ? src0->nb[2] : 0;
303
+ const uint64_t nb03 = src0 ? src0->nb[3] : 0;
304
+
305
+ const int64_t ne10 = src1 ? src1->ne[0] : 0;
306
+ const int64_t ne11 = src1 ? src1->ne[1] : 0;
307
+ const int64_t ne12 = src1 ? src1->ne[2] : 0;
308
+ const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
309
+
310
+ const uint64_t nb10 = src1 ? src1->nb[0] : 0;
311
+ const uint64_t nb11 = src1 ? src1->nb[1] : 0;
312
+ const uint64_t nb12 = src1 ? src1->nb[2] : 0;
313
+ const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
314
+
315
+ const int64_t ne0 = dst ? dst->ne[0] : 0;
316
+ const int64_t ne1 = dst ? dst->ne[1] : 0;
317
+ const int64_t ne2 = dst ? dst->ne[2] : 0;
318
+ const int64_t ne3 = dst ? dst->ne[3] : 0;
319
+
320
+ const uint64_t nb0 = dst ? dst->nb[0] : 0;
321
+ const uint64_t nb1 = dst ? dst->nb[1] : 0;
322
+ const uint64_t nb2 = dst ? dst->nb[2] : 0;
323
+ const uint64_t nb3 = dst ? dst->nb[3] : 0;
324
+
325
+ const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
326
+ const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
327
+ const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
328
+
329
+ id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
330
+ id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
331
+ id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
332
+
333
+ //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
334
+ //if (src0) {
335
+ // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
336
+ // ggml_is_contiguous(src0), src0->name);
337
+ //}
338
+ //if (src1) {
339
+ // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
340
+ // ggml_is_contiguous(src1), src1->name);
341
+ //}
342
+ //if (dst) {
343
+ // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
344
+ // dst->name);
345
+ //}
346
+
347
+ switch (dst->op) {
348
+ case GGML_OP_RESHAPE:
349
+ case GGML_OP_VIEW:
350
+ case GGML_OP_TRANSPOSE:
351
+ case GGML_OP_PERMUTE:
352
+ {
353
+ // noop
354
+ } break;
355
+ case GGML_OP_ADD:
356
+ {
357
+ if (encoder == nil) {
358
+ encoder = [command_buffer computeCommandEncoder];
359
+ }
360
+
361
+ [encoder setComputePipelineState:ctx->pipeline_add];
362
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
363
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
364
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
365
+
366
+ const int64_t n = ggml_nelements(dst);
367
+
368
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
369
+ } break;
370
+ case GGML_OP_MUL:
371
+ {
372
+ if (encoder == nil) {
373
+ encoder = [command_buffer computeCommandEncoder];
374
+ }
375
+
376
+ if (ggml_nelements(src1) == ne10) {
377
+ // src1 is a row
378
+ [encoder setComputePipelineState:ctx->pipeline_mul_row];
379
+ } else {
380
+ [encoder setComputePipelineState:ctx->pipeline_mul];
381
+ }
382
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
383
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
384
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
385
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
386
+
387
+ const int64_t n = ggml_nelements(dst);
388
+
389
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
390
+ } break;
391
+ case GGML_OP_SCALE:
392
+ {
393
+ if (encoder == nil) {
394
+ encoder = [command_buffer computeCommandEncoder];
395
+ }
396
+
397
+ const float scale = *(const float *) src1->data;
398
+
399
+ [encoder setComputePipelineState:ctx->pipeline_scale];
400
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
401
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
402
+ [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
403
+
404
+ const int64_t n = ggml_nelements(dst);
405
+
406
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
407
+ } break;
408
+ case GGML_OP_SILU:
409
+ {
410
+ if (encoder == nil) {
411
+ encoder = [command_buffer computeCommandEncoder];
412
+ }
413
+
414
+ [encoder setComputePipelineState:ctx->pipeline_silu];
415
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
416
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
417
+
418
+ const int64_t n = ggml_nelements(dst);
419
+
420
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
421
+ } break;
422
+ case GGML_OP_RELU:
423
+ {
424
+ if (encoder == nil) {
425
+ encoder = [command_buffer computeCommandEncoder];
426
+ }
427
+
428
+ [encoder setComputePipelineState:ctx->pipeline_relu];
429
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
430
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
431
+
432
+ const int64_t n = ggml_nelements(dst);
433
+
434
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
435
+ } break;
436
+ case GGML_OP_GELU:
437
+ {
438
+ if (encoder == nil) {
439
+ encoder = [command_buffer computeCommandEncoder];
440
+ }
441
+
442
+ [encoder setComputePipelineState:ctx->pipeline_gelu];
443
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
444
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
445
+
446
+ const int64_t n = ggml_nelements(dst);
447
+
448
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
449
+ } break;
450
+ case GGML_OP_SOFT_MAX:
451
+ {
452
+ if (encoder == nil) {
453
+ encoder = [command_buffer computeCommandEncoder];
454
+ }
455
+
456
+ const int nth = 32;
457
+
458
+ [encoder setComputePipelineState:ctx->pipeline_soft_max];
459
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
460
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
461
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
462
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
463
+ [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
464
+ [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
465
+
466
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
467
+ } break;
468
+ case GGML_OP_DIAG_MASK_INF:
469
+ {
470
+ if (encoder == nil) {
471
+ encoder = [command_buffer computeCommandEncoder];
472
+ }
473
+
474
+ const int n_past = ((int32_t *)(src1->data))[0];
475
+
476
+ [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
477
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
478
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
479
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
480
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
481
+ [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
482
+
483
+ [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
484
+ } break;
485
+ case GGML_OP_MUL_MAT:
486
+ {
487
+ // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
488
+
489
+ GGML_ASSERT(ne00 == ne10);
490
+ GGML_ASSERT(ne02 == ne12);
491
+
492
+ if (ggml_is_contiguous(src0) &&
493
+ ggml_is_contiguous(src1) &&
494
+ (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
495
+
496
+ if (encoder != nil) {
497
+ [encoder endEncoding];
498
+ encoder = nil;
499
+ }
500
+
501
+ MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
502
+ MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
503
+
504
+ // for F32 x F32 we use MPS
505
+ MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
506
+ matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
507
+
508
+ MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
509
+ matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
510
+
511
+ MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
512
+ matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
513
+
514
+ MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
515
+ initWithDevice:ctx->device transposeLeft:false transposeRight:true
516
+ resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
517
+
518
+ // we need to do ne02 multiplications
519
+ // TODO: is there a way to do this in parallel - currently very slow ..
520
+ // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
521
+ for (int64_t i02 = 0; i02 < ne02; ++i02) {
522
+ size_t offs_src0_cur = offs_src0 + i02*nb02;
523
+ size_t offs_src1_cur = offs_src1 + i02*nb12;
524
+ size_t offs_dst_cur = offs_dst + i02*nb2;
525
+
526
+ MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
527
+ MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
528
+ MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
529
+
530
+ [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
531
+ }
532
+ } else {
533
+ if (encoder == nil) {
534
+ encoder = [command_buffer computeCommandEncoder];
535
+ }
536
+
537
+ int nth0 = 32;
538
+ int nth1 = 1;
539
+
540
+ // use custom matrix x vector kernel
541
+ switch (src0t) {
542
+ case GGML_TYPE_F16:
543
+ {
544
+ GGML_ASSERT(ne02 == ne12);
545
+
546
+ nth0 = 64;
547
+ nth1 = 1;
548
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
549
+ } break;
550
+ case GGML_TYPE_Q4_0:
551
+ {
552
+ GGML_ASSERT(ne02 == 1);
553
+ GGML_ASSERT(ne12 == 1);
554
+
555
+ nth0 = 8;
556
+ nth1 = 8;
557
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
558
+ } break;
559
+ case GGML_TYPE_Q4_1:
560
+ {
561
+ GGML_ASSERT(ne02 == 1);
562
+ GGML_ASSERT(ne12 == 1);
563
+
564
+ nth0 = 8;
565
+ nth1 = 8;
566
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
567
+ } break;
568
+ case GGML_TYPE_Q2_K:
569
+ {
570
+ GGML_ASSERT(ne02 == 1);
571
+ GGML_ASSERT(ne12 == 1);
572
+
573
+ nth0 = 4;
574
+ nth1 = 16;
575
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
576
+ } break;
577
+ case GGML_TYPE_Q4_K:
578
+ {
579
+ GGML_ASSERT(ne02 == 1);
580
+ GGML_ASSERT(ne12 == 1);
581
+
582
+ nth0 = 4;
583
+ nth1 = 16;
584
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
585
+ } break;
586
+ case GGML_TYPE_Q6_K:
587
+ {
588
+ GGML_ASSERT(ne02 == 1);
589
+ GGML_ASSERT(ne12 == 1);
590
+
591
+ nth0 = 4;
592
+ nth1 = 16;
593
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
594
+ } break;
595
+ default:
596
+ {
597
+ fprintf(stderr, "Asserting on type %d\n",(int)src0t);
598
+ GGML_ASSERT(false && "not implemented");
599
+ }
600
+ };
601
+
602
+
603
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
604
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
605
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
606
+ [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
607
+ [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
608
+ [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
609
+ [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
610
+ [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
611
+ [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
612
+ [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
613
+ [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
614
+ [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
615
+ [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
616
+ [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
617
+ [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
618
+
619
+ if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
620
+ [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
621
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
622
+ } else if (src0t == GGML_TYPE_Q2_K) {
623
+ [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
624
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
625
+ } else if (src0t == GGML_TYPE_Q4_K) {
626
+ [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
627
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
628
+ } else if (src0t == GGML_TYPE_Q6_K) {
629
+ [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
630
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
631
+ } else {
632
+ [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
633
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
634
+ }
635
+ }
636
+ } break;
637
+ case GGML_OP_GET_ROWS:
638
+ {
639
+ if (encoder == nil) {
640
+ encoder = [command_buffer computeCommandEncoder];
641
+ }
642
+
643
+ switch (src0->type) {
644
+ case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
645
+ case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
646
+ case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
647
+ case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
648
+ case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
649
+ case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
650
+ default: GGML_ASSERT(false && "not implemented");
651
+ }
652
+
653
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
654
+ [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
655
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
656
+ [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
657
+ [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
658
+ [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
659
+
660
+ const int64_t n = ggml_nelements(src1);
661
+
662
+ [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
663
+ } break;
664
+ case GGML_OP_RMS_NORM:
665
+ {
666
+ if (encoder == nil) {
667
+ encoder = [command_buffer computeCommandEncoder];
668
+ }
669
+
670
+ const float eps = 1e-6f;
671
+
672
+ const int nth = 256;
673
+
674
+ [encoder setComputePipelineState:ctx->pipeline_rms_norm];
675
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
676
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
677
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
678
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
679
+ [encoder setBytes:&eps length:sizeof( float) atIndex:4];
680
+ [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
681
+
682
+ const int64_t nrows = ggml_nrows(src0);
683
+
684
+ [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
685
+ } break;
686
+ case GGML_OP_ROPE:
687
+ {
688
+ if (encoder == nil) {
689
+ encoder = [command_buffer computeCommandEncoder];
690
+ }
691
+
692
+ const int n_dims = ((int32_t *) src1->data)[1];
693
+ const int mode = ((int32_t *) src1->data)[2];
694
+
695
+ const int n_past = ((int32_t *)(src1->data))[0];
696
+
697
+ [encoder setComputePipelineState:ctx->pipeline_rope];
698
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
699
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
700
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
701
+ [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
702
+ [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
703
+ [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
704
+ [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
705
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
706
+ [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
707
+ [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
708
+ [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
709
+ [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
710
+ [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
711
+ [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
712
+ [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
713
+ [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
714
+ [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
715
+ [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
716
+ [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
717
+ [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
718
+ [encoder setBytes:&mode length:sizeof( int) atIndex:20];
719
+
720
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
721
+ } break;
722
+ case GGML_OP_CPY:
723
+ {
724
+ if (encoder == nil) {
725
+ encoder = [command_buffer computeCommandEncoder];
726
+ }
727
+
728
+ const int nth = 32;
729
+
730
+ switch (src0t) {
731
+ case GGML_TYPE_F32:
732
+ {
733
+ switch (dstt) {
734
+ case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
735
+ case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
736
+ default: GGML_ASSERT(false && "not implemented");
737
+ };
738
+ } break;
739
+ default: GGML_ASSERT(false && "not implemented");
740
+ }
741
+
742
+ [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
743
+ [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
744
+ [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
745
+ [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
746
+ [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
747
+ [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
748
+ [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
749
+ [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
750
+ [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
751
+ [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
752
+ [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
753
+ [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
754
+ [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
755
+ [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
756
+ [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
757
+ [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
758
+ [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
759
+ [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
760
+
761
+ [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
762
+ } break;
763
+ default:
764
+ fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
765
+ GGML_ASSERT(false);
766
+ }
767
+ }
768
+
769
+ if (encoder != nil) {
770
+ [encoder endEncoding];
771
+ encoder = nil;
772
+ }
773
+
774
+ [command_buffer commit];
775
+ [command_buffer waitUntilCompleted];
776
+
777
+ {
778
+ const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
779
+ UNUSED(time_elapsed);
780
+
781
+ metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
782
+ }
783
+ }