llama_cpp 0.0.7 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -19,9 +19,11 @@
19
19
  # define LLAMA_API
20
20
  #endif
21
21
 
22
- #define LLAMA_FILE_VERSION 1
23
- #define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
24
- #define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
22
+ #define LLAMA_FILE_VERSION 2
23
+ #define LLAMA_FILE_MAGIC 'ggjt'
24
+ #define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
25
+ #define LLAMA_SESSION_MAGIC 'ggsn'
26
+ #define LLAMA_SESSION_VERSION 1
25
27
 
26
28
  #ifdef __cplusplus
27
29
  extern "C" {
@@ -39,18 +41,22 @@ extern "C" {
39
41
 
40
42
  typedef struct llama_token_data {
41
43
  llama_token id; // token id
42
-
44
+ float logit; // log-odds of the token
43
45
  float p; // probability of the token
44
- float plog; // log probability of the token
45
-
46
46
  } llama_token_data;
47
47
 
48
+ typedef struct llama_token_data_array {
49
+ llama_token_data * data;
50
+ size_t size;
51
+ bool sorted;
52
+ } llama_token_data_array;
53
+
48
54
  typedef void (*llama_progress_callback)(float progress, void *ctx);
49
55
 
50
56
  struct llama_context_params {
51
- int n_ctx; // text context
52
- int n_parts; // -1 for default
53
- int seed; // RNG seed, 0 for random
57
+ int n_ctx; // text context
58
+ int n_gpu_layers; // number of layers to store in VRAM
59
+ int seed; // RNG seed, -1 for random
54
60
 
55
61
  bool f16_kv; // use fp16 for KV cache
56
62
  bool logits_all; // the llama_eval() call computes all logits, not just the last one
@@ -72,8 +78,8 @@ extern "C" {
72
78
  LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
73
79
  LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
74
80
  LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
75
- LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // except 1d tensors
76
- LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // except 1d tensors
81
+ // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
82
+ // LLAMA_FTYPE_MOSTLY_Q4_3 (6) support has been removed
77
83
  LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
78
84
  LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
79
85
  LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
@@ -116,23 +122,28 @@ extern "C" {
116
122
  int n_threads);
117
123
 
118
124
  // Returns the number of tokens in the KV cache
119
- LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
125
+ LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
120
126
 
121
127
  // Sets the current rng seed.
122
128
  LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, int seed);
123
129
 
124
- // Returns the size in bytes of the state (rng, logits, embedding and kv_cache)
125
- LLAMA_API size_t llama_get_state_size(struct llama_context * ctx);
130
+ // Returns the maximum size in bytes of the state (rng, logits, embedding
131
+ // and kv_cache) - will often be smaller after compacting tokens
132
+ LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
126
133
 
127
134
  // Copies the state to the specified destination address.
128
135
  // Destination needs to have allocated enough memory.
129
136
  // Returns the number of bytes copied
130
- LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dest);
137
+ LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
131
138
 
132
139
  // Set the state reading from the specified address
133
140
  // Returns the number of bytes read
134
141
  LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
135
142
 
143
+ // Save/load session file
144
+ LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
145
+ LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
146
+
136
147
  // Run the llama inference to obtain the logits and probabilities for the next token.
137
148
  // tokens + n_tokens is the provided batch of new tokens to process
138
149
  // n_past is the number of tokens to use from previous eval calls
@@ -156,9 +167,9 @@ extern "C" {
156
167
  int n_max_tokens,
157
168
  bool add_bos);
158
169
 
159
- LLAMA_API int llama_n_vocab(struct llama_context * ctx);
160
- LLAMA_API int llama_n_ctx (struct llama_context * ctx);
161
- LLAMA_API int llama_n_embd (struct llama_context * ctx);
170
+ LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
171
+ LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
172
+ LLAMA_API int llama_n_embd (const struct llama_context * ctx);
162
173
 
163
174
  // Token logits obtained from the last call to llama_eval()
164
175
  // The logits for the last token are stored in the last row
@@ -172,21 +183,57 @@ extern "C" {
172
183
  LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
173
184
 
174
185
  // Token Id -> String. Uses the vocabulary in the provided context
175
- LLAMA_API const char * llama_token_to_str(struct llama_context * ctx, llama_token token);
186
+ LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
176
187
 
177
188
  // Special tokens
178
189
  LLAMA_API llama_token llama_token_bos();
179
190
  LLAMA_API llama_token llama_token_eos();
191
+ LLAMA_API llama_token llama_token_nl();
192
+
193
+ // Sampling functions
194
+
195
+ /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
196
+ LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
197
+
198
+ /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
199
+ LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
200
+
201
+ /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
202
+ LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
203
+
204
+ /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
205
+ LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
206
+
207
+ /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
208
+ LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
209
+
210
+ /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
211
+ LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
212
+
213
+ /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
214
+ LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
215
+ LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
216
+
217
+ /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
218
+ /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
219
+ /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
220
+ /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
221
+ /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
222
+ /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
223
+ LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
224
+
225
+ /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
226
+ /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
227
+ /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
228
+ /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
229
+ /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
230
+ LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
231
+
232
+ /// @details Selects the token with the highest probability.
233
+ LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
180
234
 
181
- // TODO: improve the last_n_tokens interface ?
182
- LLAMA_API llama_token llama_sample_top_p_top_k(
183
- struct llama_context * ctx,
184
- const llama_token * last_n_tokens_data,
185
- int last_n_tokens_size,
186
- int top_k,
187
- float top_p,
188
- float temp,
189
- float repeat_penalty);
235
+ /// @details Randomly selects a token from the candidates based on their probabilities.
236
+ LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
190
237
 
191
238
  // Performance information
192
239
  LLAMA_API void llama_print_timings(struct llama_context * ctx);
@@ -2,14 +2,13 @@
2
2
 
3
3
  module LLaMACpp
4
4
  # Client provides a high-level interface to the LLM model.
5
- class Client
5
+ class Client # rubocop:disable Metrics/ClassLength
6
6
  # Creates a new client.
7
7
  #
8
8
  # @param model_path [String] The path to the model file.
9
9
  # @param lora_adapter_path [String] The path to the LoRA adapter file.
10
10
  # @param lora_base_path [String] The path to the LoRA base model file.
11
11
  # @param n_ctx [Integer] The context size.
12
- # @param n_parts [Integer] The amount of model parts (-1 = determine from model dimensions).
13
12
  # @param memory_f16 [Boolean] The flag wheter to use f16 instead of f32 for memory kv.
14
13
  # @param use_mmap [Boolean] The flag whether to use mmap.
15
14
  # @param use_mlock [Boolean] The flag hether to use mlock.
@@ -19,7 +18,7 @@ module LLaMACpp
19
18
  # @return [Client]
20
19
  # rubocop:disable Metrics/MethodLength, Metrics/ParameterLists
21
20
  def initialize(model_path:, lora_adapter_path: nil, lora_base_path: nil,
22
- n_ctx: 512, n_parts: -1, memory_f16: false, use_mmap: true, use_mlock: false,
21
+ n_ctx: 512, memory_f16: false, use_mmap: true, use_mlock: false,
23
22
  embedding: false,
24
23
  n_threads: 1, seed: 0)
25
24
  @params = {
@@ -27,7 +26,6 @@ module LLaMACpp
27
26
  lora_adapter_path: lora_adapter_path,
28
27
  lora_base_path: lora_base_path,
29
28
  n_ctx: n_ctx,
30
- n_parts: n_parts,
31
29
  memory_f16: memory_f16,
32
30
  use_mmap: use_mmap,
33
31
  use_mlock: use_mlock,
@@ -61,14 +59,19 @@ module LLaMACpp
61
59
  # @param n_keep [Integer] The number of tokens to keep from the initial prompt.
62
60
  # @param repeat_last_n [Integer] The number of tokens to use for repeat penalty.
63
61
  # @param n_batch [Integer] The batch size.
62
+ # @param frequency [Float] The frequency penalty value.
63
+ # @param presence [Float] The presence penalty value.
64
64
  # @param top_k [Integer] The top-k value.
65
65
  # @param top_p [Float] The top-p value.
66
+ # @param tfs_z [Float] The tail free sampling parameter.
67
+ # @param typical_p [Float] The typical probability value.
66
68
  # @param temperature [Float] The temperature value.
67
69
  # @param repeat_penalty [Float] The repeat penalty value.
68
70
  # @return [String]
69
71
  # rubocop:disable Metrics/AbcSize, Metrics/CyclomaticComplexity, Metrics/MethodLength, Metrics/ParameterLists, Metrics/PerceivedComplexity
70
72
  def completions(prompt, max_tokens: 64, n_keep: 10, repeat_last_n: 64, n_batch: 512,
71
- top_k: 40, top_p: 0.95, temperature: 0.80, repeat_penalty: 1.1)
73
+ frequency: 0.0, presence: 0.0,
74
+ top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8, repeat_penalty: 1.1)
72
75
  embd_input = tokenize_prompt(prompt)
73
76
 
74
77
  n_ctx = @context.n_ctx
@@ -80,6 +83,7 @@ module LLaMACpp
80
83
  n_consumed = 0
81
84
  n_past = 0
82
85
  n_remain = max_tokens
86
+ n_vocab = @context.n_vocab
83
87
  output = []
84
88
 
85
89
  while n_remain != 0
@@ -97,11 +101,28 @@ module LLaMACpp
97
101
  embd.clear
98
102
 
99
103
  if embd_input.size <= n_consumed
100
- start = n_ctx - repeat_last_n
101
- id = @context.sample_top_p_top_k(
102
- last_n_tokens[start...(start + repeat_last_n)],
103
- top_k: top_k, top_p: top_p, temp: temperature, penalty: repeat_penalty
104
+ logits = @context.logits
105
+ base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) }
106
+ candidates = LLaMACpp::TokenDataArray.new(base_candidates)
107
+
108
+ # apply penalties
109
+ last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min
110
+ @context.sample_repetition_penalty(candidates, last_n_tokens[-last_n_repeat..], penalty: repeat_penalty)
111
+ @context.sample_frequency_and_presence_penalties(
112
+ candidates, last_n_tokens[-last_n_repeat..], frequency: frequency, presence: presence
104
113
  )
114
+
115
+ # temperature sampling
116
+ @context.sample_top_k(candidates, k: top_k)
117
+ @context.sample_tail_free(candidates, z: tfs_z)
118
+ @context.sample_typical(candidates, prob: typical_p)
119
+ @context.sample_top_p(candidates, prob: top_p)
120
+ @context.sample_temperature(candidates, temperature: temperature)
121
+ id = @context.sample_token(candidates)
122
+
123
+ last_n_tokens.shift
124
+ last_n_tokens.push(id)
125
+
105
126
  last_n_tokens.shift
106
127
  last_n_tokens.push(id)
107
128
 
@@ -3,8 +3,8 @@
3
3
  # llama_cpp.rb provides Ruby bindings for the llama.cpp.
4
4
  module LLaMACpp
5
5
  # The version of llama_cpp.rb you install.
6
- VERSION = '0.0.7'
6
+ VERSION = '0.1.1'
7
7
 
8
8
  # The version of llama.cpp bundled with llama_cpp.rb.
9
- LLAMA_CPP_VERSION = 'master-11d9023'
9
+ LLAMA_CPP_VERSION = 'master-6986c78'
10
10
  end
data/lib/llama_cpp.rb CHANGED
@@ -37,7 +37,16 @@ module LLaMACpp
37
37
  n_past = 0
38
38
  n_remain = n_predict
39
39
  repeat_last_n = 64
40
+ repeat_penalty = 1.1
41
+ frequency = 0.0
42
+ presence = 0.0
43
+ top_k = 40
44
+ top_p = 0.95
45
+ tfs_z = 1.0
46
+ typical_p = 1.0
47
+ temperature = 0.8
40
48
  n_batch = 512
49
+ n_vocab = context.n_vocab
41
50
  output = []
42
51
 
43
52
  while n_remain != 0
@@ -55,10 +64,25 @@ module LLaMACpp
55
64
  embd.clear
56
65
 
57
66
  if embd_input.size <= n_consumed
58
- start = n_ctx - repeat_last_n
59
- id = context.sample_top_p_top_k(
60
- last_n_tokens[start...(start + repeat_last_n)], top_k: 40, top_p: 0.95, temp: 0.80, penalty: 1.1
67
+ logits = context.logits
68
+ base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) }
69
+ candidates = LLaMACpp::TokenDataArray.new(base_candidates)
70
+
71
+ # apply penalties
72
+ last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min
73
+ context.sample_repetition_penalty(candidates, last_n_tokens[-last_n_repeat..], penalty: repeat_penalty)
74
+ context.sample_frequency_and_presence_penalties(
75
+ candidates, last_n_tokens[-last_n_repeat..], frequency: frequency, presence: presence
61
76
  )
77
+
78
+ # temperature sampling
79
+ context.sample_top_k(candidates, k: top_k)
80
+ context.sample_tail_free(candidates, z: tfs_z)
81
+ context.sample_typical(candidates, prob: typical_p)
82
+ context.sample_top_p(candidates, prob: top_p)
83
+ context.sample_temperature(candidates, temperature: temperature)
84
+ id = context.sample_token(candidates)
85
+
62
86
  last_n_tokens.shift
63
87
  last_n_tokens.push(id)
64
88
 
data/sig/llama_cpp.rbs CHANGED
@@ -10,8 +10,6 @@ module LLaMACpp
10
10
  LLAMA_FTYPE_MOSTLY_Q4_0: Integer
11
11
  LLAMA_FTYPE_MOSTLY_Q4_1: Integer
12
12
  LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: Integer
13
- LLAMA_FTYPE_MOSTLY_Q4_2: Integer
14
- LLAMA_FTYPE_MOSTLY_Q4_3: Integer
15
13
  LLAMA_FTYPE_MOSTLY_Q8_0: Integer
16
14
  LLAMA_FTYPE_MOSTLY_Q5_0: Integer
17
15
  LLAMA_FTYPE_MOSTLY_Q5_1: Integer
@@ -21,9 +19,30 @@ module LLaMACpp
21
19
  def self?.print_system_info: () -> void
22
20
  def self?.token_bos: () -> Integer
23
21
  def self?.token_eos: () -> Integer
22
+ def self?.token_nl: () -> Integer
24
23
  def self?.mmap_supported?: () -> bool
25
24
  def self?.mlock_supported?: () -> bool
26
25
 
26
+ class TokenData
27
+ public
28
+
29
+ def initialize: (id: Integer, logit: Float, p: Float) -> void
30
+ def id: () -> Integer
31
+ def id=: (Integer) -> Integer
32
+ def logit: () -> Float
33
+ def logit=: (Float) -> Float
34
+ def p: () -> Float
35
+ def p=: (Float) -> Float
36
+ end
37
+
38
+ class TokenDataArray
39
+ public
40
+
41
+ def initialize: (Array[::LLaMACpp::TokenData], ?sorted: bool) -> void
42
+ def size: () -> Integer
43
+ def sorted: () -> bool
44
+ end
45
+
27
46
  class Context
28
47
  public
29
48
 
@@ -40,10 +59,25 @@ module LLaMACpp
40
59
  def n_vocab: () -> Integer
41
60
  def print_timings: () -> void
42
61
  def reset_timings: () -> void
43
- def sample_top_p_top_k: (top_k: Integer, top_p: Float, temp: Float, penalty: Float) -> Integer
44
62
  def token_to_str: (Integer) -> String
45
63
  def tokenize: (text: String, ?n_max_tokens: Integer, ?add_bos: bool) -> Array[Integer]
46
64
  def apply_lora_from_file: (lora_path: String, ?base_model_path: String, ?n_threads: Integer) -> void
65
+ def kv_cache_token_count: () -> Integer
66
+ def set_rng_seed: (Integer) -> void
67
+ def load_session_file: (session_path: String) -> void
68
+ def save_session_file: (session_path: String, session_tokens: Array[Integer]) -> void
69
+ def sample_repetition_penalty: (::LLaMACpp::TokenDataArray, Array[Integer], penalty: Float) -> void
70
+ def sample_frequency_and_presence_penalties: (::LLaMACpp::TokenDataArray, Array[Integer], frequency: Float, presence: Float) -> void
71
+ def sample_softmax: (::LLaMACpp::TokenDataArray) -> void
72
+ def sample_top_k: (::LLaMACpp::TokenDataArray, k: Integer, ?min_keep: Integer) -> void
73
+ def sample_top_p: (::LLaMACpp::TokenDataArray, prob: Float, ?min_keep: Integer) -> void
74
+ def sample_tail_free: (::LLaMACpp::TokenDataArray, z: Float, ?min_keep: Integer) -> void
75
+ def sample_typical: (::LLaMACpp::TokenDataArray, prob: Float, ?min_keep: Integer) -> void
76
+ def sample_temperature: (::LLaMACpp::TokenDataArray, temperature: Float) -> void
77
+ def sample_token_mirostat: (::LLaMACpp::TokenDataArray, tau: Float, eta: Float, m: Integer, mu: Float) -> [Integer, Float]
78
+ def sample_token_mirostat_v2: (::LLaMACpp::TokenDataArray, tau: Float, eta: Float, mu: Float) -> [Integer, Float]
79
+ def sample_token_greedy: (::LLaMACpp::TokenDataArray) -> Integer
80
+ def sample_token: (::LLaMACpp::TokenDataArray) -> Integer
47
81
  end
48
82
 
49
83
  class ContextParams
@@ -57,8 +91,6 @@ module LLaMACpp
57
91
  def logits_all=: (bool) -> bool
58
92
  def n_ctx: () -> Integer
59
93
  def n_ctx=: (Integer) -> Integer
60
- def n_parts: () -> Integer
61
- def n_parts=: (Integer) -> Integer
62
94
  def seed: () -> Integer
63
95
  def seed=: (Integer) -> Integer
64
96
  def use_mlock: () -> bool
@@ -73,10 +105,12 @@ module LLaMACpp
73
105
 
74
106
  class Client
75
107
  def initialize(model_path: String, ?lora_adapter_path: String, ?lora_base_path: String,
76
- ?n_ctx: Integer, ?n_parts: Integer, ?memory_f16: bool, ?use_mmap: bool, ?use_mlock: bool,
108
+ ?n_ctx: Integer, ?memory_f16: bool, ?use_mmap: bool, ?use_mlock: bool,
77
109
  ?embedding: bool, ?n_threads: Integer, ?seed: Integer) -> void
78
110
  def completions(String, ?max_tokens: Integer, ?n_keep: Integer, ?repeat_last_n: Integer, ?n_batch: Integer,
79
- ?top_k: Integer, ?top_p: Float, ?temperature: Float, ?repeat_penalty: Float) -> String
111
+ ?frequency: Float, ?presence: Float,
112
+ ?top_k: Integer, ?top_p: Float, ?tfs_z: Float, ?typical_p: Float, ?temperature: Float,
113
+ ?repeat_penalty: Float) -> String
80
114
  def embeddings(String) -> Array[Float]
81
115
  end
82
116
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: llama_cpp
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.7
4
+ version: 0.1.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - yoshoku
8
8
  autorequire:
9
9
  bindir: exe
10
10
  cert_chain: []
11
- date: 2023-04-29 00:00:00.000000000 Z
11
+ date: 2023-05-21 00:00:00.000000000 Z
12
12
  dependencies: []
13
13
  description: llama_cpp.rb provides Ruby bindings for the llama.cpp.
14
14
  email:
@@ -31,9 +31,9 @@ files:
31
31
  - ext/llama_cpp/src/ggml-opencl.h
32
32
  - ext/llama_cpp/src/ggml.c
33
33
  - ext/llama_cpp/src/ggml.h
34
+ - ext/llama_cpp/src/llama-util.h
34
35
  - ext/llama_cpp/src/llama.cpp
35
36
  - ext/llama_cpp/src/llama.h
36
- - ext/llama_cpp/src/llama_util.h
37
37
  - lib/llama_cpp.rb
38
38
  - lib/llama_cpp/client.rb
39
39
  - lib/llama_cpp/version.rb