llama_cpp 0.1.4 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +29 -0
- data/ext/llama_cpp/extconf.rb +26 -1
- data/ext/llama_cpp/llama_cpp.cpp +210 -13
- data/ext/llama_cpp/src/ggml-cuda.cu +1916 -0
- data/ext/llama_cpp/src/ggml-cuda.h +15 -2
- data/ext/llama_cpp/src/ggml-metal.h +63 -0
- data/ext/llama_cpp/src/ggml-metal.m +783 -0
- data/ext/llama_cpp/src/ggml-metal.metal +1133 -0
- data/ext/llama_cpp/src/ggml-opencl.cpp +235 -39
- data/ext/llama_cpp/src/ggml-opencl.h +4 -0
- data/ext/llama_cpp/src/ggml.c +340 -109
- data/ext/llama_cpp/src/ggml.h +44 -6
- data/ext/llama_cpp/src/k_quants.c +2244 -0
- data/ext/llama_cpp/src/k_quants.h +122 -0
- data/ext/llama_cpp/src/llama-util.h +16 -0
- data/ext/llama_cpp/src/llama.cpp +484 -136
- data/ext/llama_cpp/src/llama.h +39 -8
- data/lib/llama_cpp/version.rb +2 -2
- data/sig/llama_cpp.rbs +33 -1
- metadata +8 -2
@@ -0,0 +1,783 @@
|
|
1
|
+
#import "ggml-metal.h"
|
2
|
+
|
3
|
+
#import "ggml.h"
|
4
|
+
|
5
|
+
#import <Foundation/Foundation.h>
|
6
|
+
|
7
|
+
#import <Metal/Metal.h>
|
8
|
+
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
9
|
+
|
10
|
+
#ifdef GGML_METAL_NDEBUG
|
11
|
+
#define metal_printf(...)
|
12
|
+
#else
|
13
|
+
#define metal_printf(...) fprintf(stderr, __VA_ARGS__)
|
14
|
+
#endif
|
15
|
+
|
16
|
+
#define UNUSED(x) (void)(x)
|
17
|
+
|
18
|
+
struct ggml_metal_buffer {
|
19
|
+
const char * name;
|
20
|
+
|
21
|
+
void * data;
|
22
|
+
size_t size;
|
23
|
+
|
24
|
+
id<MTLBuffer> metal;
|
25
|
+
};
|
26
|
+
|
27
|
+
struct ggml_metal_context {
|
28
|
+
float * logits;
|
29
|
+
|
30
|
+
id<MTLDevice> device;
|
31
|
+
id<MTLCommandQueue> queue;
|
32
|
+
id<MTLLibrary> library;
|
33
|
+
|
34
|
+
int n_buffers;
|
35
|
+
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
36
|
+
|
37
|
+
// custom kernels
|
38
|
+
#define GGML_METAL_DECL_KERNEL(name) \
|
39
|
+
id<MTLFunction> function_##name; \
|
40
|
+
id<MTLComputePipelineState> pipeline_##name
|
41
|
+
|
42
|
+
GGML_METAL_DECL_KERNEL(add);
|
43
|
+
GGML_METAL_DECL_KERNEL(mul);
|
44
|
+
GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
|
45
|
+
GGML_METAL_DECL_KERNEL(scale);
|
46
|
+
GGML_METAL_DECL_KERNEL(silu);
|
47
|
+
GGML_METAL_DECL_KERNEL(relu);
|
48
|
+
GGML_METAL_DECL_KERNEL(gelu);
|
49
|
+
GGML_METAL_DECL_KERNEL(soft_max);
|
50
|
+
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
51
|
+
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
52
|
+
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
53
|
+
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
54
|
+
GGML_METAL_DECL_KERNEL(get_rows_q2_k);
|
55
|
+
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
|
56
|
+
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
|
57
|
+
GGML_METAL_DECL_KERNEL(rms_norm);
|
58
|
+
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
59
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
60
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
61
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
|
62
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
|
63
|
+
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
|
64
|
+
GGML_METAL_DECL_KERNEL(rope);
|
65
|
+
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
66
|
+
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
67
|
+
|
68
|
+
#undef GGML_METAL_DECL_KERNEL
|
69
|
+
};
|
70
|
+
|
71
|
+
// MSL code
|
72
|
+
// TODO: move the contents here when ready
|
73
|
+
// for now it is easier to work in a separate file
|
74
|
+
static NSString * const msl_library_source = @"see metal.metal";
|
75
|
+
|
76
|
+
// Here to assist with NSBundle Path Hack
|
77
|
+
@interface GGMLMetalClass : NSObject
|
78
|
+
@end
|
79
|
+
@implementation GGMLMetalClass
|
80
|
+
@end
|
81
|
+
|
82
|
+
struct ggml_metal_context * ggml_metal_init(void) {
|
83
|
+
fprintf(stderr, "%s: allocating\n", __func__);
|
84
|
+
|
85
|
+
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
86
|
+
|
87
|
+
ctx->device = MTLCreateSystemDefaultDevice();
|
88
|
+
ctx->queue = [ctx->device newCommandQueue];
|
89
|
+
|
90
|
+
// determine if we can use MPS
|
91
|
+
if (MPSSupportsMTLDevice(ctx->device)) {
|
92
|
+
fprintf(stderr, "%s: using MPS\n", __func__);
|
93
|
+
} else {
|
94
|
+
fprintf(stderr, "%s: not using MPS\n", __func__);
|
95
|
+
GGML_ASSERT(false && "MPS not supported");
|
96
|
+
}
|
97
|
+
|
98
|
+
#if 0
|
99
|
+
// compile from source string and show compile log
|
100
|
+
{
|
101
|
+
NSError * error = nil;
|
102
|
+
|
103
|
+
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
|
104
|
+
if (error) {
|
105
|
+
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
106
|
+
exit(1);
|
107
|
+
}
|
108
|
+
}
|
109
|
+
#else
|
110
|
+
UNUSED(msl_library_source);
|
111
|
+
|
112
|
+
// read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
|
113
|
+
{
|
114
|
+
NSError * error = nil;
|
115
|
+
|
116
|
+
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
|
117
|
+
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
118
|
+
NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
119
|
+
fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
|
120
|
+
|
121
|
+
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
122
|
+
if (error) {
|
123
|
+
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
124
|
+
exit(1);
|
125
|
+
}
|
126
|
+
|
127
|
+
ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
|
128
|
+
if (error) {
|
129
|
+
fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
|
130
|
+
exit(1);
|
131
|
+
}
|
132
|
+
}
|
133
|
+
#endif
|
134
|
+
|
135
|
+
// load kernels
|
136
|
+
{
|
137
|
+
#define GGML_METAL_ADD_KERNEL(name) \
|
138
|
+
ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
|
139
|
+
ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
|
140
|
+
fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
|
141
|
+
|
142
|
+
GGML_METAL_ADD_KERNEL(add);
|
143
|
+
GGML_METAL_ADD_KERNEL(mul);
|
144
|
+
GGML_METAL_ADD_KERNEL(mul_row);
|
145
|
+
GGML_METAL_ADD_KERNEL(scale);
|
146
|
+
GGML_METAL_ADD_KERNEL(silu);
|
147
|
+
GGML_METAL_ADD_KERNEL(relu);
|
148
|
+
GGML_METAL_ADD_KERNEL(gelu);
|
149
|
+
GGML_METAL_ADD_KERNEL(soft_max);
|
150
|
+
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
151
|
+
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
152
|
+
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
153
|
+
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
154
|
+
GGML_METAL_ADD_KERNEL(get_rows_q2_k);
|
155
|
+
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
|
156
|
+
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
|
157
|
+
GGML_METAL_ADD_KERNEL(rms_norm);
|
158
|
+
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
159
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
160
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
161
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
|
162
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
|
163
|
+
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
|
164
|
+
GGML_METAL_ADD_KERNEL(rope);
|
165
|
+
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
166
|
+
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
167
|
+
|
168
|
+
#undef GGML_METAL_ADD_KERNEL
|
169
|
+
}
|
170
|
+
|
171
|
+
return ctx;
|
172
|
+
}
|
173
|
+
|
174
|
+
void ggml_metal_free(struct ggml_metal_context * ctx) {
|
175
|
+
fprintf(stderr, "%s: deallocating\n", __func__);
|
176
|
+
|
177
|
+
free(ctx);
|
178
|
+
}
|
179
|
+
|
180
|
+
// finds the Metal buffer that contains the tensor data on the GPU device
|
181
|
+
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
182
|
+
// Metal buffer based on the host memory pointer
|
183
|
+
//
|
184
|
+
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
|
185
|
+
//fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
|
186
|
+
|
187
|
+
for (int i = 0; i < ctx->n_buffers; ++i) {
|
188
|
+
const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
|
189
|
+
|
190
|
+
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
|
191
|
+
*offs = (size_t) ioffs;
|
192
|
+
|
193
|
+
//fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
|
194
|
+
|
195
|
+
return ctx->buffers[i].metal;
|
196
|
+
}
|
197
|
+
}
|
198
|
+
|
199
|
+
fprintf(stderr, "%s: error: buffer is nil\n", __func__);
|
200
|
+
|
201
|
+
return nil;
|
202
|
+
}
|
203
|
+
|
204
|
+
bool ggml_metal_add_buffer(
|
205
|
+
struct ggml_metal_context * ctx,
|
206
|
+
const char * name,
|
207
|
+
void * data,
|
208
|
+
size_t size) {
|
209
|
+
if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
|
210
|
+
fprintf(stderr, "%s: too many buffers\n", __func__);
|
211
|
+
return false;
|
212
|
+
}
|
213
|
+
|
214
|
+
if (data) {
|
215
|
+
// verify that the buffer does not overlap with any of the existing buffers
|
216
|
+
for (int i = 0; i < ctx->n_buffers; ++i) {
|
217
|
+
const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
|
218
|
+
|
219
|
+
if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
|
220
|
+
fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
|
221
|
+
return false;
|
222
|
+
}
|
223
|
+
}
|
224
|
+
|
225
|
+
size_t page_size = getpagesize();
|
226
|
+
size_t aligned_size = size;
|
227
|
+
if ((aligned_size % page_size) != 0) {
|
228
|
+
aligned_size += (page_size - (aligned_size % page_size));
|
229
|
+
}
|
230
|
+
|
231
|
+
ctx->buffers[ctx->n_buffers].name = name;
|
232
|
+
ctx->buffers[ctx->n_buffers].data = data;
|
233
|
+
ctx->buffers[ctx->n_buffers].size = size;
|
234
|
+
|
235
|
+
if (ctx->device.maxBufferLength < aligned_size) {
|
236
|
+
fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
|
237
|
+
return false;
|
238
|
+
}
|
239
|
+
ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
|
240
|
+
|
241
|
+
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
242
|
+
fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
|
243
|
+
return false;
|
244
|
+
} else {
|
245
|
+
fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
|
246
|
+
}
|
247
|
+
|
248
|
+
++ctx->n_buffers;
|
249
|
+
}
|
250
|
+
|
251
|
+
return true;
|
252
|
+
}
|
253
|
+
|
254
|
+
void ggml_metal_set_tensor(
|
255
|
+
struct ggml_metal_context * ctx,
|
256
|
+
struct ggml_tensor * t) {
|
257
|
+
metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
|
258
|
+
|
259
|
+
size_t offs;
|
260
|
+
id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
|
261
|
+
|
262
|
+
memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
|
263
|
+
}
|
264
|
+
|
265
|
+
void ggml_metal_get_tensor(
|
266
|
+
struct ggml_metal_context * ctx,
|
267
|
+
struct ggml_tensor * t) {
|
268
|
+
metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
|
269
|
+
|
270
|
+
size_t offs;
|
271
|
+
id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
|
272
|
+
|
273
|
+
memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
|
274
|
+
}
|
275
|
+
|
276
|
+
void ggml_metal_graph_compute(
|
277
|
+
struct ggml_metal_context * ctx,
|
278
|
+
struct ggml_cgraph * gf) {
|
279
|
+
metal_printf("%s: evaluating graph\n", __func__);
|
280
|
+
|
281
|
+
size_t offs_src0 = 0;
|
282
|
+
size_t offs_src1 = 0;
|
283
|
+
size_t offs_dst = 0;
|
284
|
+
|
285
|
+
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
|
286
|
+
id<MTLComputeCommandEncoder> encoder = nil;
|
287
|
+
|
288
|
+
for (int i = 0; i < gf->n_nodes; ++i) {
|
289
|
+
//metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
290
|
+
|
291
|
+
struct ggml_tensor * src0 = gf->nodes[i]->src0;
|
292
|
+
struct ggml_tensor * src1 = gf->nodes[i]->src1;
|
293
|
+
struct ggml_tensor * dst = gf->nodes[i];
|
294
|
+
|
295
|
+
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
296
|
+
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
297
|
+
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
298
|
+
const int64_t ne03 = src0 ? src0->ne[3] : 0;
|
299
|
+
|
300
|
+
const uint64_t nb00 = src0 ? src0->nb[0] : 0;
|
301
|
+
const uint64_t nb01 = src0 ? src0->nb[1] : 0;
|
302
|
+
const uint64_t nb02 = src0 ? src0->nb[2] : 0;
|
303
|
+
const uint64_t nb03 = src0 ? src0->nb[3] : 0;
|
304
|
+
|
305
|
+
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
306
|
+
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
307
|
+
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
308
|
+
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
309
|
+
|
310
|
+
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
311
|
+
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
312
|
+
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
313
|
+
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
314
|
+
|
315
|
+
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
316
|
+
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
317
|
+
const int64_t ne2 = dst ? dst->ne[2] : 0;
|
318
|
+
const int64_t ne3 = dst ? dst->ne[3] : 0;
|
319
|
+
|
320
|
+
const uint64_t nb0 = dst ? dst->nb[0] : 0;
|
321
|
+
const uint64_t nb1 = dst ? dst->nb[1] : 0;
|
322
|
+
const uint64_t nb2 = dst ? dst->nb[2] : 0;
|
323
|
+
const uint64_t nb3 = dst ? dst->nb[3] : 0;
|
324
|
+
|
325
|
+
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
326
|
+
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
327
|
+
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
328
|
+
|
329
|
+
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
|
330
|
+
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
|
331
|
+
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
|
332
|
+
|
333
|
+
//metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
334
|
+
//if (src0) {
|
335
|
+
// metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
|
336
|
+
// ggml_is_contiguous(src0), src0->name);
|
337
|
+
//}
|
338
|
+
//if (src1) {
|
339
|
+
// metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
|
340
|
+
// ggml_is_contiguous(src1), src1->name);
|
341
|
+
//}
|
342
|
+
//if (dst) {
|
343
|
+
// metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
|
344
|
+
// dst->name);
|
345
|
+
//}
|
346
|
+
|
347
|
+
switch (dst->op) {
|
348
|
+
case GGML_OP_RESHAPE:
|
349
|
+
case GGML_OP_VIEW:
|
350
|
+
case GGML_OP_TRANSPOSE:
|
351
|
+
case GGML_OP_PERMUTE:
|
352
|
+
{
|
353
|
+
// noop
|
354
|
+
} break;
|
355
|
+
case GGML_OP_ADD:
|
356
|
+
{
|
357
|
+
if (encoder == nil) {
|
358
|
+
encoder = [command_buffer computeCommandEncoder];
|
359
|
+
}
|
360
|
+
|
361
|
+
[encoder setComputePipelineState:ctx->pipeline_add];
|
362
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
363
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
364
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
365
|
+
|
366
|
+
const int64_t n = ggml_nelements(dst);
|
367
|
+
|
368
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
369
|
+
} break;
|
370
|
+
case GGML_OP_MUL:
|
371
|
+
{
|
372
|
+
if (encoder == nil) {
|
373
|
+
encoder = [command_buffer computeCommandEncoder];
|
374
|
+
}
|
375
|
+
|
376
|
+
if (ggml_nelements(src1) == ne10) {
|
377
|
+
// src1 is a row
|
378
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_row];
|
379
|
+
} else {
|
380
|
+
[encoder setComputePipelineState:ctx->pipeline_mul];
|
381
|
+
}
|
382
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
383
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
384
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
385
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
386
|
+
|
387
|
+
const int64_t n = ggml_nelements(dst);
|
388
|
+
|
389
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
390
|
+
} break;
|
391
|
+
case GGML_OP_SCALE:
|
392
|
+
{
|
393
|
+
if (encoder == nil) {
|
394
|
+
encoder = [command_buffer computeCommandEncoder];
|
395
|
+
}
|
396
|
+
|
397
|
+
const float scale = *(const float *) src1->data;
|
398
|
+
|
399
|
+
[encoder setComputePipelineState:ctx->pipeline_scale];
|
400
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
401
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
402
|
+
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
403
|
+
|
404
|
+
const int64_t n = ggml_nelements(dst);
|
405
|
+
|
406
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
407
|
+
} break;
|
408
|
+
case GGML_OP_SILU:
|
409
|
+
{
|
410
|
+
if (encoder == nil) {
|
411
|
+
encoder = [command_buffer computeCommandEncoder];
|
412
|
+
}
|
413
|
+
|
414
|
+
[encoder setComputePipelineState:ctx->pipeline_silu];
|
415
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
416
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
417
|
+
|
418
|
+
const int64_t n = ggml_nelements(dst);
|
419
|
+
|
420
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
421
|
+
} break;
|
422
|
+
case GGML_OP_RELU:
|
423
|
+
{
|
424
|
+
if (encoder == nil) {
|
425
|
+
encoder = [command_buffer computeCommandEncoder];
|
426
|
+
}
|
427
|
+
|
428
|
+
[encoder setComputePipelineState:ctx->pipeline_relu];
|
429
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
430
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
431
|
+
|
432
|
+
const int64_t n = ggml_nelements(dst);
|
433
|
+
|
434
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
435
|
+
} break;
|
436
|
+
case GGML_OP_GELU:
|
437
|
+
{
|
438
|
+
if (encoder == nil) {
|
439
|
+
encoder = [command_buffer computeCommandEncoder];
|
440
|
+
}
|
441
|
+
|
442
|
+
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
443
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
444
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
445
|
+
|
446
|
+
const int64_t n = ggml_nelements(dst);
|
447
|
+
|
448
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
449
|
+
} break;
|
450
|
+
case GGML_OP_SOFT_MAX:
|
451
|
+
{
|
452
|
+
if (encoder == nil) {
|
453
|
+
encoder = [command_buffer computeCommandEncoder];
|
454
|
+
}
|
455
|
+
|
456
|
+
const int nth = 32;
|
457
|
+
|
458
|
+
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
459
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
460
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
461
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
462
|
+
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
463
|
+
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
464
|
+
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
465
|
+
|
466
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
467
|
+
} break;
|
468
|
+
case GGML_OP_DIAG_MASK_INF:
|
469
|
+
{
|
470
|
+
if (encoder == nil) {
|
471
|
+
encoder = [command_buffer computeCommandEncoder];
|
472
|
+
}
|
473
|
+
|
474
|
+
const int n_past = ((int32_t *)(src1->data))[0];
|
475
|
+
|
476
|
+
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
477
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
478
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
479
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
480
|
+
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
481
|
+
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
482
|
+
|
483
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
484
|
+
} break;
|
485
|
+
case GGML_OP_MUL_MAT:
|
486
|
+
{
|
487
|
+
// TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
|
488
|
+
|
489
|
+
GGML_ASSERT(ne00 == ne10);
|
490
|
+
GGML_ASSERT(ne02 == ne12);
|
491
|
+
|
492
|
+
if (ggml_is_contiguous(src0) &&
|
493
|
+
ggml_is_contiguous(src1) &&
|
494
|
+
(src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
|
495
|
+
|
496
|
+
if (encoder != nil) {
|
497
|
+
[encoder endEncoding];
|
498
|
+
encoder = nil;
|
499
|
+
}
|
500
|
+
|
501
|
+
MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
|
502
|
+
MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
|
503
|
+
|
504
|
+
// for F32 x F32 we use MPS
|
505
|
+
MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
|
506
|
+
matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
|
507
|
+
|
508
|
+
MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
|
509
|
+
matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
|
510
|
+
|
511
|
+
MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
|
512
|
+
matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
|
513
|
+
|
514
|
+
MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
|
515
|
+
initWithDevice:ctx->device transposeLeft:false transposeRight:true
|
516
|
+
resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
|
517
|
+
|
518
|
+
// we need to do ne02 multiplications
|
519
|
+
// TODO: is there a way to do this in parallel - currently very slow ..
|
520
|
+
// TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
|
521
|
+
for (int64_t i02 = 0; i02 < ne02; ++i02) {
|
522
|
+
size_t offs_src0_cur = offs_src0 + i02*nb02;
|
523
|
+
size_t offs_src1_cur = offs_src1 + i02*nb12;
|
524
|
+
size_t offs_dst_cur = offs_dst + i02*nb2;
|
525
|
+
|
526
|
+
MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
|
527
|
+
MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
|
528
|
+
MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
|
529
|
+
|
530
|
+
[mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
|
531
|
+
}
|
532
|
+
} else {
|
533
|
+
if (encoder == nil) {
|
534
|
+
encoder = [command_buffer computeCommandEncoder];
|
535
|
+
}
|
536
|
+
|
537
|
+
int nth0 = 32;
|
538
|
+
int nth1 = 1;
|
539
|
+
|
540
|
+
// use custom matrix x vector kernel
|
541
|
+
switch (src0t) {
|
542
|
+
case GGML_TYPE_F16:
|
543
|
+
{
|
544
|
+
GGML_ASSERT(ne02 == ne12);
|
545
|
+
|
546
|
+
nth0 = 64;
|
547
|
+
nth1 = 1;
|
548
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
549
|
+
} break;
|
550
|
+
case GGML_TYPE_Q4_0:
|
551
|
+
{
|
552
|
+
GGML_ASSERT(ne02 == 1);
|
553
|
+
GGML_ASSERT(ne12 == 1);
|
554
|
+
|
555
|
+
nth0 = 8;
|
556
|
+
nth1 = 8;
|
557
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
|
558
|
+
} break;
|
559
|
+
case GGML_TYPE_Q4_1:
|
560
|
+
{
|
561
|
+
GGML_ASSERT(ne02 == 1);
|
562
|
+
GGML_ASSERT(ne12 == 1);
|
563
|
+
|
564
|
+
nth0 = 8;
|
565
|
+
nth1 = 8;
|
566
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
|
567
|
+
} break;
|
568
|
+
case GGML_TYPE_Q2_K:
|
569
|
+
{
|
570
|
+
GGML_ASSERT(ne02 == 1);
|
571
|
+
GGML_ASSERT(ne12 == 1);
|
572
|
+
|
573
|
+
nth0 = 4;
|
574
|
+
nth1 = 16;
|
575
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
|
576
|
+
} break;
|
577
|
+
case GGML_TYPE_Q4_K:
|
578
|
+
{
|
579
|
+
GGML_ASSERT(ne02 == 1);
|
580
|
+
GGML_ASSERT(ne12 == 1);
|
581
|
+
|
582
|
+
nth0 = 4;
|
583
|
+
nth1 = 16;
|
584
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
|
585
|
+
} break;
|
586
|
+
case GGML_TYPE_Q6_K:
|
587
|
+
{
|
588
|
+
GGML_ASSERT(ne02 == 1);
|
589
|
+
GGML_ASSERT(ne12 == 1);
|
590
|
+
|
591
|
+
nth0 = 4;
|
592
|
+
nth1 = 16;
|
593
|
+
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
|
594
|
+
} break;
|
595
|
+
default:
|
596
|
+
{
|
597
|
+
fprintf(stderr, "Asserting on type %d\n",(int)src0t);
|
598
|
+
GGML_ASSERT(false && "not implemented");
|
599
|
+
}
|
600
|
+
};
|
601
|
+
|
602
|
+
|
603
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
604
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
605
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
606
|
+
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
607
|
+
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
608
|
+
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
|
609
|
+
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
|
610
|
+
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
|
611
|
+
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
|
612
|
+
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
|
613
|
+
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
|
614
|
+
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
|
615
|
+
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
|
616
|
+
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
|
617
|
+
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
|
618
|
+
|
619
|
+
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
|
620
|
+
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
621
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
622
|
+
} else if (src0t == GGML_TYPE_Q2_K) {
|
623
|
+
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
624
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
625
|
+
} else if (src0t == GGML_TYPE_Q4_K) {
|
626
|
+
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
627
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
628
|
+
} else if (src0t == GGML_TYPE_Q6_K) {
|
629
|
+
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
630
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
631
|
+
} else {
|
632
|
+
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
633
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
634
|
+
}
|
635
|
+
}
|
636
|
+
} break;
|
637
|
+
case GGML_OP_GET_ROWS:
|
638
|
+
{
|
639
|
+
if (encoder == nil) {
|
640
|
+
encoder = [command_buffer computeCommandEncoder];
|
641
|
+
}
|
642
|
+
|
643
|
+
switch (src0->type) {
|
644
|
+
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
645
|
+
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
646
|
+
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
|
647
|
+
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
|
648
|
+
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
|
649
|
+
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
|
650
|
+
default: GGML_ASSERT(false && "not implemented");
|
651
|
+
}
|
652
|
+
|
653
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
654
|
+
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
655
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
656
|
+
[encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
|
657
|
+
[encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
|
658
|
+
[encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
|
659
|
+
|
660
|
+
const int64_t n = ggml_nelements(src1);
|
661
|
+
|
662
|
+
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
663
|
+
} break;
|
664
|
+
case GGML_OP_RMS_NORM:
|
665
|
+
{
|
666
|
+
if (encoder == nil) {
|
667
|
+
encoder = [command_buffer computeCommandEncoder];
|
668
|
+
}
|
669
|
+
|
670
|
+
const float eps = 1e-6f;
|
671
|
+
|
672
|
+
const int nth = 256;
|
673
|
+
|
674
|
+
[encoder setComputePipelineState:ctx->pipeline_rms_norm];
|
675
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
676
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
677
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
678
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
679
|
+
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
680
|
+
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
681
|
+
|
682
|
+
const int64_t nrows = ggml_nrows(src0);
|
683
|
+
|
684
|
+
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
685
|
+
} break;
|
686
|
+
case GGML_OP_ROPE:
|
687
|
+
{
|
688
|
+
if (encoder == nil) {
|
689
|
+
encoder = [command_buffer computeCommandEncoder];
|
690
|
+
}
|
691
|
+
|
692
|
+
const int n_dims = ((int32_t *) src1->data)[1];
|
693
|
+
const int mode = ((int32_t *) src1->data)[2];
|
694
|
+
|
695
|
+
const int n_past = ((int32_t *)(src1->data))[0];
|
696
|
+
|
697
|
+
[encoder setComputePipelineState:ctx->pipeline_rope];
|
698
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
699
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
700
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
701
|
+
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
702
|
+
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
703
|
+
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
704
|
+
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
705
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
706
|
+
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
707
|
+
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
708
|
+
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
709
|
+
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
710
|
+
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
711
|
+
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
712
|
+
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
713
|
+
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
714
|
+
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
715
|
+
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
716
|
+
[encoder setBytes:&n_past length:sizeof( int) atIndex:18];
|
717
|
+
[encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
|
718
|
+
[encoder setBytes:&mode length:sizeof( int) atIndex:20];
|
719
|
+
|
720
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
721
|
+
} break;
|
722
|
+
case GGML_OP_CPY:
|
723
|
+
{
|
724
|
+
if (encoder == nil) {
|
725
|
+
encoder = [command_buffer computeCommandEncoder];
|
726
|
+
}
|
727
|
+
|
728
|
+
const int nth = 32;
|
729
|
+
|
730
|
+
switch (src0t) {
|
731
|
+
case GGML_TYPE_F32:
|
732
|
+
{
|
733
|
+
switch (dstt) {
|
734
|
+
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
|
735
|
+
case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
|
736
|
+
default: GGML_ASSERT(false && "not implemented");
|
737
|
+
};
|
738
|
+
} break;
|
739
|
+
default: GGML_ASSERT(false && "not implemented");
|
740
|
+
}
|
741
|
+
|
742
|
+
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
743
|
+
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
744
|
+
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
745
|
+
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
746
|
+
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
747
|
+
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
748
|
+
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
749
|
+
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
750
|
+
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
751
|
+
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
752
|
+
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
753
|
+
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
754
|
+
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
755
|
+
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
756
|
+
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
757
|
+
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
758
|
+
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
759
|
+
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
760
|
+
|
761
|
+
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
762
|
+
} break;
|
763
|
+
default:
|
764
|
+
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
765
|
+
GGML_ASSERT(false);
|
766
|
+
}
|
767
|
+
}
|
768
|
+
|
769
|
+
if (encoder != nil) {
|
770
|
+
[encoder endEncoding];
|
771
|
+
encoder = nil;
|
772
|
+
}
|
773
|
+
|
774
|
+
[command_buffer commit];
|
775
|
+
[command_buffer waitUntilCompleted];
|
776
|
+
|
777
|
+
{
|
778
|
+
const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
|
779
|
+
UNUSED(time_elapsed);
|
780
|
+
|
781
|
+
metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
|
782
|
+
}
|
783
|
+
}
|