llama_cpp 0.0.2 → 0.0.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +9 -2
- data/README.md +1 -0
- data/ext/llama_cpp/llama_cpp.cpp +39 -1
- data/ext/llama_cpp/src/ggml.c +587 -485
- data/ext/llama_cpp/src/ggml.h +36 -26
- data/ext/llama_cpp/src/llama.cpp +85 -46
- data/ext/llama_cpp/src/llama.h +17 -0
- data/lib/llama_cpp/version.rb +2 -2
- data/lib/llama_cpp.rb +4 -1
- data/sig/llama_cpp.rbs +52 -0
- metadata +3 -2
data/ext/llama_cpp/src/ggml.h
CHANGED
@@ -258,11 +258,11 @@ struct ggml_tensor {
|
|
258
258
|
enum ggml_type type;
|
259
259
|
|
260
260
|
int n_dims;
|
261
|
-
|
262
|
-
size_t
|
263
|
-
|
264
|
-
|
265
|
-
|
261
|
+
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
262
|
+
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
263
|
+
// nb[0] = sizeof(type)
|
264
|
+
// nb[1] = nb[0] * ne[0] + padding
|
265
|
+
// nb[i] = nb[i-1] * ne[i-1]
|
266
266
|
|
267
267
|
// compute data
|
268
268
|
enum ggml_op op;
|
@@ -328,8 +328,8 @@ int64_t ggml_cycles_per_ms(void);
|
|
328
328
|
void ggml_print_object (const struct ggml_object * obj);
|
329
329
|
void ggml_print_objects(const struct ggml_context * ctx);
|
330
330
|
|
331
|
-
|
332
|
-
size_t
|
331
|
+
int64_t ggml_nelements(const struct ggml_tensor * tensor);
|
332
|
+
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
333
333
|
|
334
334
|
int ggml_blck_size (enum ggml_type type);
|
335
335
|
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
@@ -355,33 +355,33 @@ struct ggml_tensor * ggml_new_tensor(
|
|
355
355
|
struct ggml_context * ctx,
|
356
356
|
enum ggml_type type,
|
357
357
|
int n_dims,
|
358
|
-
const
|
358
|
+
const int64_t *ne);
|
359
359
|
|
360
360
|
struct ggml_tensor * ggml_new_tensor_1d(
|
361
361
|
struct ggml_context * ctx,
|
362
362
|
enum ggml_type type,
|
363
|
-
|
363
|
+
int64_t ne0);
|
364
364
|
|
365
365
|
struct ggml_tensor * ggml_new_tensor_2d(
|
366
366
|
struct ggml_context * ctx,
|
367
367
|
enum ggml_type type,
|
368
|
-
|
369
|
-
|
368
|
+
int64_t ne0,
|
369
|
+
int64_t ne1);
|
370
370
|
|
371
371
|
struct ggml_tensor * ggml_new_tensor_3d(
|
372
372
|
struct ggml_context * ctx,
|
373
373
|
enum ggml_type type,
|
374
|
-
|
375
|
-
|
376
|
-
|
374
|
+
int64_t ne0,
|
375
|
+
int64_t ne1,
|
376
|
+
int64_t ne2);
|
377
377
|
|
378
378
|
struct ggml_tensor * ggml_new_tensor_4d(
|
379
379
|
struct ggml_context * ctx,
|
380
380
|
enum ggml_type type,
|
381
|
-
|
382
|
-
|
383
|
-
|
384
|
-
|
381
|
+
int64_t ne0,
|
382
|
+
int64_t ne1,
|
383
|
+
int64_t ne2,
|
384
|
+
int64_t ne3);
|
385
385
|
|
386
386
|
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
387
387
|
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
@@ -531,33 +531,43 @@ struct ggml_tensor * ggml_reshape(
|
|
531
531
|
struct ggml_tensor * ggml_reshape_2d(
|
532
532
|
struct ggml_context * ctx,
|
533
533
|
struct ggml_tensor * a,
|
534
|
-
|
535
|
-
|
534
|
+
int64_t ne0,
|
535
|
+
int64_t ne1);
|
536
536
|
|
537
537
|
// return view(a)
|
538
538
|
// TODO: when we start computing gradient, make a copy instead of view
|
539
539
|
struct ggml_tensor * ggml_reshape_3d(
|
540
540
|
struct ggml_context * ctx,
|
541
541
|
struct ggml_tensor * a,
|
542
|
-
|
543
|
-
|
544
|
-
|
542
|
+
int64_t ne0,
|
543
|
+
int64_t ne1,
|
544
|
+
int64_t ne2);
|
545
545
|
|
546
546
|
// offset in bytes
|
547
547
|
struct ggml_tensor * ggml_view_1d(
|
548
548
|
struct ggml_context * ctx,
|
549
549
|
struct ggml_tensor * a,
|
550
|
-
|
550
|
+
int64_t ne0,
|
551
551
|
size_t offset);
|
552
552
|
|
553
553
|
struct ggml_tensor * ggml_view_2d(
|
554
554
|
struct ggml_context * ctx,
|
555
555
|
struct ggml_tensor * a,
|
556
|
-
|
557
|
-
|
556
|
+
int64_t ne0,
|
557
|
+
int64_t ne1,
|
558
558
|
size_t nb1, // row stride in bytes
|
559
559
|
size_t offset);
|
560
560
|
|
561
|
+
struct ggml_tensor * ggml_view_3d(
|
562
|
+
struct ggml_context * ctx,
|
563
|
+
struct ggml_tensor * a,
|
564
|
+
int64_t ne0,
|
565
|
+
int64_t ne1,
|
566
|
+
int64_t ne2,
|
567
|
+
size_t nb1, // row stride in bytes
|
568
|
+
size_t nb2, // slice stride in bytes
|
569
|
+
size_t offset);
|
570
|
+
|
561
571
|
struct ggml_tensor * ggml_permute(
|
562
572
|
struct ggml_context * ctx,
|
563
573
|
struct ggml_tensor * a,
|
data/ext/llama_cpp/src/llama.cpp
CHANGED
@@ -256,8 +256,8 @@ static bool kv_cache_init(
|
|
256
256
|
const int n_embd = hparams.n_embd;
|
257
257
|
const int n_layer = hparams.n_layer;
|
258
258
|
|
259
|
-
const
|
260
|
-
const
|
259
|
+
const int64_t n_mem = (int64_t)n_layer*n_ctx;
|
260
|
+
const int64_t n_elements = n_embd*n_mem;
|
261
261
|
|
262
262
|
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
263
263
|
|
@@ -679,7 +679,7 @@ static bool llama_model_load(
|
|
679
679
|
return false;
|
680
680
|
}
|
681
681
|
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
682
|
-
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%
|
682
|
+
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%" PRId64 ", %" PRId64 "], expected [%d, %d]\n",
|
683
683
|
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
684
684
|
return false;
|
685
685
|
}
|
@@ -810,37 +810,35 @@ static bool llama_eval_internal(
|
|
810
810
|
|
811
811
|
// self-attention
|
812
812
|
{
|
813
|
-
|
814
|
-
struct ggml_tensor *
|
815
|
-
struct ggml_tensor *
|
813
|
+
// compute Q and K and RoPE them
|
814
|
+
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
815
|
+
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
816
816
|
|
817
817
|
// store key and value to memory
|
818
|
-
|
818
|
+
{
|
819
|
+
// compute the transposed [N, n_embd] V matrix
|
820
|
+
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
|
821
|
+
|
819
822
|
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
|
820
|
-
struct ggml_tensor * v =
|
823
|
+
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
|
824
|
+
( n_ctx)*ggml_element_size(kv_self.v),
|
825
|
+
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
|
821
826
|
|
827
|
+
// important: storing RoPE-ed version of K in the KV cache!
|
822
828
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
823
829
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
824
830
|
}
|
825
831
|
|
826
|
-
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
827
832
|
struct ggml_tensor * Q =
|
828
833
|
ggml_permute(ctx0,
|
829
|
-
|
830
|
-
ggml_cpy(ctx0,
|
831
|
-
Qcur,
|
832
|
-
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
833
|
-
n_past, n_rot, 0),
|
834
|
+
Qcur,
|
834
835
|
0, 2, 1, 3);
|
835
836
|
|
836
|
-
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
837
837
|
struct ggml_tensor * K =
|
838
838
|
ggml_permute(ctx0,
|
839
|
-
|
840
|
-
|
841
|
-
|
842
|
-
n_embd/n_head, n_head, n_past + N),
|
843
|
-
n_past, n_rot, 1),
|
839
|
+
ggml_reshape_3d(ctx0,
|
840
|
+
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
|
841
|
+
n_embd/n_head, n_head, n_past + N),
|
844
842
|
0, 2, 1, 3);
|
845
843
|
|
846
844
|
// K * Q
|
@@ -858,18 +856,23 @@ static bool llama_eval_internal(
|
|
858
856
|
// KQ = soft_max(KQ_masked)
|
859
857
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
860
858
|
|
861
|
-
//
|
862
|
-
struct ggml_tensor *
|
863
|
-
|
864
|
-
|
865
|
-
|
866
|
-
|
867
|
-
|
868
|
-
1, 2, 0, 3),
|
869
|
-
ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
|
859
|
+
// split cached V into n_head heads
|
860
|
+
struct ggml_tensor * V =
|
861
|
+
ggml_view_3d(ctx0, kv_self.v,
|
862
|
+
n_past + N, n_embd/n_head, n_head,
|
863
|
+
n_ctx*ggml_element_size(kv_self.v),
|
864
|
+
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
|
865
|
+
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
|
870
866
|
|
871
|
-
|
872
|
-
struct ggml_tensor * KQV = ggml_mul_mat(ctx0,
|
867
|
+
#if 1
|
868
|
+
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
869
|
+
#else
|
870
|
+
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
871
|
+
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
872
|
+
// is there a better way?
|
873
|
+
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
|
874
|
+
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
875
|
+
#endif
|
873
876
|
|
874
877
|
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
875
878
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
@@ -955,9 +958,13 @@ static bool llama_eval_internal(
|
|
955
958
|
ggml_build_forward_expand(&gf, inpL);
|
956
959
|
ggml_graph_compute (ctx0, &gf);
|
957
960
|
|
961
|
+
// print timing information per ggml operation (for debugging purposes)
|
962
|
+
// requires GGML_PERF to be defined
|
963
|
+
//ggml_graph_print(&gf);
|
964
|
+
|
965
|
+
// plot the computation graph in dot format (for debugging purposes)
|
958
966
|
//if (n_past%100 == 0) {
|
959
|
-
//
|
960
|
-
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
967
|
+
// ggml_graph_dump_dot(&gf, NULL, "llama.dot");
|
961
968
|
//}
|
962
969
|
|
963
970
|
//embd_w.resize(n_vocab*N);
|
@@ -1194,6 +1201,20 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
|
1194
1201
|
const auto & logits = lctx.logits;
|
1195
1202
|
const auto * plogits = logits.data() + logits.size() - n_logits;
|
1196
1203
|
|
1204
|
+
if (temp <= 0) {
|
1205
|
+
// select the token with the highest logit directly
|
1206
|
+
float max_logit = plogits[0];
|
1207
|
+
llama_vocab::id max_id = 0;
|
1208
|
+
|
1209
|
+
for (int i = 1; i < n_logits; ++i) {
|
1210
|
+
if (plogits[i] > max_logit) {
|
1211
|
+
max_logit = plogits[i];
|
1212
|
+
max_id = i;
|
1213
|
+
}
|
1214
|
+
}
|
1215
|
+
return max_id;
|
1216
|
+
}
|
1217
|
+
|
1197
1218
|
std::vector<std::pair<float, llama_vocab::id>> logits_id;
|
1198
1219
|
logits_id.reserve(n_logits);
|
1199
1220
|
|
@@ -1215,17 +1236,13 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
|
1215
1236
|
}
|
1216
1237
|
}
|
1217
1238
|
|
1218
|
-
sample_top_k(logits_id, top_k);
|
1219
|
-
|
1220
|
-
float maxl = -std::numeric_limits<float>::infinity();
|
1221
|
-
for (const auto & kv : logits_id) {
|
1222
|
-
maxl = Max(maxl, kv.first);
|
1223
|
-
}
|
1239
|
+
sample_top_k(logits_id, top_k > 0 ? Min(top_k, n_logits) : n_logits);
|
1224
1240
|
|
1225
1241
|
// compute probs for the top k tokens
|
1226
1242
|
std::vector<float> probs;
|
1227
1243
|
probs.reserve(logits_id.size());
|
1228
1244
|
|
1245
|
+
float maxl = logits_id[0].first;
|
1229
1246
|
double sum = 0.0;
|
1230
1247
|
for (const auto & kv : logits_id) {
|
1231
1248
|
const float p = expf(kv.first - maxl);
|
@@ -1248,16 +1265,11 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
|
1248
1265
|
break;
|
1249
1266
|
}
|
1250
1267
|
}
|
1251
|
-
|
1252
|
-
cumsum = 1.0/cumsum;
|
1253
|
-
for (int i = 0; i < (int) probs.size(); i++) {
|
1254
|
-
probs[i] *= cumsum;
|
1255
|
-
}
|
1256
1268
|
}
|
1257
1269
|
|
1258
1270
|
//printf("\n");
|
1259
1271
|
//for (int i = 0; i < (int) 10; i++) {
|
1260
|
-
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
1272
|
+
// printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
|
1261
1273
|
//}
|
1262
1274
|
//printf("\n\n");
|
1263
1275
|
//exit(0);
|
@@ -1608,7 +1620,7 @@ struct llama_context * llama_init_from_file(
|
|
1608
1620
|
}
|
1609
1621
|
|
1610
1622
|
// reserve memory for context buffers
|
1611
|
-
{
|
1623
|
+
if (!params.vocab_only) {
|
1612
1624
|
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
|
1613
1625
|
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
1614
1626
|
llama_free(ctx);
|
@@ -1668,6 +1680,33 @@ int llama_model_quantize(
|
|
1668
1680
|
return 0;
|
1669
1681
|
}
|
1670
1682
|
|
1683
|
+
// Returns the KV cache that will contain the context for the
|
1684
|
+
// ongoing prediction with the model.
|
1685
|
+
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
|
1686
|
+
return ctx->model.kv_self.buf.data();
|
1687
|
+
}
|
1688
|
+
|
1689
|
+
// Returns the size of the KV cache
|
1690
|
+
size_t llama_get_kv_cache_size(struct llama_context * ctx) {
|
1691
|
+
return ctx->model.kv_self.buf.size();
|
1692
|
+
}
|
1693
|
+
|
1694
|
+
int llama_get_kv_cache_token_count(struct llama_context * ctx) {
|
1695
|
+
return ctx->model.kv_self.n;
|
1696
|
+
}
|
1697
|
+
|
1698
|
+
// Sets the KV cache containing the current context for the model
|
1699
|
+
void llama_set_kv_cache(
|
1700
|
+
struct llama_context * ctx,
|
1701
|
+
const uint8_t * kv_cache,
|
1702
|
+
size_t n_size,
|
1703
|
+
int n_token_count) {
|
1704
|
+
// Make sure we have the same kv cache setup
|
1705
|
+
LLAMA_ASSERT(ctx->model.kv_self.buf.size() == n_size);
|
1706
|
+
memcpy(ctx->model.kv_self.buf.data(), kv_cache, n_size);
|
1707
|
+
ctx->model.kv_self.n = n_token_count;
|
1708
|
+
}
|
1709
|
+
|
1671
1710
|
int llama_eval(
|
1672
1711
|
struct llama_context * ctx,
|
1673
1712
|
const llama_token * tokens,
|
data/ext/llama_cpp/src/llama.h
CHANGED
@@ -83,6 +83,23 @@ extern "C" {
|
|
83
83
|
const char * fname_out,
|
84
84
|
int itype);
|
85
85
|
|
86
|
+
// Returns the KV cache that will contain the context for the
|
87
|
+
// ongoing prediction with the model.
|
88
|
+
LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx);
|
89
|
+
|
90
|
+
// Returns the size of the KV cache
|
91
|
+
LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx);
|
92
|
+
|
93
|
+
// Returns the number of tokens in the KV cache
|
94
|
+
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
|
95
|
+
|
96
|
+
// Sets the KV cache containing the current context for the model
|
97
|
+
LLAMA_API void llama_set_kv_cache(
|
98
|
+
struct llama_context * ctx,
|
99
|
+
const uint8_t * kv_cache,
|
100
|
+
size_t n_size,
|
101
|
+
int n_token_count);
|
102
|
+
|
86
103
|
// Run the llama inference to obtain the logits and probabilities for the next token.
|
87
104
|
// tokens + n_tokens is the provided batch of new tokens to process
|
88
105
|
// n_past is the number of tokens to use from previous eval calls
|
data/lib/llama_cpp/version.rb
CHANGED
@@ -3,8 +3,8 @@
|
|
3
3
|
# llama_cpp.rb provides Ruby bindings for the llama.cpp.
|
4
4
|
module LLaMACpp
|
5
5
|
# The version of llama_cpp.rb you install.
|
6
|
-
VERSION = '0.0.
|
6
|
+
VERSION = '0.0.3'
|
7
7
|
|
8
8
|
# The version of llama.cpp bundled with llama_cpp.rb.
|
9
|
-
LLAMA_CPP_VERSION = 'master-
|
9
|
+
LLAMA_CPP_VERSION = 'master-698f7b5'
|
10
10
|
end
|
data/lib/llama_cpp.rb
CHANGED
@@ -5,13 +5,16 @@ require_relative 'llama_cpp/llama_cpp'
|
|
5
5
|
|
6
6
|
# llama_cpp.rb provides Ruby bindings for the llama.cpp.
|
7
7
|
module LLaMACpp
|
8
|
+
# Class alias to match interface of whispercpp gem.
|
9
|
+
Params = ContextParams
|
10
|
+
|
8
11
|
module_function
|
9
12
|
|
10
13
|
# Generates sentences following the given prompt for operation check.
|
11
14
|
#
|
12
15
|
# @param context [LLaMACpp::Context]
|
13
16
|
# @param prompt [String]
|
14
|
-
# @
|
17
|
+
# @param n_threads [Integer]
|
15
18
|
# @return [String]
|
16
19
|
def generate(context, prompt, n_threads: 1) # rubocop:disable Metrics/AbcSize, Metrics/MethodLength, Metrics/PerceivedComplexity
|
17
20
|
prompt.insert(0, ' ')
|
data/sig/llama_cpp.rbs
ADDED
@@ -0,0 +1,52 @@
|
|
1
|
+
module LLaMACpp
|
2
|
+
VERSION: String
|
3
|
+
LLAMA_CPP_VERSION: String
|
4
|
+
LLAMA_FILE_VERSION: String
|
5
|
+
LLAMA_FILE_MAGIC: String
|
6
|
+
LLAMA_FILE_MAGIC_UNVERSIONED: String
|
7
|
+
|
8
|
+
def self?.generate: (::LLaMACpp::Context, String, ?n_threads: Integer) -> String
|
9
|
+
def self?.print_system_info: () -> void
|
10
|
+
def self?.token_bos: () -> Integer
|
11
|
+
def self?.token_eos: () -> Integer
|
12
|
+
|
13
|
+
class Context
|
14
|
+
public
|
15
|
+
|
16
|
+
def initialize: (model_path: String, params: ::LLaMACpp::ContextParams) -> void
|
17
|
+
def embeddings: () -> Array[Float]
|
18
|
+
def eval: (tokens: Array[Integer], n_past: Integer, ?n_tokens: Integer, ?n_threads: Integer) -> Qnil
|
19
|
+
def logits: () -> Array[Float]
|
20
|
+
def n_ctx: () -> Integer
|
21
|
+
def n_embd: () -> Integer
|
22
|
+
def n_vocab: () -> Integer
|
23
|
+
def print_timings: () -> void
|
24
|
+
def reset_timings: () -> void
|
25
|
+
def sample_top_p_top_k: (top_k: Integer, top_p: Float, temp: Float, penalty: Float) -> Integer
|
26
|
+
def token_to_str: (Integer) -> String
|
27
|
+
def tokenize: (text: String, ?n_max_tokens: Integer, ?add_bos: bool) -> Array[Integer]
|
28
|
+
end
|
29
|
+
|
30
|
+
class ContextParams
|
31
|
+
public
|
32
|
+
|
33
|
+
def embedding: () -> bool
|
34
|
+
def embedding=: (bool) -> bool
|
35
|
+
def f16_kv: () -> bool
|
36
|
+
def f16_kv=: (bool) -> bool
|
37
|
+
def logits_all: () -> bool
|
38
|
+
def logits_all=: (bool) -> bool
|
39
|
+
def n_ctx: () -> Integer
|
40
|
+
def n_ctx=: (Integer) -> Integer
|
41
|
+
def n_parts: () -> Integer
|
42
|
+
def n_parts=: (Integer) -> Integer
|
43
|
+
def seed: () -> Integer
|
44
|
+
def seed=: (Integer) -> Integer
|
45
|
+
def use_mlock: () -> bool
|
46
|
+
def use_mlock=: (bool) -> bool
|
47
|
+
def vocab_only: () -> bool
|
48
|
+
def vocab_only=: (bool) -> bool
|
49
|
+
end
|
50
|
+
|
51
|
+
class Params = ContextParams
|
52
|
+
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: llama_cpp
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-04-
|
11
|
+
date: 2023-04-08 00:00:00.000000000 Z
|
12
12
|
dependencies: []
|
13
13
|
description: llama_cpp.rb provides Ruby bindings for the llama.cpp.
|
14
14
|
email:
|
@@ -32,6 +32,7 @@ files:
|
|
32
32
|
- ext/llama_cpp/src/llama.h
|
33
33
|
- lib/llama_cpp.rb
|
34
34
|
- lib/llama_cpp/version.rb
|
35
|
+
- sig/llama_cpp.rbs
|
35
36
|
homepage: https://github.com/yoshoku/llama_cpp.rb
|
36
37
|
licenses:
|
37
38
|
- MIT
|