libmf 0.1.2 → 0.2.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +28 -3
- data/LICENSE.txt +26 -18
- data/README.md +87 -33
- data/lib/libmf.rb +16 -7
- data/lib/libmf/ffi.rb +2 -6
- data/lib/libmf/model.rb +52 -20
- data/lib/libmf/version.rb +1 -1
- data/vendor/{libmf/COPYRIGHT → COPYRIGHT} +0 -0
- data/vendor/{libmf/demo → demo}/real_matrix.te.txt +0 -0
- data/vendor/{libmf/demo → demo}/real_matrix.tr.txt +0 -0
- data/vendor/libmf.arm64.dylib +0 -0
- data/vendor/libmf.arm64.so +0 -0
- data/vendor/libmf.dylib +0 -0
- data/vendor/libmf.so +0 -0
- data/vendor/mf.dll +0 -0
- metadata +19 -90
- data/ext/libmf/extconf.rb +0 -18
- data/lib/libmf.bundle +0 -0
- data/vendor/libmf/Makefile +0 -34
- data/vendor/libmf/Makefile.win +0 -36
- data/vendor/libmf/README +0 -637
- data/vendor/libmf/demo/all_one_matrix.te.txt +0 -1382
- data/vendor/libmf/demo/all_one_matrix.tr.txt +0 -5172
- data/vendor/libmf/demo/binary_matrix.te.txt +0 -1312
- data/vendor/libmf/demo/binary_matrix.tr.txt +0 -4937
- data/vendor/libmf/demo/demo.bat +0 -40
- data/vendor/libmf/demo/demo.sh +0 -58
- data/vendor/libmf/mf-predict.cpp +0 -207
- data/vendor/libmf/mf-train.cpp +0 -378
- data/vendor/libmf/mf.cpp +0 -4683
- data/vendor/libmf/mf.def +0 -21
- data/vendor/libmf/mf.h +0 -130
- data/vendor/libmf/windows/mf-predict.exe +0 -0
- data/vendor/libmf/windows/mf-train.exe +0 -0
- data/vendor/libmf/windows/mf.dll +0 -0
data/vendor/libmf/demo/demo.bat
DELETED
@@ -1,40 +0,0 @@
|
|
1
|
-
SET train=..\windows\mf-train
|
2
|
-
SET predict=..\windows\mf-predict
|
3
|
-
|
4
|
-
::#########################################################################
|
5
|
-
:: Real-valued matrix factorization (RVMF)
|
6
|
-
::#########################################################################
|
7
|
-
echo "Real-valued matrix factorization"
|
8
|
-
:: In-memory training with holdout valudation
|
9
|
-
%train% -f 0 -l2 0.05 -k 100 -t 10 -p real_matrix.te.txt real_matrix.tr.txt rvmf_model.txt
|
10
|
-
:: Do prediction and show MAE
|
11
|
-
%predict% -e 1 real_matrix.te.txt rvmf_model.txt rvmf_output.txt
|
12
|
-
|
13
|
-
::#########################################################################
|
14
|
-
:: Binary matrix factorization (BMF)
|
15
|
-
::#########################################################################
|
16
|
-
echo "binary matrix factorization"
|
17
|
-
:: In-memory training with holdout valudation
|
18
|
-
%train% -f 5 -l2 0.01 -k 64 -p binary_matrix.te.txt binary_matrix.tr.txt bmf_model.txt
|
19
|
-
:: Do prediction and show accuracy
|
20
|
-
%predict% -e 6 binary_matrix.te.txt bmf_model.txt bmf_output.txt
|
21
|
-
|
22
|
-
::#########################################################################
|
23
|
-
:: One-class matrix factorization (OCMF)
|
24
|
-
::#########################################################################
|
25
|
-
echo "one-class matrix factorization using a stochastic gradient method"
|
26
|
-
:: In-memory training with holdout validation
|
27
|
-
%train% -f 10 -l2 0.01 -k 32 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
|
28
|
-
:: Do prediction and show row-oriented MPR
|
29
|
-
%predict% -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
30
|
-
:: Do prediction and show row-oriented AUC
|
31
|
-
%predict% -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
32
|
-
|
33
|
-
echo "one-class matrix factorization using a coordinate descent method"
|
34
|
-
:: In-memory training with holdout validation
|
35
|
-
%train% -f 12 -l2 0.01 -k 32 -a 0.001 -c 0.0001 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
|
36
|
-
:: Do prediction and show row-oriented MPR
|
37
|
-
%predict% -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
38
|
-
:: Do prediction and show row-oriented AUC
|
39
|
-
%predict% -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
40
|
-
)
|
data/vendor/libmf/demo/demo.sh
DELETED
@@ -1,58 +0,0 @@
|
|
1
|
-
#!/bin/sh
|
2
|
-
train=../mf-train
|
3
|
-
predict=../mf-predict
|
4
|
-
|
5
|
-
##########################################################################
|
6
|
-
# Build package if no binary found and this script is exectuted via the
|
7
|
-
# following command.
|
8
|
-
# libmf/demo > sh demo.sh
|
9
|
-
##########################################################################
|
10
|
-
if [ ! -s $train ] || [ ! -s $predict ]
|
11
|
-
then
|
12
|
-
(cd .. && make)
|
13
|
-
fi
|
14
|
-
|
15
|
-
##########################################################################
|
16
|
-
# Real-valued matrix factorization (RVMF)
|
17
|
-
##########################################################################
|
18
|
-
echo "--------------------------------"
|
19
|
-
echo "Real-valued matrix factorization"
|
20
|
-
echo "--------------------------------"
|
21
|
-
# In-memory training with holdout valudation
|
22
|
-
$train -f 0 -l2 0.05 -k 100 -t 10 -p real_matrix.te.txt real_matrix.tr.txt rvmf_model.txt
|
23
|
-
# Do prediction and show MAE
|
24
|
-
$predict -e 1 real_matrix.te.txt rvmf_model.txt rvmf_output.txt
|
25
|
-
|
26
|
-
##########################################################################
|
27
|
-
# Binary matrix factorization (BMF)
|
28
|
-
##########################################################################
|
29
|
-
echo "---------------------------"
|
30
|
-
echo "binary matrix factorization"
|
31
|
-
echo "---------------------------"
|
32
|
-
# In-memory training with holdout valudation
|
33
|
-
$train -f 5 -l2 0.01 -k 64 -p binary_matrix.te.txt binary_matrix.tr.txt bmf_model.txt
|
34
|
-
# Do prediction and show accuracy
|
35
|
-
$predict -e 6 binary_matrix.te.txt bmf_model.txt bmf_output.txt
|
36
|
-
|
37
|
-
##########################################################################
|
38
|
-
# One-class matrix factorization (OCMF)
|
39
|
-
##########################################################################
|
40
|
-
echo "-----------------------------------------------------------------"
|
41
|
-
echo "one-class matrix factorization using a stochastic gradient method"
|
42
|
-
echo "-----------------------------------------------------------------"
|
43
|
-
# In-memory training with holdout validation
|
44
|
-
$train -f 10 -l2 0.01 -k 32 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
|
45
|
-
# Do prediction and show row-oriented MPR
|
46
|
-
$predict -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
47
|
-
# Do prediction and show row-oriented AUC
|
48
|
-
$predict -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
49
|
-
|
50
|
-
echo "----------------------------------------------------------------"
|
51
|
-
echo "one-class matrix factorization using a coordinate descent method"
|
52
|
-
echo "----------------------------------------------------------------"
|
53
|
-
# In-memory training with holdout validation
|
54
|
-
$train -f 12 -l2 0.01 -k 32 -a 0.001 -c 0.0001 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
|
55
|
-
# Do prediction and show row-oriented MPR
|
56
|
-
$predict -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
57
|
-
# Do prediction and show row-oriented AUC
|
58
|
-
$predict -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
|
data/vendor/libmf/mf-predict.cpp
DELETED
@@ -1,207 +0,0 @@
|
|
1
|
-
#include <cstring>
|
2
|
-
#include <cstdlib>
|
3
|
-
#include <fstream>
|
4
|
-
#include <iostream>
|
5
|
-
#include <string>
|
6
|
-
#include <iomanip>
|
7
|
-
#include <stdexcept>
|
8
|
-
#include <vector>
|
9
|
-
|
10
|
-
#include "mf.h"
|
11
|
-
|
12
|
-
using namespace std;
|
13
|
-
using namespace mf;
|
14
|
-
|
15
|
-
struct Option
|
16
|
-
{
|
17
|
-
Option() : eval(RMSE) {}
|
18
|
-
string test_path, model_path, output_path;
|
19
|
-
mf_int eval;
|
20
|
-
};
|
21
|
-
|
22
|
-
string predict_help()
|
23
|
-
{
|
24
|
-
return string(
|
25
|
-
"usage: mf-predict [options] test_file model_file [output_file]\n"
|
26
|
-
"\n"
|
27
|
-
"options:\n"
|
28
|
-
"-e <eval>: specify the evaluation criterion (default 0)\n"
|
29
|
-
"\t 0 -- root mean square error\n"
|
30
|
-
"\t 1 -- mean absolute error\n"
|
31
|
-
"\t 2 -- generalized KL-divergence\n"
|
32
|
-
"\t 5 -- logarithmic error\n"
|
33
|
-
"\t 6 -- accuracy\n"
|
34
|
-
"\t10 -- row-wise mean percentile rank\n"
|
35
|
-
"\t11 -- column-wise mean percentile rank\n"
|
36
|
-
"\t12 -- row-wise area under the curve\n"
|
37
|
-
"\t13 -- column-wise area under the curve\n");
|
38
|
-
}
|
39
|
-
|
40
|
-
Option parse_option(int argc, char **argv)
|
41
|
-
{
|
42
|
-
vector<string> args;
|
43
|
-
for(int i = 0; i < argc; i++)
|
44
|
-
args.push_back(string(argv[i]));
|
45
|
-
|
46
|
-
if(argc == 1)
|
47
|
-
throw invalid_argument(predict_help());
|
48
|
-
|
49
|
-
Option option;
|
50
|
-
|
51
|
-
mf_int i;
|
52
|
-
for(i = 1; i < argc; i++)
|
53
|
-
{
|
54
|
-
if(args[i].compare("-e") == 0)
|
55
|
-
{
|
56
|
-
if((i+1) >= argc)
|
57
|
-
throw invalid_argument("need to specify evaluation criterion after -e");
|
58
|
-
i++;
|
59
|
-
option.eval = atoi(argv[i]);
|
60
|
-
if(option.eval != RMSE &&
|
61
|
-
option.eval != MAE &&
|
62
|
-
option.eval != GKL &&
|
63
|
-
option.eval != LOGLOSS &&
|
64
|
-
option.eval != ACC &&
|
65
|
-
option.eval != ROW_AUC &&
|
66
|
-
option.eval != COL_AUC &&
|
67
|
-
option.eval != ROW_MPR &&
|
68
|
-
option.eval != COL_MPR)
|
69
|
-
throw invalid_argument("unknown evaluation criterion");
|
70
|
-
}
|
71
|
-
else
|
72
|
-
break;
|
73
|
-
}
|
74
|
-
if(i >= argc-1)
|
75
|
-
throw invalid_argument("testing data and model file not specified");
|
76
|
-
option.test_path = string(args[i++]);
|
77
|
-
option.model_path = string(args[i++]);
|
78
|
-
|
79
|
-
if(i < argc)
|
80
|
-
{
|
81
|
-
option.output_path = string(args[i]);
|
82
|
-
}
|
83
|
-
else if(i == argc)
|
84
|
-
{
|
85
|
-
const char *ptr = strrchr(&*option.test_path.begin(), '/');
|
86
|
-
if(!ptr)
|
87
|
-
ptr = option.test_path.c_str();
|
88
|
-
else
|
89
|
-
++ptr;
|
90
|
-
option.output_path = string(ptr) + ".out";
|
91
|
-
}
|
92
|
-
else
|
93
|
-
{
|
94
|
-
throw invalid_argument("invalid argument");
|
95
|
-
}
|
96
|
-
|
97
|
-
return option;
|
98
|
-
}
|
99
|
-
|
100
|
-
void predict(string test_path, string model_path, string output_path, mf_int eval)
|
101
|
-
{
|
102
|
-
mf_problem prob = read_problem(test_path);
|
103
|
-
|
104
|
-
ofstream f_out(output_path);
|
105
|
-
if(!f_out.is_open())
|
106
|
-
throw runtime_error("cannot open " + output_path);
|
107
|
-
|
108
|
-
mf_model *model = mf_load_model(model_path.c_str());
|
109
|
-
if(model == nullptr)
|
110
|
-
throw runtime_error("cannot load model from " + model_path);
|
111
|
-
|
112
|
-
for(mf_int i = 0; i < prob.nnz; i++)
|
113
|
-
{
|
114
|
-
mf_float r = mf_predict(model, prob.R[i].u, prob.R[i].v);
|
115
|
-
f_out << r << endl;
|
116
|
-
}
|
117
|
-
|
118
|
-
switch(eval)
|
119
|
-
{
|
120
|
-
case RMSE:
|
121
|
-
{
|
122
|
-
auto rmse = calc_rmse(&prob, model);
|
123
|
-
cout << fixed << setprecision(4) << "RMSE = " << rmse << endl;
|
124
|
-
break;
|
125
|
-
}
|
126
|
-
case MAE:
|
127
|
-
{
|
128
|
-
auto mae = calc_mae(&prob, model);
|
129
|
-
cout << fixed << setprecision(4) << "MAE = " << mae << endl;
|
130
|
-
break;
|
131
|
-
}
|
132
|
-
case GKL:
|
133
|
-
{
|
134
|
-
auto gkl = calc_gkl(&prob, model);
|
135
|
-
cout << fixed << setprecision(4) << "GKL = " << gkl << endl;
|
136
|
-
break;
|
137
|
-
}
|
138
|
-
case LOGLOSS:
|
139
|
-
{
|
140
|
-
auto logloss = calc_logloss(&prob, model);
|
141
|
-
cout << fixed << setprecision(4) << "LOGLOSS = " << logloss << endl;
|
142
|
-
break;
|
143
|
-
}
|
144
|
-
case ACC:
|
145
|
-
{
|
146
|
-
auto acc = calc_accuracy(&prob, model);
|
147
|
-
cout << fixed << setprecision(4) << "ACCURACY = " << acc << endl;
|
148
|
-
break;
|
149
|
-
}
|
150
|
-
case ROW_AUC:
|
151
|
-
{
|
152
|
-
auto row_wise_auc = calc_auc(&prob, model, false);
|
153
|
-
cout << fixed << setprecision(4) << "Row-wise AUC = " << row_wise_auc << endl;
|
154
|
-
break;
|
155
|
-
}
|
156
|
-
case COL_AUC:
|
157
|
-
{
|
158
|
-
auto col_wise_auc = calc_auc(&prob, model, true);
|
159
|
-
cout << fixed << setprecision(4) << "Colmn-wise AUC = " << col_wise_auc << endl;
|
160
|
-
break;
|
161
|
-
}
|
162
|
-
case ROW_MPR:
|
163
|
-
{
|
164
|
-
auto row_wise_mpr = calc_mpr(&prob, model, false);
|
165
|
-
cout << fixed << setprecision(4) << "Row-wise MPR = " << row_wise_mpr << endl;
|
166
|
-
break;
|
167
|
-
}
|
168
|
-
case COL_MPR:
|
169
|
-
{
|
170
|
-
auto col_wise_mpr = calc_mpr(&prob, model, true);
|
171
|
-
cout << fixed << setprecision(4) << "Column-wise MPR = " << col_wise_mpr << endl;
|
172
|
-
break;
|
173
|
-
}
|
174
|
-
default:
|
175
|
-
{
|
176
|
-
throw invalid_argument("unknown evaluation criterion");
|
177
|
-
break;
|
178
|
-
}
|
179
|
-
}
|
180
|
-
mf_destroy_model(&model);
|
181
|
-
}
|
182
|
-
|
183
|
-
int main(int argc, char **argv)
|
184
|
-
{
|
185
|
-
Option option;
|
186
|
-
try
|
187
|
-
{
|
188
|
-
option = parse_option(argc, argv);
|
189
|
-
}
|
190
|
-
catch(invalid_argument &e)
|
191
|
-
{
|
192
|
-
cout << e.what() << endl;
|
193
|
-
return 1;
|
194
|
-
}
|
195
|
-
|
196
|
-
try
|
197
|
-
{
|
198
|
-
predict(option.test_path, option.model_path, option.output_path, option.eval);
|
199
|
-
}
|
200
|
-
catch(runtime_error &e)
|
201
|
-
{
|
202
|
-
cout << e.what() << endl;
|
203
|
-
return 1;
|
204
|
-
}
|
205
|
-
|
206
|
-
return 0;
|
207
|
-
}
|
data/vendor/libmf/mf-train.cpp
DELETED
@@ -1,378 +0,0 @@
|
|
1
|
-
#include <algorithm>
|
2
|
-
#include <cctype>
|
3
|
-
#include <cmath>
|
4
|
-
#include <cstring>
|
5
|
-
#include <cstdlib>
|
6
|
-
#include <fstream>
|
7
|
-
#include <iostream>
|
8
|
-
#include <stdexcept>
|
9
|
-
#include <string>
|
10
|
-
#include <vector>
|
11
|
-
|
12
|
-
#include "mf.h"
|
13
|
-
|
14
|
-
using namespace std;
|
15
|
-
using namespace mf;
|
16
|
-
|
17
|
-
struct Option
|
18
|
-
{
|
19
|
-
Option() : param(mf_get_default_param()), nr_folds(1), on_disk(false), do_cv(false) {}
|
20
|
-
string tr_path, va_path, model_path;
|
21
|
-
mf_parameter param;
|
22
|
-
mf_int nr_folds;
|
23
|
-
bool on_disk;
|
24
|
-
bool do_cv;
|
25
|
-
};
|
26
|
-
|
27
|
-
string train_help()
|
28
|
-
{
|
29
|
-
return string(
|
30
|
-
"usage: mf-train [options] training_set_file [model_file]\n"
|
31
|
-
"\n"
|
32
|
-
"options:\n"
|
33
|
-
"-l1 <lambda>,<lambda>: set L1-regularization parameters for P and Q (default 0)\n"
|
34
|
-
" P and Q share the same lambda if only one lambda is specified\n"
|
35
|
-
"-l2 <lambda>,<lambda>: set L2-regularization parameters for P and Q (default 0.1)\n"
|
36
|
-
" P and Q share the same lambda if only one lambda is specified\n"
|
37
|
-
"-f <loss>: set loss function (default 0)\n"
|
38
|
-
" for real-valued matrix factorization\n"
|
39
|
-
"\t 0 -- squared error (L2-norm)\n"
|
40
|
-
"\t 1 -- absolute error (L1-norm)\n"
|
41
|
-
"\t 2 -- generalized KL-divergence\n"
|
42
|
-
" for binary matrix factorization\n"
|
43
|
-
"\t 5 -- logarithmic loss\n"
|
44
|
-
"\t 6 -- squared hinge loss\n"
|
45
|
-
"\t 7 -- hinge loss\n"
|
46
|
-
" for one-class matrix factorization\n"
|
47
|
-
"\t10 -- row-oriented pairwise logarithmic loss\n"
|
48
|
-
"\t11 -- column-oriented pairwise logarithmic loss\n"
|
49
|
-
"\t12 -- squared error (L2-norm)\n"
|
50
|
-
"-k <dimensions>: set number of dimensions (default 8)\n"
|
51
|
-
"-t <iter>: set number of iterations (default 20)\n"
|
52
|
-
"-r <eta>: set learning rate (default 0.1)\n"
|
53
|
-
"-a <alpha>: set coefficient of negative entries' loss (default 1)\n"
|
54
|
-
"-c <c>: set value of negative entries (default 0.0001). Positive entry is always 1.\n"
|
55
|
-
"-s <threads>: set number of threads (default 12)\n"
|
56
|
-
"-n <bins>: set number of bins (may be adjusted by LIBMF)\n"
|
57
|
-
"-p <path>: set path to the validation set\n"
|
58
|
-
"-v <fold>: set number of folds for cross validation\n"
|
59
|
-
"--quiet: quiet mode (no outputs)\n"
|
60
|
-
"--nmf: perform non-negative matrix factorization\n"
|
61
|
-
"--disk: perform disk-level training (will generate a buffer file)\n");
|
62
|
-
}
|
63
|
-
|
64
|
-
bool is_numerical(char *str)
|
65
|
-
{
|
66
|
-
int c = 0;
|
67
|
-
while(*str != '\0')
|
68
|
-
{
|
69
|
-
if(isdigit(*str))
|
70
|
-
c++;
|
71
|
-
str++;
|
72
|
-
}
|
73
|
-
return c > 0;
|
74
|
-
}
|
75
|
-
|
76
|
-
Option parse_option(int argc, char **argv)
|
77
|
-
{
|
78
|
-
vector<string> args;
|
79
|
-
for(int i = 0; i < argc; i++)
|
80
|
-
args.push_back(string(argv[i]));
|
81
|
-
|
82
|
-
if(argc == 1)
|
83
|
-
throw invalid_argument(train_help());
|
84
|
-
|
85
|
-
Option option;
|
86
|
-
|
87
|
-
mf_int i;
|
88
|
-
for(i = 1; i < argc; i++)
|
89
|
-
{
|
90
|
-
if(args[i].compare("-l1") == 0)
|
91
|
-
{
|
92
|
-
if((i+1) >= argc)
|
93
|
-
throw invalid_argument("need to specify lambda after -l1");
|
94
|
-
i++;
|
95
|
-
|
96
|
-
char *pch = strtok(argv[i], ",");
|
97
|
-
if(!is_numerical(pch))
|
98
|
-
throw invalid_argument("regularization coefficient\
|
99
|
-
should be a number");
|
100
|
-
option.param.lambda_p1 = (mf_float)strtod(pch, NULL);
|
101
|
-
option.param.lambda_q1 = (mf_float)strtod(pch, NULL);
|
102
|
-
pch = strtok(NULL, ",");
|
103
|
-
if(pch != NULL)
|
104
|
-
{
|
105
|
-
if(!is_numerical(pch))
|
106
|
-
throw invalid_argument("regularization coefficient\
|
107
|
-
should be a number");
|
108
|
-
option.param.lambda_q1 = (mf_float)strtod(pch, NULL);
|
109
|
-
}
|
110
|
-
}
|
111
|
-
else if(args[i].compare("-l2") == 0)
|
112
|
-
{
|
113
|
-
if((i+1) >= argc)
|
114
|
-
throw invalid_argument("need to specify lambda after -l2");
|
115
|
-
i++;
|
116
|
-
|
117
|
-
char *pch = strtok(argv[i], ",");
|
118
|
-
if(!is_numerical(pch))
|
119
|
-
throw invalid_argument("regularization coefficient\
|
120
|
-
should be a number");
|
121
|
-
option.param.lambda_p2 = (mf_float)strtod(pch, NULL);
|
122
|
-
option.param.lambda_q2 = (mf_float)strtod(pch, NULL);
|
123
|
-
pch = strtok(NULL, ",");
|
124
|
-
if(pch != NULL)
|
125
|
-
{
|
126
|
-
if(!is_numerical(pch))
|
127
|
-
throw invalid_argument("regularization coefficient\
|
128
|
-
should be a number");
|
129
|
-
option.param.lambda_q2 = (mf_float)strtod(pch, NULL);
|
130
|
-
}
|
131
|
-
}
|
132
|
-
else if(args[i].compare("-k") == 0)
|
133
|
-
{
|
134
|
-
if((i+1) >= argc)
|
135
|
-
throw invalid_argument("need to specify number of factors\
|
136
|
-
after -k");
|
137
|
-
i++;
|
138
|
-
|
139
|
-
if(!is_numerical(argv[i]))
|
140
|
-
throw invalid_argument("-k should be followed by a number");
|
141
|
-
option.param.k = atoi(argv[i]);
|
142
|
-
}
|
143
|
-
else if(args[i].compare("-t") == 0)
|
144
|
-
{
|
145
|
-
if((i+1) >= argc)
|
146
|
-
throw invalid_argument("need to specify number of iterations\
|
147
|
-
after -t");
|
148
|
-
i++;
|
149
|
-
|
150
|
-
if(!is_numerical(argv[i]))
|
151
|
-
throw invalid_argument("-i should be followed by a number");
|
152
|
-
option.param.nr_iters = atoi(argv[i]);
|
153
|
-
}
|
154
|
-
else if(args[i].compare("-r") == 0)
|
155
|
-
{
|
156
|
-
if((i+1) >= argc)
|
157
|
-
throw invalid_argument("need to specify eta after -r");
|
158
|
-
i++;
|
159
|
-
|
160
|
-
if(!is_numerical(argv[i]))
|
161
|
-
throw invalid_argument("-r should be followed by a number");
|
162
|
-
option.param.eta = (mf_float)atof(argv[i]);
|
163
|
-
}
|
164
|
-
else if(args[i].compare("-s") == 0)
|
165
|
-
{
|
166
|
-
if((i+1) >= argc)
|
167
|
-
throw invalid_argument("need to specify number of threads\
|
168
|
-
after -s");
|
169
|
-
i++;
|
170
|
-
|
171
|
-
if(!is_numerical(argv[i]))
|
172
|
-
throw invalid_argument("-s should be followed by a number");
|
173
|
-
option.param.nr_threads = atoi(argv[i]);
|
174
|
-
}
|
175
|
-
else if(args[i].compare("-a") == 0)
|
176
|
-
{
|
177
|
-
if((i+1) >= argc)
|
178
|
-
throw invalid_argument("need to specify negative weight\
|
179
|
-
after -a");
|
180
|
-
i++;
|
181
|
-
|
182
|
-
if(!is_numerical(argv[i]))
|
183
|
-
throw invalid_argument("-a should be followed by a number");
|
184
|
-
option.param.alpha = static_cast<mf_float>(atof(argv[i]));
|
185
|
-
}
|
186
|
-
else if(args[i].compare("-c") == 0)
|
187
|
-
{
|
188
|
-
if((i+1) >= argc)
|
189
|
-
throw invalid_argument("need to specify negative rating\
|
190
|
-
after -c");
|
191
|
-
i++;
|
192
|
-
|
193
|
-
if(!is_numerical(argv[i]))
|
194
|
-
throw invalid_argument("-c should be followed by a number");
|
195
|
-
|
196
|
-
if (argv[i][0] == '-')
|
197
|
-
// Negative number starts with - but atof only recognize numbers.
|
198
|
-
// Thus, we pass all but the first symbol to atof.
|
199
|
-
option.param.c = -static_cast<mf_float>(atof(argv[i] + 1));
|
200
|
-
else
|
201
|
-
// Non-negative numbers such as 0 and 0.5 can be handled by atof.
|
202
|
-
option.param.c = static_cast<mf_float>(atof(argv[i]));
|
203
|
-
}
|
204
|
-
else if(args[i].compare("-p") == 0)
|
205
|
-
{
|
206
|
-
if(i == argc-1)
|
207
|
-
throw invalid_argument("need to specify path after -p");
|
208
|
-
i++;
|
209
|
-
|
210
|
-
option.va_path = string(args[i]);
|
211
|
-
}
|
212
|
-
else if(args[i].compare("-v") == 0)
|
213
|
-
{
|
214
|
-
if(i == argc-1)
|
215
|
-
throw invalid_argument("need to specify number of folds\
|
216
|
-
after -v");
|
217
|
-
i++;
|
218
|
-
|
219
|
-
if(!is_numerical(argv[i]))
|
220
|
-
throw invalid_argument("-v should be followed by a number");
|
221
|
-
option.nr_folds = atoi(argv[i]);
|
222
|
-
|
223
|
-
if(option.nr_folds < 2)
|
224
|
-
throw invalid_argument("number of folds\
|
225
|
-
must be greater than one");
|
226
|
-
option.do_cv = true;
|
227
|
-
}
|
228
|
-
else if(args[i].compare("-f") == 0)
|
229
|
-
{
|
230
|
-
if(i == argc-1)
|
231
|
-
throw invalid_argument("need to specify loss function\
|
232
|
-
after -f");
|
233
|
-
i++;
|
234
|
-
|
235
|
-
if(!is_numerical(argv[i]))
|
236
|
-
throw invalid_argument("-f should be followed by a number");
|
237
|
-
option.param.fun = atoi(argv[i]);
|
238
|
-
}
|
239
|
-
else if(args[i].compare("-n") == 0)
|
240
|
-
{
|
241
|
-
if(i == argc-1)
|
242
|
-
throw invalid_argument("need to specify the number of blocks\
|
243
|
-
after -n");
|
244
|
-
i++;
|
245
|
-
|
246
|
-
if(!is_numerical(argv[i]))
|
247
|
-
throw invalid_argument("-n should be followed by a number");
|
248
|
-
option.param.nr_bins = atoi(argv[i]);
|
249
|
-
}
|
250
|
-
else if(args[i].compare("--nmf") == 0)
|
251
|
-
{
|
252
|
-
option.param.do_nmf = true;
|
253
|
-
}
|
254
|
-
else if(args[i].compare("--quiet") == 0)
|
255
|
-
{
|
256
|
-
option.param.quiet = true;
|
257
|
-
}
|
258
|
-
else if(args[i].compare("--disk") == 0)
|
259
|
-
{
|
260
|
-
option.on_disk = true;
|
261
|
-
}
|
262
|
-
else
|
263
|
-
{
|
264
|
-
break;
|
265
|
-
}
|
266
|
-
}
|
267
|
-
|
268
|
-
if(option.nr_folds > 1 && !option.va_path.empty())
|
269
|
-
throw invalid_argument("cannot specify both -p and -v");
|
270
|
-
|
271
|
-
if(i >= argc)
|
272
|
-
throw invalid_argument("training data not specified");
|
273
|
-
|
274
|
-
option.tr_path = string(args[i++]);
|
275
|
-
|
276
|
-
if(i < argc)
|
277
|
-
{
|
278
|
-
option.model_path = string(args[i]);
|
279
|
-
}
|
280
|
-
else if(i == argc)
|
281
|
-
{
|
282
|
-
const char *ptr = strrchr(&*option.tr_path.begin(), '/');
|
283
|
-
if(!ptr)
|
284
|
-
ptr = option.tr_path.c_str();
|
285
|
-
else
|
286
|
-
++ptr;
|
287
|
-
option.model_path = string(ptr) + ".model";
|
288
|
-
}
|
289
|
-
else
|
290
|
-
{
|
291
|
-
throw invalid_argument("invalid argument");
|
292
|
-
}
|
293
|
-
|
294
|
-
option.param.nr_bins = max(option.param.nr_bins,
|
295
|
-
2*option.param.nr_threads+1);
|
296
|
-
option.param.copy_data = false;
|
297
|
-
|
298
|
-
return option;
|
299
|
-
}
|
300
|
-
|
301
|
-
int main(int argc, char **argv)
|
302
|
-
{
|
303
|
-
Option option;
|
304
|
-
try
|
305
|
-
{
|
306
|
-
option = parse_option(argc, argv);
|
307
|
-
}
|
308
|
-
catch(invalid_argument &e)
|
309
|
-
{
|
310
|
-
cout << e.what() << endl;
|
311
|
-
return 1;
|
312
|
-
}
|
313
|
-
|
314
|
-
mf_problem tr = {};
|
315
|
-
mf_problem va = {};
|
316
|
-
if(!option.on_disk)
|
317
|
-
{
|
318
|
-
try
|
319
|
-
{
|
320
|
-
tr = read_problem(option.tr_path);
|
321
|
-
va = read_problem(option.va_path);
|
322
|
-
}
|
323
|
-
catch(runtime_error &e)
|
324
|
-
{
|
325
|
-
cout << e.what() << endl;
|
326
|
-
return 1;
|
327
|
-
}
|
328
|
-
}
|
329
|
-
|
330
|
-
if(option.do_cv)
|
331
|
-
{
|
332
|
-
if(!option.on_disk)
|
333
|
-
mf_cross_validation(&tr, option.nr_folds, option.param);
|
334
|
-
else
|
335
|
-
mf_cross_validation_on_disk(
|
336
|
-
option.tr_path.c_str(), option.nr_folds, option.param);
|
337
|
-
}
|
338
|
-
else
|
339
|
-
{
|
340
|
-
mf_model *model;
|
341
|
-
if(!option.on_disk)
|
342
|
-
model = mf_train_with_validation(&tr, &va, option.param);
|
343
|
-
else
|
344
|
-
model = mf_train_with_validation_on_disk(option.tr_path.c_str(),
|
345
|
-
option.va_path.c_str(),
|
346
|
-
option.param);
|
347
|
-
|
348
|
-
// use the following function if you do not have a validation set
|
349
|
-
|
350
|
-
// mf_model model =
|
351
|
-
// mf_train_with_validation(&tr, option.param);
|
352
|
-
|
353
|
-
mf_int status = mf_save_model(model, option.model_path.c_str());
|
354
|
-
|
355
|
-
mf_destroy_model(&model);
|
356
|
-
|
357
|
-
if(status != 0)
|
358
|
-
{
|
359
|
-
cout << "cannot save model to " << option.model_path << endl;
|
360
|
-
|
361
|
-
if(!option.on_disk)
|
362
|
-
{
|
363
|
-
delete[] tr.R;
|
364
|
-
delete[] va.R;
|
365
|
-
}
|
366
|
-
|
367
|
-
return 1;
|
368
|
-
}
|
369
|
-
}
|
370
|
-
|
371
|
-
if(!option.on_disk)
|
372
|
-
{
|
373
|
-
delete[] tr.R;
|
374
|
-
delete[] va.R;
|
375
|
-
}
|
376
|
-
|
377
|
-
return 0;
|
378
|
-
}
|