llama_cpp 0.1.2 → 0.1.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +13 -7
- data/ext/llama_cpp/extconf.rb +1 -2
- data/ext/llama_cpp/src/ggml-opencl.cpp +1028 -0
- data/ext/llama_cpp/src/ggml-opencl.h +8 -10
- data/ext/llama_cpp/src/ggml.c +568 -57
- data/ext/llama_cpp/src/ggml.h +21 -2
- data/ext/llama_cpp/src/llama.cpp +37 -2
- data/ext/llama_cpp/src/llama.h +5 -0
- data/lib/llama_cpp/version.rb +2 -2
- metadata +3 -3
- data/ext/llama_cpp/src/ggml-opencl.c +0 -474
@@ -0,0 +1,1028 @@
|
|
1
|
+
#include "ggml-opencl.h"
|
2
|
+
|
3
|
+
#include <array>
|
4
|
+
#include <atomic>
|
5
|
+
#include <sstream>
|
6
|
+
|
7
|
+
#define CL_TARGET_OPENCL_VERSION 110
|
8
|
+
#include <clblast.h>
|
9
|
+
|
10
|
+
#include <stdlib.h>
|
11
|
+
#include <stdio.h>
|
12
|
+
#include <string.h>
|
13
|
+
|
14
|
+
#include "ggml.h"
|
15
|
+
|
16
|
+
#define CL_DMMV_BLOCK_SIZE 32;
|
17
|
+
|
18
|
+
#define MULTILINE_QUOTE(...) #__VA_ARGS__
|
19
|
+
static std::string program_source = MULTILINE_QUOTE(
|
20
|
+
|
21
|
+
typedef char int8_t;
|
22
|
+
typedef uchar uint8_t;
|
23
|
+
typedef int int32_t;
|
24
|
+
typedef uint uint32_t;
|
25
|
+
|
26
|
+
struct __attribute__ ((packed)) block_q4_0
|
27
|
+
{
|
28
|
+
half d;
|
29
|
+
uint8_t qs[QK4_0 / 2];
|
30
|
+
};
|
31
|
+
|
32
|
+
struct __attribute__ ((packed)) block_q4_1
|
33
|
+
{
|
34
|
+
half d;
|
35
|
+
half m;
|
36
|
+
uint8_t qs[QK4_1 / 2];
|
37
|
+
};
|
38
|
+
|
39
|
+
struct __attribute__ ((packed)) block_q5_0
|
40
|
+
{
|
41
|
+
half d;
|
42
|
+
uint32_t qh;
|
43
|
+
uint8_t qs[QK5_0 / 2];
|
44
|
+
};
|
45
|
+
|
46
|
+
struct __attribute__ ((packed)) block_q5_1
|
47
|
+
{
|
48
|
+
half d;
|
49
|
+
half m;
|
50
|
+
uint32_t qh;
|
51
|
+
uint8_t qs[QK5_1 / 2];
|
52
|
+
};
|
53
|
+
|
54
|
+
struct __attribute__ ((packed)) block_q8_0
|
55
|
+
{
|
56
|
+
half d;
|
57
|
+
int8_t qs[QK8_0];
|
58
|
+
};
|
59
|
+
|
60
|
+
|
61
|
+
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
|
62
|
+
const uint i = get_global_id(0);
|
63
|
+
|
64
|
+
y[i] = vload_half(0, &x[i]);
|
65
|
+
}
|
66
|
+
|
67
|
+
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
68
|
+
const float d = vload_half(0, &x[ib].d);
|
69
|
+
|
70
|
+
const uint8_t vui = x[ib].qs[iqs];
|
71
|
+
|
72
|
+
const int8_t vi0 = vui & 0xF;
|
73
|
+
const int8_t vi1 = vui >> 4;
|
74
|
+
|
75
|
+
*v0 = (vi0 - 8)*d;
|
76
|
+
*v1 = (vi1 - 8)*d;
|
77
|
+
}
|
78
|
+
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
|
79
|
+
const float d = vload_half(0, &x[ib].d);
|
80
|
+
const float m = vload_half(0, &x[ib].m);
|
81
|
+
|
82
|
+
const uint8_t vui = x[ib].qs[iqs];
|
83
|
+
|
84
|
+
const int8_t vi0 = vui & 0xF;
|
85
|
+
const int8_t vi1 = vui >> 4;
|
86
|
+
|
87
|
+
*v0 = vi0*d + m;
|
88
|
+
*v1 = vi1*d + m;
|
89
|
+
}
|
90
|
+
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
91
|
+
const float d = vload_half(0, &x[ib].d);
|
92
|
+
|
93
|
+
uint32_t qh = x[ib].qh;
|
94
|
+
|
95
|
+
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
96
|
+
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
97
|
+
|
98
|
+
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
|
99
|
+
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
|
100
|
+
|
101
|
+
*v0 = x0*d;
|
102
|
+
*v1 = x1*d;
|
103
|
+
}
|
104
|
+
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
|
105
|
+
const float d = vload_half(0, &x[ib].d);
|
106
|
+
const float m = vload_half(0, &x[ib].m);
|
107
|
+
|
108
|
+
uint32_t qh = x[ib].qh;
|
109
|
+
|
110
|
+
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
111
|
+
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
112
|
+
|
113
|
+
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
114
|
+
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
|
115
|
+
|
116
|
+
*v0 = x0*d + m;
|
117
|
+
*v1 = x1*d + m;
|
118
|
+
}
|
119
|
+
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
120
|
+
const float d = vload_half(0, &x[ib].d);
|
121
|
+
|
122
|
+
const int8_t vi0 = x[ib].qs[iqs + 0];
|
123
|
+
const int8_t vi1 = x[ib].qs[iqs + 1];
|
124
|
+
|
125
|
+
*v0 = vi0*d;
|
126
|
+
*v1 = vi1*d;
|
127
|
+
}
|
128
|
+
void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
|
129
|
+
*v0 = vload_half(0, &x[ib + 0]);
|
130
|
+
*v1 = vload_half(0, &x[ib + 1]);
|
131
|
+
}
|
132
|
+
);
|
133
|
+
|
134
|
+
std::string dequant_template = MULTILINE_QUOTE(
|
135
|
+
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
136
|
+
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
|
137
|
+
|
138
|
+
if (i >= get_global_size(0)) {
|
139
|
+
return;
|
140
|
+
}
|
141
|
+
|
142
|
+
const uint qk = QUANT_K;
|
143
|
+
const uint qr = QUANT_R;
|
144
|
+
|
145
|
+
const int ib = i/qk; // block index
|
146
|
+
const int iqs = (i%qk)/qr; // quant index
|
147
|
+
const int iybs = i - i%qk; // y block start index
|
148
|
+
const int y_offset = qr == 1 ? 1 : qk/2;
|
149
|
+
|
150
|
+
// dequantize
|
151
|
+
float v0, v1;
|
152
|
+
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
|
153
|
+
y[iybs + iqs + 0] = v0;
|
154
|
+
y[iybs + iqs + y_offset] = v1;
|
155
|
+
}
|
156
|
+
);
|
157
|
+
|
158
|
+
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
|
159
|
+
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
|
160
|
+
const int block_size = get_local_size(0);
|
161
|
+
const int row = get_global_id(0) / block_size;
|
162
|
+
const int tid = get_local_id(0);
|
163
|
+
|
164
|
+
const uint qk = QUANT_K;
|
165
|
+
const uint qr = QUANT_R;
|
166
|
+
|
167
|
+
const int y_offset = qr == 1 ? 1 : qk/2;
|
168
|
+
|
169
|
+
tmp[tid] = 0;
|
170
|
+
|
171
|
+
for (int i = 0; i < ncols/block_size; i += 2) {
|
172
|
+
const int col = i*block_size + 2*tid;
|
173
|
+
const int ib = (row*ncols + col)/qk; // block index
|
174
|
+
const int iqs = (col%qk)/qr; // quant index
|
175
|
+
const int iybs = col - col%qk; // y block start index
|
176
|
+
|
177
|
+
// dequantize
|
178
|
+
float v0, v1;
|
179
|
+
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
|
180
|
+
|
181
|
+
// matrix multiplication
|
182
|
+
tmp[tid] += v0 * y[iybs + iqs + 0];
|
183
|
+
tmp[tid] += v1 * y[iybs + iqs + y_offset];
|
184
|
+
}
|
185
|
+
|
186
|
+
// sum up partial sums and write back result
|
187
|
+
barrier(CLK_LOCAL_MEM_FENCE);
|
188
|
+
for (int s=block_size/2; s>0; s>>=1) {
|
189
|
+
if (tid < s) {
|
190
|
+
tmp[tid] += tmp[tid + s];
|
191
|
+
}
|
192
|
+
barrier(CLK_LOCAL_MEM_FENCE);
|
193
|
+
}
|
194
|
+
if (tid == 0) {
|
195
|
+
dst[row] = tmp[0];
|
196
|
+
}
|
197
|
+
}
|
198
|
+
);
|
199
|
+
|
200
|
+
#define CL_CHECK(err) \
|
201
|
+
do { \
|
202
|
+
cl_int err_ = (err); \
|
203
|
+
if (err_ != CL_SUCCESS) { \
|
204
|
+
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
|
205
|
+
#err, err_, __FILE__, __LINE__); \
|
206
|
+
exit(1); \
|
207
|
+
} \
|
208
|
+
} while (0)
|
209
|
+
|
210
|
+
#define CLBLAST_CHECK(err) \
|
211
|
+
do { \
|
212
|
+
CLBlastStatusCode err_ = (err); \
|
213
|
+
if (err_ != CLBlastSuccess) { \
|
214
|
+
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
|
215
|
+
#err, err_, __FILE__, __LINE__); \
|
216
|
+
exit(1); \
|
217
|
+
} \
|
218
|
+
} while (0)
|
219
|
+
|
220
|
+
std::array<std::string, 5> dequant_str_keys = {
|
221
|
+
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
|
222
|
+
};
|
223
|
+
|
224
|
+
std::array<std::string, 30> dequant_str_values = {
|
225
|
+
"dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
|
226
|
+
"dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
|
227
|
+
"dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
|
228
|
+
"dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
|
229
|
+
"dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
|
230
|
+
"convert_row_f16", "half", "1", "1", "convert_f16"
|
231
|
+
};
|
232
|
+
|
233
|
+
std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
|
234
|
+
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
|
235
|
+
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
|
236
|
+
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
|
237
|
+
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
|
238
|
+
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
|
239
|
+
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
|
240
|
+
};
|
241
|
+
|
242
|
+
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
|
243
|
+
size_t pos = 0;
|
244
|
+
while ((pos = s.find(from, pos)) != std::string::npos) {
|
245
|
+
s.replace(pos, from.length(), to);
|
246
|
+
pos += to.length();
|
247
|
+
}
|
248
|
+
return s;
|
249
|
+
}
|
250
|
+
|
251
|
+
std::string generate_kernels() {
|
252
|
+
std::stringstream src;
|
253
|
+
src << program_source << '\n';
|
254
|
+
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
|
255
|
+
std::string dequant_kernel = dequant_template;
|
256
|
+
std::string dmmv_kernel = dequant_mul_mat_vec_template;
|
257
|
+
for (size_t j = 0; j < dequant_str_keys.size(); j++) {
|
258
|
+
replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
|
259
|
+
replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
|
260
|
+
}
|
261
|
+
src << dequant_kernel << '\n';
|
262
|
+
src << dmmv_kernel << '\n';
|
263
|
+
}
|
264
|
+
return src.str();
|
265
|
+
}
|
266
|
+
|
267
|
+
static cl_platform_id platform;
|
268
|
+
static cl_device_id device;
|
269
|
+
static cl_context context;
|
270
|
+
static cl_command_queue queue;
|
271
|
+
static cl_program program;
|
272
|
+
static cl_kernel convert_row_f16_cl;
|
273
|
+
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
|
274
|
+
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
|
275
|
+
static bool fp16_support;
|
276
|
+
|
277
|
+
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
|
278
|
+
cl_program p;
|
279
|
+
char *program_log;
|
280
|
+
size_t program_size;
|
281
|
+
size_t log_size;
|
282
|
+
int err;
|
283
|
+
|
284
|
+
program_size = strlen(program_buffer);
|
285
|
+
|
286
|
+
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
|
287
|
+
if(err < 0) {
|
288
|
+
fprintf(stderr, "OpenCL error creating program");
|
289
|
+
exit(1);
|
290
|
+
}
|
291
|
+
|
292
|
+
const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
|
293
|
+
"-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1";
|
294
|
+
|
295
|
+
err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL);
|
296
|
+
if(err < 0) {
|
297
|
+
|
298
|
+
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
|
299
|
+
program_log = (char*) malloc(log_size + 1);
|
300
|
+
program_log[log_size] = '\0';
|
301
|
+
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
|
302
|
+
fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
|
303
|
+
free(program_log);
|
304
|
+
exit(1);
|
305
|
+
}
|
306
|
+
|
307
|
+
return p;
|
308
|
+
}
|
309
|
+
|
310
|
+
void ggml_cl_init(void) {
|
311
|
+
cl_int err;
|
312
|
+
|
313
|
+
struct cl_device;
|
314
|
+
struct cl_platform {
|
315
|
+
cl_platform_id id;
|
316
|
+
unsigned number;
|
317
|
+
char name[128];
|
318
|
+
char vendor[128];
|
319
|
+
struct cl_device * devices;
|
320
|
+
unsigned n_devices;
|
321
|
+
struct cl_device * default_device;
|
322
|
+
};
|
323
|
+
|
324
|
+
struct cl_device {
|
325
|
+
struct cl_platform * platform;
|
326
|
+
cl_device_id id;
|
327
|
+
unsigned number;
|
328
|
+
cl_device_type type;
|
329
|
+
char name[128];
|
330
|
+
};
|
331
|
+
|
332
|
+
enum { NPLAT = 16, NDEV = 16 };
|
333
|
+
|
334
|
+
struct cl_platform platforms[NPLAT];
|
335
|
+
unsigned n_platforms = 0;
|
336
|
+
struct cl_device devices[NDEV];
|
337
|
+
unsigned n_devices = 0;
|
338
|
+
struct cl_device * default_device = NULL;
|
339
|
+
|
340
|
+
platform = NULL;
|
341
|
+
device = NULL;
|
342
|
+
|
343
|
+
cl_platform_id platform_ids[NPLAT];
|
344
|
+
CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
|
345
|
+
|
346
|
+
for (unsigned i = 0; i < n_platforms; i++) {
|
347
|
+
struct cl_platform * p = &platforms[i];
|
348
|
+
p->number = i;
|
349
|
+
p->id = platform_ids[i];
|
350
|
+
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
|
351
|
+
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
|
352
|
+
|
353
|
+
cl_device_id device_ids[NDEV];
|
354
|
+
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
|
355
|
+
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
|
356
|
+
p->n_devices = 0;
|
357
|
+
} else {
|
358
|
+
CL_CHECK(clGetDeviceIDsError);
|
359
|
+
}
|
360
|
+
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
|
361
|
+
p->default_device = NULL;
|
362
|
+
|
363
|
+
for (unsigned j = 0; j < p->n_devices; j++) {
|
364
|
+
struct cl_device * d = &devices[n_devices];
|
365
|
+
d->number = n_devices++;
|
366
|
+
d->id = device_ids[j];
|
367
|
+
d->platform = p;
|
368
|
+
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
|
369
|
+
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
|
370
|
+
|
371
|
+
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
|
372
|
+
p->default_device = d;
|
373
|
+
}
|
374
|
+
}
|
375
|
+
|
376
|
+
if (default_device == NULL && p->default_device != NULL) {
|
377
|
+
default_device = p->default_device;
|
378
|
+
}
|
379
|
+
}
|
380
|
+
|
381
|
+
if (n_devices == 0) {
|
382
|
+
fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
|
383
|
+
exit(1);
|
384
|
+
}
|
385
|
+
|
386
|
+
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
|
387
|
+
char * user_device_string = getenv("GGML_OPENCL_DEVICE");
|
388
|
+
int user_platform_number = -1;
|
389
|
+
int user_device_number = -1;
|
390
|
+
|
391
|
+
unsigned n;
|
392
|
+
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
|
393
|
+
user_platform_number = (int)n;
|
394
|
+
}
|
395
|
+
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
|
396
|
+
user_device_number = (int)n;
|
397
|
+
}
|
398
|
+
if (user_platform_number != -1 && user_device_number != -1) {
|
399
|
+
cl_platform* platform = &platforms[user_platform_number];
|
400
|
+
if ((unsigned)user_device_number >= platform->n_devices) {
|
401
|
+
fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
|
402
|
+
exit(1);
|
403
|
+
}
|
404
|
+
default_device = &platform->devices[user_device_number];
|
405
|
+
} else {
|
406
|
+
|
407
|
+
struct cl_device * selected_devices = devices;
|
408
|
+
unsigned n_selected_devices = n_devices;
|
409
|
+
|
410
|
+
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
|
411
|
+
for (unsigned i = 0; i < n_platforms; i++) {
|
412
|
+
struct cl_platform * p = &platforms[i];
|
413
|
+
if (strstr(p->name, user_platform_string) != NULL ||
|
414
|
+
strstr(p->vendor, user_platform_string) != NULL) {
|
415
|
+
user_platform_number = (int)i;
|
416
|
+
break;
|
417
|
+
}
|
418
|
+
}
|
419
|
+
if (user_platform_number == -1) {
|
420
|
+
fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
|
421
|
+
exit(1);
|
422
|
+
}
|
423
|
+
}
|
424
|
+
if (user_platform_number != -1) {
|
425
|
+
struct cl_platform * p = &platforms[user_platform_number];
|
426
|
+
selected_devices = p->devices;
|
427
|
+
n_selected_devices = p->n_devices;
|
428
|
+
default_device = p->default_device;
|
429
|
+
if (n_selected_devices == 0) {
|
430
|
+
fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
|
431
|
+
exit(1);
|
432
|
+
}
|
433
|
+
}
|
434
|
+
|
435
|
+
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
|
436
|
+
for (unsigned i = 0; i < n_selected_devices; i++) {
|
437
|
+
struct cl_device * d = &selected_devices[i];
|
438
|
+
if (strstr(d->name, user_device_string) != NULL) {
|
439
|
+
user_device_number = d->number;
|
440
|
+
break;
|
441
|
+
}
|
442
|
+
}
|
443
|
+
if (user_device_number == -1) {
|
444
|
+
fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
|
445
|
+
exit(1);
|
446
|
+
}
|
447
|
+
}
|
448
|
+
if (user_device_number != -1) {
|
449
|
+
selected_devices = &devices[user_device_number];
|
450
|
+
n_selected_devices = 1;
|
451
|
+
default_device = &selected_devices[0];
|
452
|
+
}
|
453
|
+
|
454
|
+
GGML_ASSERT(n_selected_devices > 0);
|
455
|
+
|
456
|
+
if (default_device == NULL) {
|
457
|
+
default_device = &selected_devices[0];
|
458
|
+
}
|
459
|
+
}
|
460
|
+
|
461
|
+
fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
|
462
|
+
fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
|
463
|
+
if (default_device->type != CL_DEVICE_TYPE_GPU) {
|
464
|
+
fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
|
465
|
+
}
|
466
|
+
|
467
|
+
platform = default_device->platform->id;
|
468
|
+
device = default_device->id;
|
469
|
+
|
470
|
+
size_t ext_str_size;
|
471
|
+
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
|
472
|
+
char *ext_buffer = (char *)alloca(ext_str_size + 1);
|
473
|
+
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
|
474
|
+
ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
|
475
|
+
// Check if ext_buffer contains cl_khr_fp16
|
476
|
+
fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
|
477
|
+
fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
|
478
|
+
|
479
|
+
cl_context_properties properties[] = {
|
480
|
+
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
|
481
|
+
};
|
482
|
+
|
483
|
+
CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
|
484
|
+
|
485
|
+
CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
|
486
|
+
(err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
|
487
|
+
(queue = clCreateCommandQueue(context, device, 0, &err), err)
|
488
|
+
)));
|
489
|
+
|
490
|
+
const std::string kernel_src = generate_kernels();
|
491
|
+
|
492
|
+
program = build_program_from_source(context, device, kernel_src.c_str());
|
493
|
+
|
494
|
+
// FP16 to FP32 kernel
|
495
|
+
CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
|
496
|
+
|
497
|
+
// Dequantize kernels
|
498
|
+
CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
|
499
|
+
CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
|
500
|
+
CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
|
501
|
+
CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
|
502
|
+
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
|
503
|
+
|
504
|
+
// dequant mul mat kernel
|
505
|
+
CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
|
506
|
+
CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
|
507
|
+
CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
|
508
|
+
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
|
509
|
+
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
|
510
|
+
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
|
511
|
+
}
|
512
|
+
|
513
|
+
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
|
514
|
+
switch (type) {
|
515
|
+
case GGML_TYPE_Q4_0:
|
516
|
+
return &dequantize_row_q4_0_cl;
|
517
|
+
case GGML_TYPE_Q4_1:
|
518
|
+
return &dequantize_row_q4_1_cl;
|
519
|
+
case GGML_TYPE_Q5_0:
|
520
|
+
return &dequantize_row_q5_0_cl;
|
521
|
+
case GGML_TYPE_Q5_1:
|
522
|
+
return &dequantize_row_q5_1_cl;
|
523
|
+
case GGML_TYPE_Q8_0:
|
524
|
+
return &dequantize_row_q8_0_cl;
|
525
|
+
case GGML_TYPE_F16:
|
526
|
+
return &convert_row_f16_cl;
|
527
|
+
default:
|
528
|
+
return nullptr;
|
529
|
+
}
|
530
|
+
}
|
531
|
+
|
532
|
+
static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
|
533
|
+
switch (type) {
|
534
|
+
case GGML_TYPE_Q4_0:
|
535
|
+
return &dequantize_mul_mat_vec_q4_0_cl;
|
536
|
+
case GGML_TYPE_Q4_1:
|
537
|
+
return &dequantize_mul_mat_vec_q4_1_cl;
|
538
|
+
case GGML_TYPE_Q5_0:
|
539
|
+
return &dequantize_mul_mat_vec_q5_0_cl;
|
540
|
+
case GGML_TYPE_Q5_1:
|
541
|
+
return &dequantize_mul_mat_vec_q5_1_cl;
|
542
|
+
case GGML_TYPE_Q8_0:
|
543
|
+
return &dequantize_mul_mat_vec_q8_0_cl;
|
544
|
+
case GGML_TYPE_F16:
|
545
|
+
return &convert_mul_mat_vec_f16_cl;
|
546
|
+
default:
|
547
|
+
return nullptr;
|
548
|
+
}
|
549
|
+
}
|
550
|
+
|
551
|
+
// buffer pool for cl
|
552
|
+
#define MAX_CL_BUFFERS 256
|
553
|
+
|
554
|
+
struct scoped_spin_lock {
|
555
|
+
std::atomic_flag& lock;
|
556
|
+
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
|
557
|
+
while (lock.test_and_set(std::memory_order_acquire)) {
|
558
|
+
; // spin
|
559
|
+
}
|
560
|
+
}
|
561
|
+
~scoped_spin_lock() {
|
562
|
+
lock.clear(std::memory_order_release);
|
563
|
+
}
|
564
|
+
scoped_spin_lock(const scoped_spin_lock&) = delete;
|
565
|
+
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
|
566
|
+
};
|
567
|
+
|
568
|
+
struct cl_buffer {
|
569
|
+
cl_mem mem;
|
570
|
+
size_t size = 0;
|
571
|
+
};
|
572
|
+
|
573
|
+
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
|
574
|
+
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
|
575
|
+
|
576
|
+
static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) {
|
577
|
+
scoped_spin_lock lock(g_cl_pool_lock);
|
578
|
+
cl_int err;
|
579
|
+
|
580
|
+
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
|
581
|
+
cl_buffer& b = g_cl_buffer_pool[i];
|
582
|
+
if (b.size > 0 && b.size >= size) {
|
583
|
+
cl_mem mem = b.mem;
|
584
|
+
*actual_size = b.size;
|
585
|
+
b.size = 0;
|
586
|
+
return mem;
|
587
|
+
}
|
588
|
+
}
|
589
|
+
cl_mem mem;
|
590
|
+
CL_CHECK((mem = clCreateBuffer(context, flags, size, NULL, &err), err));
|
591
|
+
*actual_size = size;
|
592
|
+
return mem;
|
593
|
+
}
|
594
|
+
|
595
|
+
static void ggml_cl_pool_free(cl_mem mem, size_t size) {
|
596
|
+
scoped_spin_lock lock(g_cl_pool_lock);
|
597
|
+
|
598
|
+
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
|
599
|
+
cl_buffer& b = g_cl_buffer_pool[i];
|
600
|
+
if (b.size == 0) {
|
601
|
+
b.mem = mem;
|
602
|
+
b.size = size;
|
603
|
+
return;
|
604
|
+
}
|
605
|
+
}
|
606
|
+
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
|
607
|
+
clReleaseMemObject(mem);
|
608
|
+
}
|
609
|
+
|
610
|
+
static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
|
611
|
+
cl_int err;
|
612
|
+
const uint64_t ne0 = src->ne[0];
|
613
|
+
const uint64_t ne1 = src->ne[1];
|
614
|
+
const uint64_t nb0 = src->nb[0];
|
615
|
+
const uint64_t nb1 = src->nb[1];
|
616
|
+
const uint64_t nb2 = src->nb[2];
|
617
|
+
const uint64_t nb3 = src->nb[3];
|
618
|
+
const enum ggml_type type = src->type;
|
619
|
+
const size_t ts = ggml_type_size(type);
|
620
|
+
const size_t bs = ggml_blck_size(type);
|
621
|
+
|
622
|
+
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
|
623
|
+
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
624
|
+
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
|
625
|
+
return err;
|
626
|
+
}
|
627
|
+
if (nb0 == ts) {
|
628
|
+
const size_t buffer_origin[3] = { offset, 0, 0 };
|
629
|
+
const size_t host_origin[3] = { 0, 0, 0 };
|
630
|
+
const size_t region[3] = { ts*ne0/bs, ne1, 1 };
|
631
|
+
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
|
632
|
+
return err;
|
633
|
+
}
|
634
|
+
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
635
|
+
// pretend the row is a matrix with cols=1
|
636
|
+
const size_t buffer_origin[3] = { offset, i1, 0 };
|
637
|
+
const size_t host_origin[3] = { 0, 0, 0 };
|
638
|
+
const size_t region[3] = { ts/bs, ne0, 1 };
|
639
|
+
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
|
640
|
+
if (err != CL_SUCCESS) {
|
641
|
+
break;
|
642
|
+
}
|
643
|
+
}
|
644
|
+
return err;
|
645
|
+
}
|
646
|
+
|
647
|
+
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
648
|
+
const int64_t ne00 = src0->ne[0];
|
649
|
+
const int64_t ne01 = src0->ne[1];
|
650
|
+
const int64_t ne02 = src0->ne[2];
|
651
|
+
const int64_t ne03 = src0->ne[3];
|
652
|
+
|
653
|
+
const int64_t ne10 = src1->ne[0];
|
654
|
+
const int64_t ne11 = src1->ne[1];
|
655
|
+
|
656
|
+
const int nb2 = dst->nb[2];
|
657
|
+
const int nb3 = dst->nb[3];
|
658
|
+
|
659
|
+
const float alpha = 1.0f;
|
660
|
+
const float beta = 0.0f;
|
661
|
+
const int x_ne = ne01 * ne00;
|
662
|
+
const int y_ne = ne11 * ne10;
|
663
|
+
const int d_ne = ne11 * ne01;
|
664
|
+
|
665
|
+
size_t x_size;
|
666
|
+
size_t y_size;
|
667
|
+
size_t d_size;
|
668
|
+
cl_mem d_X;
|
669
|
+
if (src0->backend == GGML_BACKEND_CL) {
|
670
|
+
d_X = (cl_mem) src0->data;
|
671
|
+
} else {
|
672
|
+
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
|
673
|
+
}
|
674
|
+
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
|
675
|
+
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
|
676
|
+
|
677
|
+
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
678
|
+
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
679
|
+
// copy data to device
|
680
|
+
if (src0->backend != GGML_BACKEND_CL) {
|
681
|
+
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
682
|
+
}
|
683
|
+
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
684
|
+
|
685
|
+
CL_CHECK(clFinish(queue));
|
686
|
+
|
687
|
+
// compute
|
688
|
+
cl_event ev_sgemm;
|
689
|
+
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
690
|
+
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
691
|
+
ne01, ne11, ne10,
|
692
|
+
alpha,
|
693
|
+
d_X, 0, ne00,
|
694
|
+
d_Y, 0, ne10,
|
695
|
+
beta,
|
696
|
+
d_D, 0, ne01,
|
697
|
+
&queue, &ev_sgemm);
|
698
|
+
|
699
|
+
if (status != clblast::StatusCode::kSuccess) {
|
700
|
+
GGML_ASSERT(false);
|
701
|
+
}
|
702
|
+
|
703
|
+
// copy dst to host
|
704
|
+
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
705
|
+
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
706
|
+
}
|
707
|
+
}
|
708
|
+
|
709
|
+
if (src0->backend != GGML_BACKEND_CL) {
|
710
|
+
ggml_cl_pool_free(d_X, x_size);
|
711
|
+
}
|
712
|
+
ggml_cl_pool_free(d_Y, y_size);
|
713
|
+
ggml_cl_pool_free(d_D, d_size);
|
714
|
+
}
|
715
|
+
|
716
|
+
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
|
717
|
+
GGML_ASSERT(fp16_support);
|
718
|
+
|
719
|
+
const int64_t ne00 = src0->ne[0];
|
720
|
+
const int64_t ne01 = src0->ne[1];
|
721
|
+
const int64_t ne02 = src0->ne[2];
|
722
|
+
const int64_t ne03 = src0->ne[3];
|
723
|
+
|
724
|
+
const int64_t ne10 = src1->ne[0];
|
725
|
+
const int64_t ne11 = src1->ne[1];
|
726
|
+
|
727
|
+
const int nb10 = src1->nb[0];
|
728
|
+
const int nb11 = src1->nb[1];
|
729
|
+
const int nb12 = src1->nb[2];
|
730
|
+
const int nb13 = src1->nb[3];
|
731
|
+
|
732
|
+
const int nb2 = dst->nb[2];
|
733
|
+
const int nb3 = dst->nb[3];
|
734
|
+
|
735
|
+
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
736
|
+
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
737
|
+
const int x_ne = ne01 * ne00;
|
738
|
+
const int y_ne = ne11 * ne10;
|
739
|
+
const int d_ne = ne11 * ne01;
|
740
|
+
|
741
|
+
size_t x_size;
|
742
|
+
size_t y_size;
|
743
|
+
size_t d_size;
|
744
|
+
cl_mem d_X;
|
745
|
+
if (src0->backend == GGML_BACKEND_CL) {
|
746
|
+
d_X = (cl_mem) src0->data;
|
747
|
+
} else {
|
748
|
+
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
|
749
|
+
}
|
750
|
+
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY);
|
751
|
+
cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
|
752
|
+
|
753
|
+
bool src1_cont_rows = nb10 == sizeof(float);
|
754
|
+
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
755
|
+
|
756
|
+
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
757
|
+
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
758
|
+
// copy src0 to device
|
759
|
+
if (src0->backend != GGML_BACKEND_CL) {
|
760
|
+
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
761
|
+
}
|
762
|
+
|
763
|
+
// convert src1 to fp16
|
764
|
+
// TODO: use multiple threads
|
765
|
+
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
|
766
|
+
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
|
767
|
+
if (src1_cont_rows) {
|
768
|
+
if (src1_cont_cols) {
|
769
|
+
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
770
|
+
}
|
771
|
+
else {
|
772
|
+
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
773
|
+
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
|
774
|
+
}
|
775
|
+
}
|
776
|
+
}
|
777
|
+
else {
|
778
|
+
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
779
|
+
for (int64_t i00 = 0; i00 < ne10; i00++) {
|
780
|
+
// very slow due to no inlining
|
781
|
+
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
|
782
|
+
}
|
783
|
+
}
|
784
|
+
}
|
785
|
+
|
786
|
+
// copy src1 to device
|
787
|
+
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
|
788
|
+
|
789
|
+
CL_CHECK(clFinish(queue));
|
790
|
+
|
791
|
+
// compute
|
792
|
+
cl_event ev_sgemm;
|
793
|
+
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
|
794
|
+
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
795
|
+
ne01, ne11, ne10,
|
796
|
+
alpha,
|
797
|
+
d_X, 0, ne00,
|
798
|
+
d_Y, 0, ne10,
|
799
|
+
beta,
|
800
|
+
d_D, 0, ne01,
|
801
|
+
&queue, &ev_sgemm);
|
802
|
+
|
803
|
+
if (status != clblast::StatusCode::kSuccess) {
|
804
|
+
GGML_ASSERT(false);
|
805
|
+
}
|
806
|
+
|
807
|
+
// copy dst to host, then convert to float
|
808
|
+
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
809
|
+
|
810
|
+
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
811
|
+
|
812
|
+
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
813
|
+
}
|
814
|
+
}
|
815
|
+
|
816
|
+
if (src0->backend != GGML_BACKEND_CL) {
|
817
|
+
ggml_cl_pool_free(d_X, x_size);
|
818
|
+
}
|
819
|
+
ggml_cl_pool_free(d_Y, y_size);
|
820
|
+
ggml_cl_pool_free(d_D, d_size);
|
821
|
+
}
|
822
|
+
|
823
|
+
static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
824
|
+
const int64_t ne00 = src0->ne[0];
|
825
|
+
const int64_t ne01 = src0->ne[1];
|
826
|
+
const int64_t ne02 = src0->ne[2];
|
827
|
+
const int64_t ne03 = src0->ne[3];
|
828
|
+
|
829
|
+
const int64_t ne10 = src1->ne[0];
|
830
|
+
const int64_t ne11 = src1->ne[1];
|
831
|
+
|
832
|
+
const int nb2 = dst->nb[2];
|
833
|
+
const int nb3 = dst->nb[3];
|
834
|
+
const ggml_type type = src0->type;
|
835
|
+
const bool mul_mat_vec = ne11 == 1;
|
836
|
+
|
837
|
+
const float alpha = 1.0f;
|
838
|
+
const float beta = 0.0f;
|
839
|
+
const int x_ne = ne01 * ne00;
|
840
|
+
const int y_ne = ne11 * ne10;
|
841
|
+
const int d_ne = ne11 * ne01;
|
842
|
+
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
|
843
|
+
|
844
|
+
size_t x_size;
|
845
|
+
size_t y_size;
|
846
|
+
size_t d_size;
|
847
|
+
size_t q_size;
|
848
|
+
cl_mem d_X;
|
849
|
+
if (!mul_mat_vec) {
|
850
|
+
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE);
|
851
|
+
}
|
852
|
+
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY);
|
853
|
+
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY);
|
854
|
+
cl_mem d_Q;
|
855
|
+
if (src0->backend == GGML_BACKEND_CPU) {
|
856
|
+
d_Q = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
|
857
|
+
}
|
858
|
+
|
859
|
+
cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
|
860
|
+
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
|
861
|
+
GGML_ASSERT(to_fp32_cl != nullptr);
|
862
|
+
|
863
|
+
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
864
|
+
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
865
|
+
cl_event ev_sgemm;
|
866
|
+
|
867
|
+
// copy src0 to device if necessary
|
868
|
+
if (src0->backend == GGML_BACKEND_CPU) {
|
869
|
+
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL));
|
870
|
+
} else if (src0->backend == GGML_BACKEND_CL) {
|
871
|
+
d_Q = (cl_mem) src0->data;
|
872
|
+
} else {
|
873
|
+
GGML_ASSERT(false);
|
874
|
+
}
|
875
|
+
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
876
|
+
// copy src1 to device
|
877
|
+
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
878
|
+
|
879
|
+
// compute
|
880
|
+
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
881
|
+
const size_t local = CL_DMMV_BLOCK_SIZE;
|
882
|
+
const cl_int ncols = ne00;
|
883
|
+
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
884
|
+
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
885
|
+
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
886
|
+
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
887
|
+
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
888
|
+
CL_CHECK(clFinish(queue));
|
889
|
+
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm));
|
890
|
+
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
891
|
+
// convert src0 to fp32 on device
|
892
|
+
const size_t global = x_ne;
|
893
|
+
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
894
|
+
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
895
|
+
CL_CHECK(clFinish(queue));
|
896
|
+
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL));
|
897
|
+
|
898
|
+
// copy src1 to device
|
899
|
+
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
900
|
+
|
901
|
+
// wait for conversion
|
902
|
+
CL_CHECK(clFinish(queue));
|
903
|
+
|
904
|
+
// compute
|
905
|
+
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
906
|
+
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
907
|
+
ne01, ne11, ne10,
|
908
|
+
alpha,
|
909
|
+
d_X, 0, ne00,
|
910
|
+
d_Y, 0, ne10,
|
911
|
+
beta,
|
912
|
+
d_D, 0, ne01,
|
913
|
+
&queue, &ev_sgemm);
|
914
|
+
|
915
|
+
if (status != clblast::StatusCode::kSuccess) {
|
916
|
+
GGML_ASSERT(false);
|
917
|
+
}
|
918
|
+
}
|
919
|
+
|
920
|
+
// copy dst to host
|
921
|
+
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
922
|
+
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
923
|
+
clReleaseEvent(ev_sgemm);
|
924
|
+
}
|
925
|
+
}
|
926
|
+
|
927
|
+
if (!mul_mat_vec) {
|
928
|
+
ggml_cl_pool_free(d_X, x_size);
|
929
|
+
}
|
930
|
+
ggml_cl_pool_free(d_Y, y_size);
|
931
|
+
ggml_cl_pool_free(d_D, d_size);
|
932
|
+
if (src0->backend == GGML_BACKEND_CPU) {
|
933
|
+
ggml_cl_pool_free(d_Q, q_size);
|
934
|
+
}
|
935
|
+
}
|
936
|
+
|
937
|
+
|
938
|
+
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
939
|
+
const int64_t ne10 = src1->ne[0];
|
940
|
+
|
941
|
+
const int64_t ne0 = dst->ne[0];
|
942
|
+
const int64_t ne1 = dst->ne[1];
|
943
|
+
|
944
|
+
// TODO: find the optimal values for these
|
945
|
+
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
946
|
+
src1->type == GGML_TYPE_F32 &&
|
947
|
+
dst->type == GGML_TYPE_F32 &&
|
948
|
+
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) {
|
949
|
+
return true;
|
950
|
+
}
|
951
|
+
|
952
|
+
return false;
|
953
|
+
}
|
954
|
+
|
955
|
+
bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
956
|
+
// If device doesn't support FP16
|
957
|
+
if (!fp16_support) {
|
958
|
+
return false;
|
959
|
+
}
|
960
|
+
|
961
|
+
size_t src0_sz = ggml_nbytes(src0);
|
962
|
+
size_t src1_sz = ggml_nbytes(src1);
|
963
|
+
|
964
|
+
// mul_mat_q: src0 is converted to fp32 on device
|
965
|
+
size_t mul_mat_q_transfer = src0_sz + src1_sz;
|
966
|
+
|
967
|
+
// mul_mat_f16: src1 is converted to fp16 on cpu
|
968
|
+
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
|
969
|
+
|
970
|
+
// choose the smaller one to transfer to the device
|
971
|
+
// TODO: this is not always the best choice due to the overhead of converting to fp16
|
972
|
+
return mul_mat_f16_transfer < mul_mat_q_transfer;
|
973
|
+
}
|
974
|
+
|
975
|
+
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
|
976
|
+
GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
|
977
|
+
|
978
|
+
if (src0->type == GGML_TYPE_F32) {
|
979
|
+
ggml_cl_mul_mat_f32(src0, src1, dst);
|
980
|
+
}
|
981
|
+
else if (src0->type == GGML_TYPE_F16) {
|
982
|
+
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
983
|
+
ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
|
984
|
+
}
|
985
|
+
else {
|
986
|
+
ggml_cl_mul_mat_q_f32(src0, src1, dst);
|
987
|
+
}
|
988
|
+
}
|
989
|
+
else if (ggml_is_quantized(src0->type)) {
|
990
|
+
ggml_cl_mul_mat_q_f32(src0, src1, dst);
|
991
|
+
}
|
992
|
+
else {
|
993
|
+
GGML_ASSERT(false);
|
994
|
+
}
|
995
|
+
}
|
996
|
+
|
997
|
+
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
998
|
+
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
999
|
+
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
|
1000
|
+
}
|
1001
|
+
return 0;
|
1002
|
+
}
|
1003
|
+
|
1004
|
+
void ggml_cl_transform_tensor(ggml_tensor * tensor) {
|
1005
|
+
const int64_t ne0 = tensor->ne[0];
|
1006
|
+
const int64_t ne1 = tensor->ne[1];
|
1007
|
+
const int64_t ne2 = tensor->ne[2];
|
1008
|
+
const int64_t ne3 = tensor->ne[3];
|
1009
|
+
|
1010
|
+
const ggml_type type = tensor->type;
|
1011
|
+
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
|
1012
|
+
|
1013
|
+
size_t q_size;
|
1014
|
+
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY);
|
1015
|
+
|
1016
|
+
// copy tensor to device
|
1017
|
+
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
1018
|
+
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
1019
|
+
int i = i3*ne2 + i2;
|
1020
|
+
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
|
1021
|
+
}
|
1022
|
+
}
|
1023
|
+
|
1024
|
+
CL_CHECK(clFinish(queue));
|
1025
|
+
|
1026
|
+
tensor->data = dst;
|
1027
|
+
tensor->backend = GGML_BACKEND_CL;
|
1028
|
+
}
|