llama_cpp 0.0.1 → 0.0.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/README.md +2 -0
- data/ext/llama_cpp/src/ggml.c +354 -51
- data/ext/llama_cpp/src/ggml.h +6 -1
- data/ext/llama_cpp/src/llama.cpp +210 -259
- data/ext/llama_cpp/src/llama.h +2 -2
- data/lib/llama_cpp/version.rb +2 -2
- data/lib/llama_cpp.rb +3 -2
- metadata +1 -1
data/ext/llama_cpp/src/llama.cpp
CHANGED
@@ -12,6 +12,19 @@
|
|
12
12
|
#include <cassert>
|
13
13
|
#include <cstring>
|
14
14
|
|
15
|
+
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
16
|
+
#define WIN32_LEAN_AND_MEAN
|
17
|
+
#include <Windows.h>
|
18
|
+
#else
|
19
|
+
#include <sys/types.h>
|
20
|
+
#include <sys/mman.h>
|
21
|
+
#include <unistd.h>
|
22
|
+
#include <fcntl.h>
|
23
|
+
#endif
|
24
|
+
|
25
|
+
#define Min(X, Y) ((Y) > (X) ? (X) : (Y))
|
26
|
+
#define Max(X, Y) ((Y) < (X) ? (X) : (Y))
|
27
|
+
|
15
28
|
#define LLAMA_USE_SCRATCH
|
16
29
|
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
17
30
|
|
@@ -142,6 +155,10 @@ struct llama_model {
|
|
142
155
|
// the model memory buffer
|
143
156
|
std::vector<uint8_t> buf;
|
144
157
|
|
158
|
+
// model memory mapped file
|
159
|
+
void * mm_addr = NULL;
|
160
|
+
uint64_t mm_length = 0;
|
161
|
+
|
145
162
|
// tensors
|
146
163
|
int n_loaded;
|
147
164
|
std::unordered_map<std::string, struct ggml_tensor *> tensors;
|
@@ -165,6 +182,7 @@ struct llama_context {
|
|
165
182
|
|
166
183
|
int64_t t_load_us = 0;
|
167
184
|
int64_t t_start_us = 0;
|
185
|
+
bool has_evaluated_once = false;
|
168
186
|
|
169
187
|
int64_t t_sample_us = 0;
|
170
188
|
int64_t t_eval_us = 0;
|
@@ -206,7 +224,7 @@ struct llama_context {
|
|
206
224
|
}
|
207
225
|
|
208
226
|
if (buf_last >= 0) {
|
209
|
-
buf_max_size[buf_last] =
|
227
|
+
buf_max_size[buf_last] = Max(buf_max_size[buf_last], last_size);
|
210
228
|
}
|
211
229
|
|
212
230
|
buf_last = i;
|
@@ -246,6 +264,7 @@ static bool kv_cache_init(
|
|
246
264
|
struct ggml_init_params params;
|
247
265
|
params.mem_size = cache.buf.size();
|
248
266
|
params.mem_buffer = cache.buf.data();
|
267
|
+
params.no_alloc = false;
|
249
268
|
|
250
269
|
cache.ctx = ggml_init(params);
|
251
270
|
|
@@ -288,6 +307,58 @@ struct llama_context_params llama_context_default_params() {
|
|
288
307
|
// model loading
|
289
308
|
//
|
290
309
|
|
310
|
+
static void *mmap_file(const char *fname, uint64_t *mm_length) {
|
311
|
+
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
312
|
+
HANDLE hFile = CreateFileA(fname,
|
313
|
+
GENERIC_READ,
|
314
|
+
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
|
315
|
+
NULL,
|
316
|
+
OPEN_EXISTING,
|
317
|
+
FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,
|
318
|
+
NULL);
|
319
|
+
if (hFile == INVALID_HANDLE_VALUE) return 0;
|
320
|
+
LARGE_INTEGER fileSize;
|
321
|
+
fileSize.QuadPart = -1;
|
322
|
+
GetFileSizeEx(hFile, &fileSize);
|
323
|
+
int64_t length = fileSize.QuadPart;
|
324
|
+
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
|
325
|
+
CloseHandle(hFile);
|
326
|
+
if (!hMapping) return 0;
|
327
|
+
void *addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
|
328
|
+
CloseHandle(hMapping);
|
329
|
+
if (!addr) return 0;
|
330
|
+
#else
|
331
|
+
int fd = open(fname, O_RDONLY);
|
332
|
+
if (fd == -1) return 0;
|
333
|
+
int64_t length = lseek(fd, 0, SEEK_END);
|
334
|
+
void *addr = mmap(NULL, length, PROT_READ, MAP_SHARED, fd, 0);
|
335
|
+
close(fd);
|
336
|
+
if (addr == MAP_FAILED) return 0;
|
337
|
+
#endif
|
338
|
+
*mm_length = length;
|
339
|
+
return addr;
|
340
|
+
}
|
341
|
+
|
342
|
+
static void munmap_file(void * addr, size_t length) {
|
343
|
+
#if defined(_WIN32) && !defined(_POSIX_MAPPED_FILES)
|
344
|
+
UnmapViewOfFile(addr);
|
345
|
+
#else
|
346
|
+
munmap(addr, length);
|
347
|
+
#endif
|
348
|
+
}
|
349
|
+
|
350
|
+
static bool report_bad_magic(const char *path, uint32_t got, uint32_t want) {
|
351
|
+
fprintf(stderr,
|
352
|
+
"%s: invalid model file (bad magic [got %#x want %#x])\n"
|
353
|
+
"\tyou most likely need to regenerate your ggml files\n"
|
354
|
+
"\tthe benefit is you'll get 10-100x faster load times\n"
|
355
|
+
"\tsee https://github.com/ggerganov/llama.cpp/issues/91\n"
|
356
|
+
"\tuse convert-pth-to-ggml.py to regenerate from original pth\n"
|
357
|
+
"\tuse migrate-ggml-2023-03-30-pr613.py if you deleted originals\n",
|
358
|
+
path, got, want);
|
359
|
+
return false;
|
360
|
+
}
|
361
|
+
|
291
362
|
static bool llama_model_load(
|
292
363
|
const std::string & fname,
|
293
364
|
llama_context & lctx,
|
@@ -299,22 +370,24 @@ static bool llama_model_load(
|
|
299
370
|
void *progress_callback_user_data) {
|
300
371
|
fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
301
372
|
|
302
|
-
|
303
|
-
|
304
|
-
lctx.t_start_us = t_start_us;
|
305
|
-
|
306
|
-
std::vector<char> f_buf(1024*1024);
|
373
|
+
lctx.t_start_us = ggml_time_us();
|
307
374
|
|
308
375
|
auto & model = lctx.model;
|
309
376
|
auto & vocab = lctx.vocab;
|
310
377
|
|
311
378
|
auto fin = std::ifstream(fname, std::ios::binary);
|
312
|
-
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
313
379
|
if (!fin) {
|
314
380
|
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
315
381
|
return false;
|
316
382
|
}
|
317
383
|
|
384
|
+
std::vector<char> f_buf(1024*1024);
|
385
|
+
fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
|
386
|
+
|
387
|
+
fin.seekg(0, fin.end);
|
388
|
+
const size_t file_size = fin.tellg();
|
389
|
+
fin.seekg(0);
|
390
|
+
|
318
391
|
// verify magic
|
319
392
|
{
|
320
393
|
uint32_t magic;
|
@@ -325,8 +398,7 @@ static bool llama_model_load(
|
|
325
398
|
return false;
|
326
399
|
}
|
327
400
|
if (magic != LLAMA_FILE_MAGIC) {
|
328
|
-
|
329
|
-
return false;
|
401
|
+
return report_bad_magic(fname.c_str(), magic, LLAMA_FILE_MAGIC);
|
330
402
|
}
|
331
403
|
|
332
404
|
uint32_t format_version;
|
@@ -449,43 +521,24 @@ static bool llama_model_load(
|
|
449
521
|
}
|
450
522
|
}
|
451
523
|
|
524
|
+
// map model into memory
|
525
|
+
char *mm_addr = NULL;
|
526
|
+
model.mm_addr = mmap_file(fname.c_str(), &model.mm_length);
|
527
|
+
if (model.mm_addr == NULL) {
|
528
|
+
fprintf(stderr, "%s: failed to mmap '%s'\n", __func__, fname.c_str());
|
529
|
+
return false;
|
530
|
+
}
|
531
|
+
mm_addr = (char *)model.mm_addr;
|
532
|
+
fprintf(stderr, "%s: ggml map size = %6.2f MB\n", __func__, model.mm_length/(1024.0*1024.0));
|
533
|
+
|
452
534
|
auto & ctx = model.ctx;
|
453
535
|
|
454
536
|
size_t ctx_size = 0;
|
455
|
-
|
456
537
|
{
|
457
|
-
const auto &
|
458
|
-
|
459
|
-
const int n_embd = hparams.n_embd;
|
538
|
+
const auto &hparams = model.hparams;
|
460
539
|
const int n_layer = hparams.n_layer;
|
461
|
-
const int n_ctx = hparams.n_ctx;
|
462
|
-
const int n_vocab = hparams.n_vocab;
|
463
|
-
|
464
|
-
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
|
465
|
-
|
466
|
-
ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
|
467
|
-
|
468
|
-
ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
|
469
|
-
|
470
|
-
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
|
471
|
-
|
472
|
-
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
|
473
|
-
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
|
474
|
-
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
|
475
|
-
ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
|
476
|
-
|
477
|
-
ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
|
478
|
-
|
479
|
-
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
|
480
|
-
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
|
481
|
-
ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
|
482
|
-
|
483
|
-
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
|
484
|
-
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
|
485
|
-
|
486
540
|
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
487
|
-
|
488
|
-
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
541
|
+
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
489
542
|
}
|
490
543
|
|
491
544
|
// print memory requirements
|
@@ -495,6 +548,7 @@ static bool llama_model_load(
|
|
495
548
|
// this is the total memory required to run the inference
|
496
549
|
const size_t mem_required =
|
497
550
|
ctx_size +
|
551
|
+
model.mm_length +
|
498
552
|
MEM_REQ_SCRATCH0.at(model.type) +
|
499
553
|
MEM_REQ_SCRATCH1.at(model.type) +
|
500
554
|
MEM_REQ_EVAL.at (model.type);
|
@@ -514,6 +568,7 @@ static bool llama_model_load(
|
|
514
568
|
struct ggml_init_params params = {
|
515
569
|
/*.mem_size =*/ lctx.model.buf.size(),
|
516
570
|
/*.mem_buffer =*/ lctx.model.buf.data(),
|
571
|
+
/*.no_alloc =*/ true,
|
517
572
|
};
|
518
573
|
|
519
574
|
model.ctx = ggml_init(params);
|
@@ -576,234 +631,106 @@ static bool llama_model_load(
|
|
576
631
|
}
|
577
632
|
}
|
578
633
|
|
579
|
-
const size_t file_offset = fin.tellg();
|
580
|
-
|
581
|
-
fin.close();
|
582
|
-
|
583
634
|
std::vector<uint8_t> tmp;
|
584
635
|
|
585
636
|
if (progress_callback) {
|
586
637
|
progress_callback(0.0, progress_callback_user_data);
|
587
638
|
}
|
588
639
|
|
589
|
-
|
590
|
-
const int part_id = i;
|
591
|
-
//const int part_id = n_parts - i - 1;
|
640
|
+
fprintf(stderr, "%s: loading tensors from '%s'\n", __func__, fname.c_str());
|
592
641
|
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
597
|
-
|
598
|
-
fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
|
642
|
+
// load weights
|
643
|
+
{
|
644
|
+
size_t total_size = 0;
|
645
|
+
model.n_loaded = 0;
|
599
646
|
|
600
|
-
|
601
|
-
|
647
|
+
while (true) {
|
648
|
+
int32_t n_dims;
|
649
|
+
int32_t length;
|
650
|
+
int32_t ftype;
|
602
651
|
|
603
|
-
|
604
|
-
|
652
|
+
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
653
|
+
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
654
|
+
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
605
655
|
|
606
|
-
|
656
|
+
if (fin.eof()) {
|
657
|
+
break;
|
658
|
+
}
|
607
659
|
|
608
|
-
|
609
|
-
|
610
|
-
|
660
|
+
int32_t nelements = 1;
|
661
|
+
int32_t ne[2] = { 1, 1 };
|
662
|
+
for (int i = 0; i < n_dims; ++i) {
|
663
|
+
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
664
|
+
nelements *= ne[i];
|
665
|
+
}
|
611
666
|
|
612
|
-
|
667
|
+
std::string name(length, 0);
|
668
|
+
fin.read(&name[0], length);
|
613
669
|
|
614
|
-
|
670
|
+
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
671
|
+
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
672
|
+
return false;
|
673
|
+
}
|
615
674
|
|
616
|
-
|
617
|
-
int32_t n_dims;
|
618
|
-
int32_t length;
|
619
|
-
int32_t ftype;
|
675
|
+
auto tensor = model.tensors[name.data()];
|
620
676
|
|
621
|
-
|
622
|
-
|
623
|
-
|
677
|
+
if (ggml_nelements(tensor) != nelements) {
|
678
|
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
679
|
+
return false;
|
680
|
+
}
|
681
|
+
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
682
|
+
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
683
|
+
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
684
|
+
return false;
|
685
|
+
}
|
686
|
+
if (0) {
|
687
|
+
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
688
|
+
fprintf(stderr, "%24s - [%5d, %5d], type = %6s\n", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
689
|
+
}
|
624
690
|
|
625
|
-
|
691
|
+
switch (ftype) {
|
692
|
+
case 0: // f32
|
693
|
+
case 1: // f16
|
626
694
|
break;
|
627
|
-
|
628
|
-
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
633
|
-
nelements *= ne[i];
|
634
|
-
}
|
635
|
-
|
636
|
-
std::string name(length, 0);
|
637
|
-
fin.read(&name[0], length);
|
638
|
-
|
639
|
-
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
640
|
-
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
695
|
+
case 2: // q4_0
|
696
|
+
case 3: // q4_1
|
697
|
+
assert(ne[0] % 64 == 0);
|
698
|
+
break;
|
699
|
+
default:
|
700
|
+
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
641
701
|
return false;
|
642
|
-
|
643
|
-
|
644
|
-
// split_type = 0: split by columns
|
645
|
-
// split_type = 1: split by rows
|
646
|
-
int split_type = 0;
|
647
|
-
|
648
|
-
// split_type = 0:
|
649
|
-
// regex:
|
650
|
-
// - tok_embeddings.*
|
651
|
-
// - layers.*.attention.wo.weight
|
652
|
-
// - layers.*.feed_forward.w2.weight
|
653
|
-
|
654
|
-
// split_type = 1:
|
655
|
-
// regex:
|
656
|
-
// - output.*
|
657
|
-
// - layers.*.attention.wq.weight
|
658
|
-
// - layers.*.attention.wk.weight
|
659
|
-
// - layers.*.attention.wv.weight
|
660
|
-
// - layers.*.feed_forward.w1.weight
|
661
|
-
// - layers.*.feed_forward.w3.weight
|
662
|
-
if (name.find("tok_embeddings") != std::string::npos) {
|
663
|
-
split_type = 0;
|
664
|
-
} else if (name.find("layers") != std::string::npos) {
|
665
|
-
if (name.find("attention.wo.weight") != std::string::npos) {
|
666
|
-
split_type = 0;
|
667
|
-
} else if (name.find("feed_forward.w2.weight") != std::string::npos) {
|
668
|
-
split_type = 0;
|
669
|
-
} else {
|
670
|
-
split_type = 1;
|
671
|
-
}
|
672
|
-
} else if (name.find("output") != std::string::npos) {
|
673
|
-
split_type = 1;
|
674
|
-
}
|
675
|
-
|
676
|
-
auto tensor = model.tensors[name.data()];
|
677
|
-
|
678
|
-
if (n_dims == 1) {
|
679
|
-
if (ggml_nelements(tensor) != nelements) {
|
680
|
-
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
681
|
-
return false;
|
682
|
-
}
|
683
|
-
} else {
|
684
|
-
if (ggml_nelements(tensor)/n_parts != nelements) {
|
685
|
-
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
686
|
-
return false;
|
687
|
-
}
|
688
|
-
}
|
689
|
-
|
690
|
-
if (n_dims == 1) {
|
691
|
-
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
692
|
-
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
693
|
-
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
694
|
-
return false;
|
695
|
-
}
|
696
|
-
} else {
|
697
|
-
if (split_type == 0) {
|
698
|
-
if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
|
699
|
-
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
700
|
-
__func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
|
701
|
-
return false;
|
702
|
-
}
|
703
|
-
} else {
|
704
|
-
if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
|
705
|
-
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
706
|
-
__func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
|
707
|
-
return false;
|
708
|
-
}
|
709
|
-
}
|
710
|
-
}
|
711
|
-
|
712
|
-
if (0) {
|
713
|
-
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
714
|
-
fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
|
715
|
-
}
|
716
|
-
|
717
|
-
size_t bpe = 0;
|
718
|
-
|
719
|
-
switch (ftype) {
|
720
|
-
case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
|
721
|
-
case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
|
722
|
-
case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
|
723
|
-
case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
|
724
|
-
default:
|
725
|
-
{
|
726
|
-
fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
|
727
|
-
return false;
|
728
|
-
}
|
729
|
-
};
|
730
|
-
|
731
|
-
if (n_dims == 1 || n_parts == 1) {
|
732
|
-
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
|
733
|
-
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
734
|
-
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
735
|
-
return false;
|
736
|
-
}
|
737
|
-
|
738
|
-
if (part_id == 0) {
|
739
|
-
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
740
|
-
} else {
|
741
|
-
fin.seekg(ggml_nbytes(tensor), std::ios::cur);
|
742
|
-
}
|
743
|
-
|
744
|
-
total_size += ggml_nbytes(tensor);
|
745
|
-
} else {
|
746
|
-
if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
|
747
|
-
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
748
|
-
__func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
|
749
|
-
return false;
|
750
|
-
}
|
751
|
-
|
752
|
-
if (split_type == 0) {
|
753
|
-
const int np0 = ne[0];
|
754
|
-
|
755
|
-
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
756
|
-
assert(row_size == tensor->nb[1]);
|
757
|
-
|
758
|
-
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
759
|
-
const size_t offset_row = i1*row_size;
|
760
|
-
const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
761
|
-
fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
|
762
|
-
}
|
763
|
-
} else {
|
764
|
-
const int np1 = ne[1];
|
765
|
-
|
766
|
-
const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
|
767
|
-
|
768
|
-
for (int i1 = 0; i1 < ne[1]; ++i1) {
|
769
|
-
const size_t offset_row = (i1 + part_id*np1)*row_size;
|
770
|
-
fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
|
771
|
-
}
|
772
|
-
}
|
773
|
-
|
774
|
-
total_size += ggml_nbytes(tensor)/n_parts;
|
775
|
-
}
|
776
|
-
|
777
|
-
//fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
778
|
-
model.n_loaded++;
|
779
|
-
|
780
|
-
// progress
|
781
|
-
if (progress_callback) {
|
782
|
-
float current_file_progress = float(size_t(fin.tellg()) - file_offset) / float(file_size - file_offset);
|
783
|
-
float current_progress = (float(i) + current_file_progress) / float(n_parts);
|
784
|
-
progress_callback(current_progress, progress_callback_user_data);
|
785
|
-
}
|
786
|
-
if (model.n_loaded % 8 == 0) {
|
787
|
-
fprintf(stderr, ".");
|
788
|
-
fflush(stderr);
|
789
|
-
}
|
790
|
-
}
|
791
|
-
|
792
|
-
fprintf(stderr, " done\n");
|
702
|
+
};
|
793
703
|
|
794
|
-
|
795
|
-
|
796
|
-
|
797
|
-
|
798
|
-
|
799
|
-
|
704
|
+
// load the tensor data into memory without copying or reading it
|
705
|
+
size_t offset = fin.tellg();
|
706
|
+
size_t tensor_data_size = ggml_nbytes(tensor);
|
707
|
+
offset = (offset + 31) & -32;
|
708
|
+
tensor->data = mm_addr + offset;
|
709
|
+
fin.seekg(offset + tensor_data_size);
|
710
|
+
total_size += tensor_data_size;
|
711
|
+
model.n_loaded++;
|
712
|
+
|
713
|
+
// progress
|
714
|
+
if (progress_callback) {
|
715
|
+
double current_progress = size_t(fin.tellg()) / double(file_size);
|
716
|
+
progress_callback(current_progress, progress_callback_user_data);
|
800
717
|
}
|
801
718
|
}
|
802
719
|
|
803
720
|
fin.close();
|
721
|
+
|
722
|
+
fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
|
723
|
+
if (model.n_loaded == 0) {
|
724
|
+
fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
|
725
|
+
} else if (model.n_loaded != (int) model.tensors.size()) {
|
726
|
+
fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
|
727
|
+
return false;
|
728
|
+
}
|
804
729
|
}
|
805
730
|
|
806
|
-
|
731
|
+
// loading time will be recalculate after the first eval, so
|
732
|
+
// we take page faults deferred by mmap() into consideration
|
733
|
+
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
|
807
734
|
|
808
735
|
if (progress_callback) {
|
809
736
|
progress_callback(1.0, progress_callback_user_data);
|
@@ -849,6 +776,7 @@ static bool llama_eval_internal(
|
|
849
776
|
struct ggml_init_params params = {
|
850
777
|
/*.mem_size =*/ buf_compute.size(),
|
851
778
|
/*.mem_buffer =*/ buf_compute.data(),
|
779
|
+
/*.no_alloc =*/ false,
|
852
780
|
};
|
853
781
|
|
854
782
|
struct ggml_context * ctx0 = ggml_init(params);
|
@@ -856,7 +784,7 @@ static bool llama_eval_internal(
|
|
856
784
|
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
857
785
|
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
858
786
|
ggml_cgraph gf = {};
|
859
|
-
gf.n_threads = N
|
787
|
+
gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
|
860
788
|
|
861
789
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
862
790
|
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
@@ -1126,7 +1054,7 @@ struct llama_tokenizer {
|
|
1126
1054
|
size_t offs = 0;
|
1127
1055
|
while (offs < text.size()) {
|
1128
1056
|
llama_sp_symbol sym;
|
1129
|
-
size_t char_len =
|
1057
|
+
size_t char_len = Min(text.size() - offs, utf8_len(text[offs]));
|
1130
1058
|
sym.text = text.c_str() + offs;
|
1131
1059
|
sym.n = char_len;
|
1132
1060
|
offs += char_len;
|
@@ -1291,7 +1219,7 @@ static llama_vocab::id llama_sample_top_p_top_k(
|
|
1291
1219
|
|
1292
1220
|
float maxl = -std::numeric_limits<float>::infinity();
|
1293
1221
|
for (const auto & kv : logits_id) {
|
1294
|
-
maxl =
|
1222
|
+
maxl = Max(maxl, kv.first);
|
1295
1223
|
}
|
1296
1224
|
|
1297
1225
|
// compute probs for the top k tokens
|
@@ -1385,8 +1313,7 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
1385
1313
|
return false;
|
1386
1314
|
}
|
1387
1315
|
if (magic != LLAMA_FILE_MAGIC) {
|
1388
|
-
|
1389
|
-
return false;
|
1316
|
+
return report_bad_magic(fname_inp.c_str(), magic, LLAMA_FILE_MAGIC);
|
1390
1317
|
}
|
1391
1318
|
|
1392
1319
|
fout.write((char *) &magic, sizeof(magic));
|
@@ -1444,7 +1371,7 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
1444
1371
|
return false;
|
1445
1372
|
}
|
1446
1373
|
|
1447
|
-
std::
|
1374
|
+
std::vector<char> word(32);
|
1448
1375
|
vocab.id_to_token.resize(n_vocab);
|
1449
1376
|
for (int i = 0; i < n_vocab; i++) {
|
1450
1377
|
uint32_t len;
|
@@ -1452,17 +1379,17 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
1452
1379
|
fout.write((char *) &len, sizeof(len));
|
1453
1380
|
|
1454
1381
|
word.resize(len);
|
1455
|
-
finp.read ((char *) word
|
1456
|
-
fout.write((char *) word
|
1382
|
+
finp.read ((char *) &word[0], len);
|
1383
|
+
fout.write((char *) &word[0], len);
|
1457
1384
|
|
1458
1385
|
float score;
|
1459
1386
|
finp.read ((char *) &score, sizeof(score));
|
1460
1387
|
fout.write((char *) &score, sizeof(score));
|
1461
1388
|
|
1462
|
-
vocab.token_to_id[word] = i;
|
1389
|
+
vocab.token_to_id[word.data()] = i;
|
1463
1390
|
|
1464
1391
|
auto &tok_score = vocab.id_to_token[i];
|
1465
|
-
tok_score.tok = word;
|
1392
|
+
tok_score.tok = word.data();
|
1466
1393
|
tok_score.score = score;
|
1467
1394
|
}
|
1468
1395
|
}
|
@@ -1503,6 +1430,13 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
1503
1430
|
std::string name(length, 0);
|
1504
1431
|
finp.read (&name[0], length);
|
1505
1432
|
|
1433
|
+
{
|
1434
|
+
// ensure tensor data is aligned
|
1435
|
+
uint64_t offset = finp.tellg();
|
1436
|
+
offset = (offset + 31) & -32;
|
1437
|
+
finp.seekg(offset);
|
1438
|
+
}
|
1439
|
+
|
1506
1440
|
{
|
1507
1441
|
static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
|
1508
1442
|
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
|
@@ -1558,6 +1492,13 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
1558
1492
|
}
|
1559
1493
|
fout.write(&name[0], length);
|
1560
1494
|
|
1495
|
+
{
|
1496
|
+
// ensure tensor data is aligned
|
1497
|
+
uint64_t offset = fout.tellp();
|
1498
|
+
offset = (offset + 31) & -32;
|
1499
|
+
fout.seekp(offset);
|
1500
|
+
}
|
1501
|
+
|
1561
1502
|
if (quantize) {
|
1562
1503
|
printf("quantizing .. ");
|
1563
1504
|
work.resize(nelements); // for quantization
|
@@ -1655,7 +1596,10 @@ struct llama_context * llama_init_from_file(
|
|
1655
1596
|
|
1656
1597
|
if (params.use_mlock) {
|
1657
1598
|
char *err;
|
1658
|
-
if (!ggml_mlock(ctx->model.ctx,
|
1599
|
+
if (!ggml_mlock(ctx->model.ctx,
|
1600
|
+
ctx->model.mm_addr,
|
1601
|
+
ctx->model.mm_length,
|
1602
|
+
&err)) {
|
1659
1603
|
fprintf(stderr, "%s\n", err);
|
1660
1604
|
free(err);
|
1661
1605
|
llama_free(ctx);
|
@@ -1705,6 +1649,10 @@ void llama_free(struct llama_context * ctx) {
|
|
1705
1649
|
ggml_free(ctx->model.ctx);
|
1706
1650
|
}
|
1707
1651
|
|
1652
|
+
if (ctx->model.mm_addr) {
|
1653
|
+
munmap_file(ctx->model.mm_addr, ctx->model.mm_length);
|
1654
|
+
}
|
1655
|
+
|
1708
1656
|
delete ctx;
|
1709
1657
|
}
|
1710
1658
|
|
@@ -1730,7 +1678,11 @@ int llama_eval(
|
|
1730
1678
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
1731
1679
|
return 1;
|
1732
1680
|
}
|
1733
|
-
|
1681
|
+
// get a more accurate load time, upon first eval
|
1682
|
+
if (!ctx->has_evaluated_once) {
|
1683
|
+
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
|
1684
|
+
ctx->has_evaluated_once = true;
|
1685
|
+
}
|
1734
1686
|
return 0;
|
1735
1687
|
}
|
1736
1688
|
|
@@ -1823,9 +1775,9 @@ llama_token llama_sample_top_p_top_k(
|
|
1823
1775
|
void llama_print_timings(struct llama_context * ctx) {
|
1824
1776
|
const int64_t t_end_us = ggml_time_us();
|
1825
1777
|
|
1826
|
-
const int32_t n_sample =
|
1827
|
-
const int32_t n_eval =
|
1828
|
-
const int32_t n_p_eval =
|
1778
|
+
const int32_t n_sample = Max(1, ctx->n_sample);
|
1779
|
+
const int32_t n_eval = Max(1, ctx->n_eval);
|
1780
|
+
const int32_t n_p_eval = Max(1, ctx->n_p_eval);
|
1829
1781
|
|
1830
1782
|
fprintf(stderr, "\n");
|
1831
1783
|
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
|
@@ -1837,7 +1789,6 @@ void llama_print_timings(struct llama_context * ctx) {
|
|
1837
1789
|
|
1838
1790
|
void llama_reset_timings(struct llama_context * ctx) {
|
1839
1791
|
ctx->t_start_us = ggml_time_us();
|
1840
|
-
|
1841
1792
|
ctx->t_sample_us = ctx->n_sample = 0;
|
1842
1793
|
ctx->t_eval_us = ctx->n_eval = 0;
|
1843
1794
|
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|