libmf 0.1.2 → 0.2.3

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,40 +0,0 @@
1
- SET train=..\windows\mf-train
2
- SET predict=..\windows\mf-predict
3
-
4
- ::#########################################################################
5
- :: Real-valued matrix factorization (RVMF)
6
- ::#########################################################################
7
- echo "Real-valued matrix factorization"
8
- :: In-memory training with holdout valudation
9
- %train% -f 0 -l2 0.05 -k 100 -t 10 -p real_matrix.te.txt real_matrix.tr.txt rvmf_model.txt
10
- :: Do prediction and show MAE
11
- %predict% -e 1 real_matrix.te.txt rvmf_model.txt rvmf_output.txt
12
-
13
- ::#########################################################################
14
- :: Binary matrix factorization (BMF)
15
- ::#########################################################################
16
- echo "binary matrix factorization"
17
- :: In-memory training with holdout valudation
18
- %train% -f 5 -l2 0.01 -k 64 -p binary_matrix.te.txt binary_matrix.tr.txt bmf_model.txt
19
- :: Do prediction and show accuracy
20
- %predict% -e 6 binary_matrix.te.txt bmf_model.txt bmf_output.txt
21
-
22
- ::#########################################################################
23
- :: One-class matrix factorization (OCMF)
24
- ::#########################################################################
25
- echo "one-class matrix factorization using a stochastic gradient method"
26
- :: In-memory training with holdout validation
27
- %train% -f 10 -l2 0.01 -k 32 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
28
- :: Do prediction and show row-oriented MPR
29
- %predict% -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
30
- :: Do prediction and show row-oriented AUC
31
- %predict% -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
32
-
33
- echo "one-class matrix factorization using a coordinate descent method"
34
- :: In-memory training with holdout validation
35
- %train% -f 12 -l2 0.01 -k 32 -a 0.001 -c 0.0001 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
36
- :: Do prediction and show row-oriented MPR
37
- %predict% -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
38
- :: Do prediction and show row-oriented AUC
39
- %predict% -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
40
- )
@@ -1,58 +0,0 @@
1
- #!/bin/sh
2
- train=../mf-train
3
- predict=../mf-predict
4
-
5
- ##########################################################################
6
- # Build package if no binary found and this script is exectuted via the
7
- # following command.
8
- # libmf/demo > sh demo.sh
9
- ##########################################################################
10
- if [ ! -s $train ] || [ ! -s $predict ]
11
- then
12
- (cd .. && make)
13
- fi
14
-
15
- ##########################################################################
16
- # Real-valued matrix factorization (RVMF)
17
- ##########################################################################
18
- echo "--------------------------------"
19
- echo "Real-valued matrix factorization"
20
- echo "--------------------------------"
21
- # In-memory training with holdout valudation
22
- $train -f 0 -l2 0.05 -k 100 -t 10 -p real_matrix.te.txt real_matrix.tr.txt rvmf_model.txt
23
- # Do prediction and show MAE
24
- $predict -e 1 real_matrix.te.txt rvmf_model.txt rvmf_output.txt
25
-
26
- ##########################################################################
27
- # Binary matrix factorization (BMF)
28
- ##########################################################################
29
- echo "---------------------------"
30
- echo "binary matrix factorization"
31
- echo "---------------------------"
32
- # In-memory training with holdout valudation
33
- $train -f 5 -l2 0.01 -k 64 -p binary_matrix.te.txt binary_matrix.tr.txt bmf_model.txt
34
- # Do prediction and show accuracy
35
- $predict -e 6 binary_matrix.te.txt bmf_model.txt bmf_output.txt
36
-
37
- ##########################################################################
38
- # One-class matrix factorization (OCMF)
39
- ##########################################################################
40
- echo "-----------------------------------------------------------------"
41
- echo "one-class matrix factorization using a stochastic gradient method"
42
- echo "-----------------------------------------------------------------"
43
- # In-memory training with holdout validation
44
- $train -f 10 -l2 0.01 -k 32 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
45
- # Do prediction and show row-oriented MPR
46
- $predict -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
47
- # Do prediction and show row-oriented AUC
48
- $predict -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
49
-
50
- echo "----------------------------------------------------------------"
51
- echo "one-class matrix factorization using a coordinate descent method"
52
- echo "----------------------------------------------------------------"
53
- # In-memory training with holdout validation
54
- $train -f 12 -l2 0.01 -k 32 -a 0.001 -c 0.0001 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
55
- # Do prediction and show row-oriented MPR
56
- $predict -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
57
- # Do prediction and show row-oriented AUC
58
- $predict -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
@@ -1,207 +0,0 @@
1
- #include <cstring>
2
- #include <cstdlib>
3
- #include <fstream>
4
- #include <iostream>
5
- #include <string>
6
- #include <iomanip>
7
- #include <stdexcept>
8
- #include <vector>
9
-
10
- #include "mf.h"
11
-
12
- using namespace std;
13
- using namespace mf;
14
-
15
- struct Option
16
- {
17
- Option() : eval(RMSE) {}
18
- string test_path, model_path, output_path;
19
- mf_int eval;
20
- };
21
-
22
- string predict_help()
23
- {
24
- return string(
25
- "usage: mf-predict [options] test_file model_file [output_file]\n"
26
- "\n"
27
- "options:\n"
28
- "-e <eval>: specify the evaluation criterion (default 0)\n"
29
- "\t 0 -- root mean square error\n"
30
- "\t 1 -- mean absolute error\n"
31
- "\t 2 -- generalized KL-divergence\n"
32
- "\t 5 -- logarithmic error\n"
33
- "\t 6 -- accuracy\n"
34
- "\t10 -- row-wise mean percentile rank\n"
35
- "\t11 -- column-wise mean percentile rank\n"
36
- "\t12 -- row-wise area under the curve\n"
37
- "\t13 -- column-wise area under the curve\n");
38
- }
39
-
40
- Option parse_option(int argc, char **argv)
41
- {
42
- vector<string> args;
43
- for(int i = 0; i < argc; i++)
44
- args.push_back(string(argv[i]));
45
-
46
- if(argc == 1)
47
- throw invalid_argument(predict_help());
48
-
49
- Option option;
50
-
51
- mf_int i;
52
- for(i = 1; i < argc; i++)
53
- {
54
- if(args[i].compare("-e") == 0)
55
- {
56
- if((i+1) >= argc)
57
- throw invalid_argument("need to specify evaluation criterion after -e");
58
- i++;
59
- option.eval = atoi(argv[i]);
60
- if(option.eval != RMSE &&
61
- option.eval != MAE &&
62
- option.eval != GKL &&
63
- option.eval != LOGLOSS &&
64
- option.eval != ACC &&
65
- option.eval != ROW_AUC &&
66
- option.eval != COL_AUC &&
67
- option.eval != ROW_MPR &&
68
- option.eval != COL_MPR)
69
- throw invalid_argument("unknown evaluation criterion");
70
- }
71
- else
72
- break;
73
- }
74
- if(i >= argc-1)
75
- throw invalid_argument("testing data and model file not specified");
76
- option.test_path = string(args[i++]);
77
- option.model_path = string(args[i++]);
78
-
79
- if(i < argc)
80
- {
81
- option.output_path = string(args[i]);
82
- }
83
- else if(i == argc)
84
- {
85
- const char *ptr = strrchr(&*option.test_path.begin(), '/');
86
- if(!ptr)
87
- ptr = option.test_path.c_str();
88
- else
89
- ++ptr;
90
- option.output_path = string(ptr) + ".out";
91
- }
92
- else
93
- {
94
- throw invalid_argument("invalid argument");
95
- }
96
-
97
- return option;
98
- }
99
-
100
- void predict(string test_path, string model_path, string output_path, mf_int eval)
101
- {
102
- mf_problem prob = read_problem(test_path);
103
-
104
- ofstream f_out(output_path);
105
- if(!f_out.is_open())
106
- throw runtime_error("cannot open " + output_path);
107
-
108
- mf_model *model = mf_load_model(model_path.c_str());
109
- if(model == nullptr)
110
- throw runtime_error("cannot load model from " + model_path);
111
-
112
- for(mf_int i = 0; i < prob.nnz; i++)
113
- {
114
- mf_float r = mf_predict(model, prob.R[i].u, prob.R[i].v);
115
- f_out << r << endl;
116
- }
117
-
118
- switch(eval)
119
- {
120
- case RMSE:
121
- {
122
- auto rmse = calc_rmse(&prob, model);
123
- cout << fixed << setprecision(4) << "RMSE = " << rmse << endl;
124
- break;
125
- }
126
- case MAE:
127
- {
128
- auto mae = calc_mae(&prob, model);
129
- cout << fixed << setprecision(4) << "MAE = " << mae << endl;
130
- break;
131
- }
132
- case GKL:
133
- {
134
- auto gkl = calc_gkl(&prob, model);
135
- cout << fixed << setprecision(4) << "GKL = " << gkl << endl;
136
- break;
137
- }
138
- case LOGLOSS:
139
- {
140
- auto logloss = calc_logloss(&prob, model);
141
- cout << fixed << setprecision(4) << "LOGLOSS = " << logloss << endl;
142
- break;
143
- }
144
- case ACC:
145
- {
146
- auto acc = calc_accuracy(&prob, model);
147
- cout << fixed << setprecision(4) << "ACCURACY = " << acc << endl;
148
- break;
149
- }
150
- case ROW_AUC:
151
- {
152
- auto row_wise_auc = calc_auc(&prob, model, false);
153
- cout << fixed << setprecision(4) << "Row-wise AUC = " << row_wise_auc << endl;
154
- break;
155
- }
156
- case COL_AUC:
157
- {
158
- auto col_wise_auc = calc_auc(&prob, model, true);
159
- cout << fixed << setprecision(4) << "Colmn-wise AUC = " << col_wise_auc << endl;
160
- break;
161
- }
162
- case ROW_MPR:
163
- {
164
- auto row_wise_mpr = calc_mpr(&prob, model, false);
165
- cout << fixed << setprecision(4) << "Row-wise MPR = " << row_wise_mpr << endl;
166
- break;
167
- }
168
- case COL_MPR:
169
- {
170
- auto col_wise_mpr = calc_mpr(&prob, model, true);
171
- cout << fixed << setprecision(4) << "Column-wise MPR = " << col_wise_mpr << endl;
172
- break;
173
- }
174
- default:
175
- {
176
- throw invalid_argument("unknown evaluation criterion");
177
- break;
178
- }
179
- }
180
- mf_destroy_model(&model);
181
- }
182
-
183
- int main(int argc, char **argv)
184
- {
185
- Option option;
186
- try
187
- {
188
- option = parse_option(argc, argv);
189
- }
190
- catch(invalid_argument &e)
191
- {
192
- cout << e.what() << endl;
193
- return 1;
194
- }
195
-
196
- try
197
- {
198
- predict(option.test_path, option.model_path, option.output_path, option.eval);
199
- }
200
- catch(runtime_error &e)
201
- {
202
- cout << e.what() << endl;
203
- return 1;
204
- }
205
-
206
- return 0;
207
- }
@@ -1,378 +0,0 @@
1
- #include <algorithm>
2
- #include <cctype>
3
- #include <cmath>
4
- #include <cstring>
5
- #include <cstdlib>
6
- #include <fstream>
7
- #include <iostream>
8
- #include <stdexcept>
9
- #include <string>
10
- #include <vector>
11
-
12
- #include "mf.h"
13
-
14
- using namespace std;
15
- using namespace mf;
16
-
17
- struct Option
18
- {
19
- Option() : param(mf_get_default_param()), nr_folds(1), on_disk(false), do_cv(false) {}
20
- string tr_path, va_path, model_path;
21
- mf_parameter param;
22
- mf_int nr_folds;
23
- bool on_disk;
24
- bool do_cv;
25
- };
26
-
27
- string train_help()
28
- {
29
- return string(
30
- "usage: mf-train [options] training_set_file [model_file]\n"
31
- "\n"
32
- "options:\n"
33
- "-l1 <lambda>,<lambda>: set L1-regularization parameters for P and Q (default 0)\n"
34
- " P and Q share the same lambda if only one lambda is specified\n"
35
- "-l2 <lambda>,<lambda>: set L2-regularization parameters for P and Q (default 0.1)\n"
36
- " P and Q share the same lambda if only one lambda is specified\n"
37
- "-f <loss>: set loss function (default 0)\n"
38
- " for real-valued matrix factorization\n"
39
- "\t 0 -- squared error (L2-norm)\n"
40
- "\t 1 -- absolute error (L1-norm)\n"
41
- "\t 2 -- generalized KL-divergence\n"
42
- " for binary matrix factorization\n"
43
- "\t 5 -- logarithmic loss\n"
44
- "\t 6 -- squared hinge loss\n"
45
- "\t 7 -- hinge loss\n"
46
- " for one-class matrix factorization\n"
47
- "\t10 -- row-oriented pairwise logarithmic loss\n"
48
- "\t11 -- column-oriented pairwise logarithmic loss\n"
49
- "\t12 -- squared error (L2-norm)\n"
50
- "-k <dimensions>: set number of dimensions (default 8)\n"
51
- "-t <iter>: set number of iterations (default 20)\n"
52
- "-r <eta>: set learning rate (default 0.1)\n"
53
- "-a <alpha>: set coefficient of negative entries' loss (default 1)\n"
54
- "-c <c>: set value of negative entries (default 0.0001). Positive entry is always 1.\n"
55
- "-s <threads>: set number of threads (default 12)\n"
56
- "-n <bins>: set number of bins (may be adjusted by LIBMF)\n"
57
- "-p <path>: set path to the validation set\n"
58
- "-v <fold>: set number of folds for cross validation\n"
59
- "--quiet: quiet mode (no outputs)\n"
60
- "--nmf: perform non-negative matrix factorization\n"
61
- "--disk: perform disk-level training (will generate a buffer file)\n");
62
- }
63
-
64
- bool is_numerical(char *str)
65
- {
66
- int c = 0;
67
- while(*str != '\0')
68
- {
69
- if(isdigit(*str))
70
- c++;
71
- str++;
72
- }
73
- return c > 0;
74
- }
75
-
76
- Option parse_option(int argc, char **argv)
77
- {
78
- vector<string> args;
79
- for(int i = 0; i < argc; i++)
80
- args.push_back(string(argv[i]));
81
-
82
- if(argc == 1)
83
- throw invalid_argument(train_help());
84
-
85
- Option option;
86
-
87
- mf_int i;
88
- for(i = 1; i < argc; i++)
89
- {
90
- if(args[i].compare("-l1") == 0)
91
- {
92
- if((i+1) >= argc)
93
- throw invalid_argument("need to specify lambda after -l1");
94
- i++;
95
-
96
- char *pch = strtok(argv[i], ",");
97
- if(!is_numerical(pch))
98
- throw invalid_argument("regularization coefficient\
99
- should be a number");
100
- option.param.lambda_p1 = (mf_float)strtod(pch, NULL);
101
- option.param.lambda_q1 = (mf_float)strtod(pch, NULL);
102
- pch = strtok(NULL, ",");
103
- if(pch != NULL)
104
- {
105
- if(!is_numerical(pch))
106
- throw invalid_argument("regularization coefficient\
107
- should be a number");
108
- option.param.lambda_q1 = (mf_float)strtod(pch, NULL);
109
- }
110
- }
111
- else if(args[i].compare("-l2") == 0)
112
- {
113
- if((i+1) >= argc)
114
- throw invalid_argument("need to specify lambda after -l2");
115
- i++;
116
-
117
- char *pch = strtok(argv[i], ",");
118
- if(!is_numerical(pch))
119
- throw invalid_argument("regularization coefficient\
120
- should be a number");
121
- option.param.lambda_p2 = (mf_float)strtod(pch, NULL);
122
- option.param.lambda_q2 = (mf_float)strtod(pch, NULL);
123
- pch = strtok(NULL, ",");
124
- if(pch != NULL)
125
- {
126
- if(!is_numerical(pch))
127
- throw invalid_argument("regularization coefficient\
128
- should be a number");
129
- option.param.lambda_q2 = (mf_float)strtod(pch, NULL);
130
- }
131
- }
132
- else if(args[i].compare("-k") == 0)
133
- {
134
- if((i+1) >= argc)
135
- throw invalid_argument("need to specify number of factors\
136
- after -k");
137
- i++;
138
-
139
- if(!is_numerical(argv[i]))
140
- throw invalid_argument("-k should be followed by a number");
141
- option.param.k = atoi(argv[i]);
142
- }
143
- else if(args[i].compare("-t") == 0)
144
- {
145
- if((i+1) >= argc)
146
- throw invalid_argument("need to specify number of iterations\
147
- after -t");
148
- i++;
149
-
150
- if(!is_numerical(argv[i]))
151
- throw invalid_argument("-i should be followed by a number");
152
- option.param.nr_iters = atoi(argv[i]);
153
- }
154
- else if(args[i].compare("-r") == 0)
155
- {
156
- if((i+1) >= argc)
157
- throw invalid_argument("need to specify eta after -r");
158
- i++;
159
-
160
- if(!is_numerical(argv[i]))
161
- throw invalid_argument("-r should be followed by a number");
162
- option.param.eta = (mf_float)atof(argv[i]);
163
- }
164
- else if(args[i].compare("-s") == 0)
165
- {
166
- if((i+1) >= argc)
167
- throw invalid_argument("need to specify number of threads\
168
- after -s");
169
- i++;
170
-
171
- if(!is_numerical(argv[i]))
172
- throw invalid_argument("-s should be followed by a number");
173
- option.param.nr_threads = atoi(argv[i]);
174
- }
175
- else if(args[i].compare("-a") == 0)
176
- {
177
- if((i+1) >= argc)
178
- throw invalid_argument("need to specify negative weight\
179
- after -a");
180
- i++;
181
-
182
- if(!is_numerical(argv[i]))
183
- throw invalid_argument("-a should be followed by a number");
184
- option.param.alpha = static_cast<mf_float>(atof(argv[i]));
185
- }
186
- else if(args[i].compare("-c") == 0)
187
- {
188
- if((i+1) >= argc)
189
- throw invalid_argument("need to specify negative rating\
190
- after -c");
191
- i++;
192
-
193
- if(!is_numerical(argv[i]))
194
- throw invalid_argument("-c should be followed by a number");
195
-
196
- if (argv[i][0] == '-')
197
- // Negative number starts with - but atof only recognize numbers.
198
- // Thus, we pass all but the first symbol to atof.
199
- option.param.c = -static_cast<mf_float>(atof(argv[i] + 1));
200
- else
201
- // Non-negative numbers such as 0 and 0.5 can be handled by atof.
202
- option.param.c = static_cast<mf_float>(atof(argv[i]));
203
- }
204
- else if(args[i].compare("-p") == 0)
205
- {
206
- if(i == argc-1)
207
- throw invalid_argument("need to specify path after -p");
208
- i++;
209
-
210
- option.va_path = string(args[i]);
211
- }
212
- else if(args[i].compare("-v") == 0)
213
- {
214
- if(i == argc-1)
215
- throw invalid_argument("need to specify number of folds\
216
- after -v");
217
- i++;
218
-
219
- if(!is_numerical(argv[i]))
220
- throw invalid_argument("-v should be followed by a number");
221
- option.nr_folds = atoi(argv[i]);
222
-
223
- if(option.nr_folds < 2)
224
- throw invalid_argument("number of folds\
225
- must be greater than one");
226
- option.do_cv = true;
227
- }
228
- else if(args[i].compare("-f") == 0)
229
- {
230
- if(i == argc-1)
231
- throw invalid_argument("need to specify loss function\
232
- after -f");
233
- i++;
234
-
235
- if(!is_numerical(argv[i]))
236
- throw invalid_argument("-f should be followed by a number");
237
- option.param.fun = atoi(argv[i]);
238
- }
239
- else if(args[i].compare("-n") == 0)
240
- {
241
- if(i == argc-1)
242
- throw invalid_argument("need to specify the number of blocks\
243
- after -n");
244
- i++;
245
-
246
- if(!is_numerical(argv[i]))
247
- throw invalid_argument("-n should be followed by a number");
248
- option.param.nr_bins = atoi(argv[i]);
249
- }
250
- else if(args[i].compare("--nmf") == 0)
251
- {
252
- option.param.do_nmf = true;
253
- }
254
- else if(args[i].compare("--quiet") == 0)
255
- {
256
- option.param.quiet = true;
257
- }
258
- else if(args[i].compare("--disk") == 0)
259
- {
260
- option.on_disk = true;
261
- }
262
- else
263
- {
264
- break;
265
- }
266
- }
267
-
268
- if(option.nr_folds > 1 && !option.va_path.empty())
269
- throw invalid_argument("cannot specify both -p and -v");
270
-
271
- if(i >= argc)
272
- throw invalid_argument("training data not specified");
273
-
274
- option.tr_path = string(args[i++]);
275
-
276
- if(i < argc)
277
- {
278
- option.model_path = string(args[i]);
279
- }
280
- else if(i == argc)
281
- {
282
- const char *ptr = strrchr(&*option.tr_path.begin(), '/');
283
- if(!ptr)
284
- ptr = option.tr_path.c_str();
285
- else
286
- ++ptr;
287
- option.model_path = string(ptr) + ".model";
288
- }
289
- else
290
- {
291
- throw invalid_argument("invalid argument");
292
- }
293
-
294
- option.param.nr_bins = max(option.param.nr_bins,
295
- 2*option.param.nr_threads+1);
296
- option.param.copy_data = false;
297
-
298
- return option;
299
- }
300
-
301
- int main(int argc, char **argv)
302
- {
303
- Option option;
304
- try
305
- {
306
- option = parse_option(argc, argv);
307
- }
308
- catch(invalid_argument &e)
309
- {
310
- cout << e.what() << endl;
311
- return 1;
312
- }
313
-
314
- mf_problem tr = {};
315
- mf_problem va = {};
316
- if(!option.on_disk)
317
- {
318
- try
319
- {
320
- tr = read_problem(option.tr_path);
321
- va = read_problem(option.va_path);
322
- }
323
- catch(runtime_error &e)
324
- {
325
- cout << e.what() << endl;
326
- return 1;
327
- }
328
- }
329
-
330
- if(option.do_cv)
331
- {
332
- if(!option.on_disk)
333
- mf_cross_validation(&tr, option.nr_folds, option.param);
334
- else
335
- mf_cross_validation_on_disk(
336
- option.tr_path.c_str(), option.nr_folds, option.param);
337
- }
338
- else
339
- {
340
- mf_model *model;
341
- if(!option.on_disk)
342
- model = mf_train_with_validation(&tr, &va, option.param);
343
- else
344
- model = mf_train_with_validation_on_disk(option.tr_path.c_str(),
345
- option.va_path.c_str(),
346
- option.param);
347
-
348
- // use the following function if you do not have a validation set
349
-
350
- // mf_model model =
351
- // mf_train_with_validation(&tr, option.param);
352
-
353
- mf_int status = mf_save_model(model, option.model_path.c_str());
354
-
355
- mf_destroy_model(&model);
356
-
357
- if(status != 0)
358
- {
359
- cout << "cannot save model to " << option.model_path << endl;
360
-
361
- if(!option.on_disk)
362
- {
363
- delete[] tr.R;
364
- delete[] va.R;
365
- }
366
-
367
- return 1;
368
- }
369
- }
370
-
371
- if(!option.on_disk)
372
- {
373
- delete[] tr.R;
374
- delete[] va.R;
375
- }
376
-
377
- return 0;
378
- }