libmf 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,40 @@
1
+ SET train=..\windows\mf-train
2
+ SET predict=..\windows\mf-predict
3
+
4
+ ::#########################################################################
5
+ :: Real-valued matrix factorization (RVMF)
6
+ ::#########################################################################
7
+ echo "Real-valued matrix factorization"
8
+ :: In-memory training with holdout valudation
9
+ %train% -f 0 -l2 0.05 -k 100 -t 10 -p real_matrix.te.txt real_matrix.tr.txt rvmf_model.txt
10
+ :: Do prediction and show MAE
11
+ %predict% -e 1 real_matrix.te.txt rvmf_model.txt rvmf_output.txt
12
+
13
+ ::#########################################################################
14
+ :: Binary matrix factorization (BMF)
15
+ ::#########################################################################
16
+ echo "binary matrix factorization"
17
+ :: In-memory training with holdout valudation
18
+ %train% -f 5 -l2 0.01 -k 64 -p binary_matrix.te.txt binary_matrix.tr.txt bmf_model.txt
19
+ :: Do prediction and show accuracy
20
+ %predict% -e 6 binary_matrix.te.txt bmf_model.txt bmf_output.txt
21
+
22
+ ::#########################################################################
23
+ :: One-class matrix factorization (OCMF)
24
+ ::#########################################################################
25
+ echo "one-class matrix factorization using a stochastic gradient method"
26
+ :: In-memory training with holdout validation
27
+ %train% -f 10 -l2 0.01 -k 32 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
28
+ :: Do prediction and show row-oriented MPR
29
+ %predict% -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
30
+ :: Do prediction and show row-oriented AUC
31
+ %predict% -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
32
+
33
+ echo "one-class matrix factorization using a coordinate descent method"
34
+ :: In-memory training with holdout validation
35
+ %train% -f 12 -l2 0.01 -k 32 -a 0.001 -c 0.0001 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
36
+ :: Do prediction and show row-oriented MPR
37
+ %predict% -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
38
+ :: Do prediction and show row-oriented AUC
39
+ %predict% -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
40
+ )
@@ -0,0 +1,58 @@
1
+ #!/bin/sh
2
+ train=../mf-train
3
+ predict=../mf-predict
4
+
5
+ ##########################################################################
6
+ # Build package if no binary found and this script is exectuted via the
7
+ # following command.
8
+ # libmf/demo > sh demo.sh
9
+ ##########################################################################
10
+ if [ ! -s $train ] || [ ! -s $predict ]
11
+ then
12
+ (cd .. && make)
13
+ fi
14
+
15
+ ##########################################################################
16
+ # Real-valued matrix factorization (RVMF)
17
+ ##########################################################################
18
+ echo "--------------------------------"
19
+ echo "Real-valued matrix factorization"
20
+ echo "--------------------------------"
21
+ # In-memory training with holdout valudation
22
+ $train -f 0 -l2 0.05 -k 100 -t 10 -p real_matrix.te.txt real_matrix.tr.txt rvmf_model.txt
23
+ # Do prediction and show MAE
24
+ $predict -e 1 real_matrix.te.txt rvmf_model.txt rvmf_output.txt
25
+
26
+ ##########################################################################
27
+ # Binary matrix factorization (BMF)
28
+ ##########################################################################
29
+ echo "---------------------------"
30
+ echo "binary matrix factorization"
31
+ echo "---------------------------"
32
+ # In-memory training with holdout valudation
33
+ $train -f 5 -l2 0.01 -k 64 -p binary_matrix.te.txt binary_matrix.tr.txt bmf_model.txt
34
+ # Do prediction and show accuracy
35
+ $predict -e 6 binary_matrix.te.txt bmf_model.txt bmf_output.txt
36
+
37
+ ##########################################################################
38
+ # One-class matrix factorization (OCMF)
39
+ ##########################################################################
40
+ echo "-----------------------------------------------------------------"
41
+ echo "one-class matrix factorization using a stochastic gradient method"
42
+ echo "-----------------------------------------------------------------"
43
+ # In-memory training with holdout validation
44
+ $train -f 10 -l2 0.01 -k 32 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
45
+ # Do prediction and show row-oriented MPR
46
+ $predict -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
47
+ # Do prediction and show row-oriented AUC
48
+ $predict -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
49
+
50
+ echo "----------------------------------------------------------------"
51
+ echo "one-class matrix factorization using a coordinate descent method"
52
+ echo "----------------------------------------------------------------"
53
+ # In-memory training with holdout validation
54
+ $train -f 12 -l2 0.01 -k 32 -a 0.001 -c 0.0001 -p all_one_matrix.te.txt all_one_matrix.tr.txt ocmf_model.txt
55
+ # Do prediction and show row-oriented MPR
56
+ $predict -e 10 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
57
+ # Do prediction and show row-oriented AUC
58
+ $predict -e 12 all_one_matrix.te.txt ocmf_model.txt ocmf_output.txt
@@ -0,0 +1,794 @@
1
+ 1040 128 3.5
2
+ 967 1 2.1
3
+ 392 17 4.1
4
+ 406 6 3.1
5
+ 1333 20 5.1
6
+ 2168 45 4.0
7
+ 923 26 4.5
8
+ 2004 13 4.0
9
+ 92 155 4.0
10
+ 2019 45 3.0
11
+ 1737 1 4.0
12
+ 414 187 3.0
13
+ 233 6 3.1
14
+ 1026 61 1.1
15
+ 1253 836 2.6
16
+ 1270 41 4.0
17
+ 2148 45 4.0
18
+ 1200 1227 2.1
19
+ 1523 175 3.0
20
+ 1820 147 5.1
21
+ 899 777 3.0
22
+ 1284 81 3.6
23
+ 77 7 4.0
24
+ 1082 836 4.1
25
+ 587 9 4.0
26
+ 785 7 5.1
27
+ 181 45 4.0
28
+ 1185 128 5.0
29
+ 2004 17 4.1
30
+ 1617 7 3.1
31
+ 1839 72 4.1
32
+ 1527 20 5.1
33
+ 241 100 2.0
34
+ 645 17 4.0
35
+ 295 43 2.0
36
+ 1616 17 3.0
37
+ 1995 45 3.0
38
+ 2200 27 3.1
39
+ 1896 1 5.1
40
+ 332 27 4.0
41
+ 734 1 4.1
42
+ 1696 25 4.0
43
+ 1202 7 4.0
44
+ 1567 2 4.0
45
+ 319 1 4.1
46
+ 505 42 3.1
47
+ 156 43 4.6
48
+ 570 65 3.1
49
+ 1722 5 3.1
50
+ 947 25 4.1
51
+ 1357 555 3.1
52
+ 889 41 3.1
53
+ 1809 43 2.1
54
+ 899 95 4.1
55
+ 465 5 4.1
56
+ 193 990 5.0
57
+ 825 3 5.0
58
+ 1284 25 3.1
59
+ 1724 42 2.1
60
+ 1946 3 3.0
61
+ 1092 155 3.6
62
+ 253 1 5.1
63
+ 92 27 4.1
64
+ 2003 5 4.0
65
+ 1642 8 4.0
66
+ 550 45 3.5
67
+ 1853 35 3.0
68
+ 667 5 4.1
69
+ 1736 11 3.0
70
+ 1856 803 4.6
71
+ 1860 803 3.6
72
+ 312 1 4.5
73
+ 1080 108 3.1
74
+ 1857 2 3.6
75
+ 691 25 4.1
76
+ 474 7 3.1
77
+ 795 27 4.1
78
+ 380 26 5.0
79
+ 1452 1 3.0
80
+ 2248 1 3.1
81
+ 165 4 4.1
82
+ 1910 45 4.0
83
+ 42 43 5.0
84
+ 60 777 4.1
85
+ 1312 27 4.0
86
+ 887 1 4.0
87
+ 2060 7 3.0
88
+ 2307 43 3.0
89
+ 1374 183 3.5
90
+ 2220 63 4.1
91
+ 1869 1 4.5
92
+ 1252 26 5.0
93
+ 2114 5 4.1
94
+ 75 42 3.0
95
+ 1069 76 4.1
96
+ 298 26 3.5
97
+ 1172 6 3.0
98
+ 426 43 3.0
99
+ 1874 29 3.0
100
+ 221 50 4.0
101
+ 907 1 5.0
102
+ 924 84 2.0
103
+ 380 86 4.0
104
+ 408 100 4.0
105
+ 2234 24 3.1
106
+ 70 41 4.1
107
+ 587 17 3.0
108
+ 1951 836 5.0
109
+ 780 25 3.1
110
+ 1970 1258 4.0
111
+ 749 1105 2.5
112
+ 2301 39 3.0
113
+ 16 35 4.0
114
+ 1565 84 2.1
115
+ 44 5 5.1
116
+ 624 6 4.1
117
+ 48 5 3.1
118
+ 1475 6 1.1
119
+ 1022 128 4.5
120
+ 2236 63 2.0
121
+ 350 26 5.0
122
+ 696 8 3.5
123
+ 2173 84 3.0
124
+ 1069 64 4.1
125
+ 18 83 4.1
126
+ 1558 1 5.0
127
+ 1422 25 5.0
128
+ 1188 84 4.1
129
+ 2107 3 3.5
130
+ 332 565 3.5
131
+ 2271 46 4.0
132
+ 2178 45 2.0
133
+ 748 7 2.6
134
+ 2279 7 5.1
135
+ 455 35 2.6
136
+ 1225 3 5.1
137
+ 1304 35 4.1
138
+ 493 118 3.0
139
+ 1831 32 3.1
140
+ 2233 23 4.1
141
+ 2015 1 3.6
142
+ 1052 35 3.5
143
+ 801 139 4.0
144
+ 241 116 2.6
145
+ 1627 26 4.6
146
+ 1431 45 5.0
147
+ 654 35 5.1
148
+ 2166 7 3.0
149
+ 604 84 3.0
150
+ 1196 143 4.5
151
+ 236 17 3.0
152
+ 1528 43 1.6
153
+ 339 42 4.0
154
+ 440 45 2.1
155
+ 962 49 4.1
156
+ 1506 1 3.0
157
+ 940 61 4.1
158
+ 637 45 3.5
159
+ 612 23 3.1
160
+ 524 43 4.1
161
+ 2236 18 4.1
162
+ 2298 8 3.1
163
+ 634 1 5.1
164
+ 1466 3 5.1
165
+ 265 45 4.0
166
+ 1970 77 2.6
167
+ 400 128 3.0
168
+ 899 143 3.1
169
+ 1691 45 4.1
170
+ 60 1063 4.1
171
+ 2062 45 4.1
172
+ 2133 9 2.0
173
+ 2121 1 3.1
174
+ 1662 128 5.1
175
+ 1844 58 5.1
176
+ 547 35 3.1
177
+ 687 11 2.1
178
+ 2064 3 3.0
179
+ 2172 6 4.5
180
+ 1302 65 5.1
181
+ 1722 27 3.6
182
+ 637 131 3.6
183
+ 1522 3 5.0
184
+ 2173 166 3.0
185
+ 1317 1 4.5
186
+ 551 117 5.0
187
+ 696 35 4.0
188
+ 1736 8 5.0
189
+ 9 131 1.6
190
+ 200 3 4.0
191
+ 1499 45 4.1
192
+ 881 80 3.0
193
+ 1690 7 5.0
194
+ 964 26 3.6
195
+ 877 84 3.5
196
+ 706 4 3.1
197
+ 649 8 4.1
198
+ 942 84 3.1
199
+ 178 1 5.1
200
+ 379 7 4.0
201
+ 1860 2 4.5
202
+ 317 8 3.6
203
+ 2039 45 3.0
204
+ 1340 1 5.0
205
+ 493 97 1.0
206
+ 1198 7 3.0
207
+ 194 13 3.5
208
+ 1514 84 3.6
209
+ 2052 45 3.1
210
+ 2258 8 3.1
211
+ 1061 135 2.5
212
+ 750 66 2.0
213
+ 722 84 3.5
214
+ 1890 80 2.0
215
+ 1857 3 4.0
216
+ 1592 1 3.5
217
+ 1894 60 3.0
218
+ 2058 45 4.5
219
+ 1369 20 5.1
220
+ 450 7 2.0
221
+ 940 18 5.0
222
+ 278 6 3.0
223
+ 749 145 3.1
224
+ 763 7 4.1
225
+ 1181 84 4.1
226
+ 1616 84 3.0
227
+ 474 6 5.1
228
+ 634 1227 2.0
229
+ 746 3 3.1
230
+ 540 7 5.1
231
+ 1380 45 1.6
232
+ 278 15 3.0
233
+ 2285 1 1.6
234
+ 461 35 3.0
235
+ 2053 2 5.1
236
+ 1662 43 3.6
237
+ 667 25 4.0
238
+ 285 3 3.0
239
+ 1778 1 5.0
240
+ 1241 1 5.0
241
+ 18 45 4.1
242
+ 1440 7 4.0
243
+ 1069 23 5.1
244
+ 904 66 4.1
245
+ 1518 84 4.1
246
+ 1688 3 3.6
247
+ 1523 191 3.0
248
+ 1215 1272 4.0
249
+ 1212 7 3.1
250
+ 1960 84 4.0
251
+ 1778 84 2.5
252
+ 1865 23 5.1
253
+ 1858 30 3.1
254
+ 1986 3 3.0
255
+ 1230 1 5.1
256
+ 1572 84 3.1
257
+ 2052 3 3.0
258
+ 1252 49 1.0
259
+ 1791 1 5.0
260
+ 2222 5 3.0
261
+ 1609 27 4.0
262
+ 1968 803 4.0
263
+ 2068 3 0.6
264
+ 1300 26 3.6
265
+ 2091 20 4.0
266
+ 1236 26 4.1
267
+ 1359 45 4.0
268
+ 1026 1 5.1
269
+ 2077 1 5.1
270
+ 659 35 5.1
271
+ 1543 68 4.1
272
+ 518 4 3.5
273
+ 749 44 4.6
274
+ 1573 803 3.6
275
+ 1431 42 5.0
276
+ 1026 26 5.1
277
+ 1272 7 5.0
278
+ 1906 3 1.0
279
+ 615 35 2.0
280
+ 370 84 4.0
281
+ 1447 1 4.0
282
+ 543 65 3.0
283
+ 827 91 5.0
284
+ 433 64 4.0
285
+ 1719 43 5.0
286
+ 36 26 4.0
287
+ 1297 1 4.1
288
+ 1864 22 4.0
289
+ 801 9 4.0
290
+ 1463 22 4.1
291
+ 1615 3 5.0
292
+ 114 26 4.0
293
+ 1660 44 5.0
294
+ 2005 45 4.0
295
+ 2265 95 4.0
296
+ 2080 116 2.1
297
+ 1602 7 3.1
298
+ 1226 7 3.1
299
+ 1813 84 4.0
300
+ 1763 43 3.5
301
+ 518 178 4.1
302
+ 1860 135 1.5
303
+ 1814 63 2.1
304
+ 317 26 4.6
305
+ 14 43 4.0
306
+ 549 7 3.6
307
+ 1430 35 2.0
308
+ 1523 146 3.0
309
+ 2104 128 5.0
310
+ 1431 24 2.1
311
+ 367 5 3.0
312
+ 1649 100 2.1
313
+ 1474 20 3.0
314
+ 2285 8 3.1
315
+ 554 2 3.1
316
+ 1186 35 5.0
317
+ 281 65 3.1
318
+ 554 8 2.0
319
+ 517 1 2.0
320
+ 519 7 4.1
321
+ 1910 7 3.1
322
+ 424 8 3.1
323
+ 506 23 4.1
324
+ 1963 128 4.6
325
+ 1332 7 5.1
326
+ 1474 81 3.1
327
+ 1864 25 3.1
328
+ 2168 2 4.0
329
+ 2099 3 4.0
330
+ 323 175 0.6
331
+ 1860 155 2.5
332
+ 1970 64 3.5
333
+ 2178 42 3.1
334
+ 1523 6 2.5
335
+ 168 4 4.0
336
+ 1437 25 3.0
337
+ 60 134 2.0
338
+ 1232 41 4.1
339
+ 956 3 3.0
340
+ 2044 6 4.0
341
+ 2178 58 4.0
342
+ 1430 66 4.0
343
+ 1437 1 4.0
344
+ 116 3 3.1
345
+ 2084 45 3.0
346
+ 188 1 4.1
347
+ 904 45 4.0
348
+ 1244 45 4.6
349
+ 256 17 5.1
350
+ 278 49 5.1
351
+ 1689 803 3.5
352
+ 163 128 4.5
353
+ 43 64 2.1
354
+ 1749 128 4.5
355
+ 1917 1 5.1
356
+ 1688 146 4.1
357
+ 1019 68 4.1
358
+ 820 7 3.0
359
+ 1357 58 3.1
360
+ 2200 17 4.0
361
+ 900 5 4.6
362
+ 2244 13 4.0
363
+ 1569 990 2.1
364
+ 2200 100 2.1
365
+ 2258 45 2.0
366
+ 1454 35 3.0
367
+ 194 909 4.1
368
+ 781 1 4.0
369
+ 1523 68 3.5
370
+ 2147 3 4.1
371
+ 2140 3 3.1
372
+ 2133 33 3.0
373
+ 2070 2 4.6
374
+ 1232 23 1.1
375
+ 942 63 3.1
376
+ 1645 1148 3.0
377
+ 1291 45 5.0
378
+ 592 62 5.0
379
+ 702 45 3.6
380
+ 1696 26 4.0
381
+ 33 1 4.6
382
+ 899 6 3.1
383
+ 157 117 4.0
384
+ 1548 26 4.1
385
+ 1523 836 3.1
386
+ 612 24 2.1
387
+ 1805 61 3.6
388
+ 865 803 5.1
389
+ 2248 8 3.0
390
+ 865 836 4.5
391
+ 1428 1 4.0
392
+ 1597 27 4.6
393
+ 935 42 3.1
394
+ 1071 75 3.1
395
+ 1991 144 3.6
396
+ 221 45 3.1
397
+ 1530 11 3.1
398
+ 891 23 4.0
399
+ 387 1 3.0
400
+ 1445 100 4.5
401
+ 75 23 3.0
402
+ 312 45 3.5
403
+ 836 7 3.5
404
+ 1977 166 3.6
405
+ 1864 66 4.0
406
+ 697 35 1.1
407
+ 1226 8 4.1
408
+ 464 27 4.0
409
+ 1860 178 4.1
410
+ 637 75 4.5
411
+ 1867 84 3.5
412
+ 458 3 3.1
413
+ 635 27 4.1
414
+ 1131 25 5.0
415
+ 506 8 3.5
416
+ 2070 1 4.5
417
+ 1252 1 5.1
418
+ 319 128 4.1
419
+ 1530 72 4.1
420
+ 429 45 3.5
421
+ 1524 29 3.1
422
+ 696 95 4.0
423
+ 1627 1 5.1
424
+ 2034 26 5.0
425
+ 555 128 4.6
426
+ 616 7 3.0
427
+ 642 35 3.1
428
+ 2258 3 2.1
429
+ 942 35 4.0
430
+ 928 20 4.1
431
+ 1860 43 5.0
432
+ 1977 27 4.6
433
+ 1236 3 4.0
434
+ 1232 58 3.0
435
+ 864 43 4.0
436
+ 759 1 3.1
437
+ 1689 35 4.1
438
+ 1990 25 5.0
439
+ 1603 7 3.0
440
+ 190 129 1.5
441
+ 1689 909 2.1
442
+ 1970 1227 3.5
443
+ 899 35 3.1
444
+ 91 35 3.1
445
+ 1264 777 1.5
446
+ 1785 84 3.0
447
+ 1160 20 5.1
448
+ 1857 6 4.0
449
+ 1214 129 4.0
450
+ 260 26 4.1
451
+ 39 6 3.1
452
+ 42 45 4.0
453
+ 945 26 3.1
454
+ 1440 17 3.1
455
+ 1389 35 3.5
456
+ 1536 8 4.0
457
+ 433 39 3.1
458
+ 518 3 4.0
459
+ 929 1 3.0
460
+ 319 1233 2.5
461
+ 60 45 4.1
462
+ 1545 5 4.1
463
+ 958 45 3.1
464
+ 827 20 3.0
465
+ 899 990 3.0
466
+ 1523 100 2.0
467
+ 846 35 4.1
468
+ 799 45 4.6
469
+ 1306 5 5.0
470
+ 1422 45 3.0
471
+ 750 26 4.1
472
+ 590 777 3.1
473
+ 427 31 4.0
474
+ 2044 73 3.5
475
+ 1525 49 5.1
476
+ 498 1 5.1
477
+ 2264 164 0.5
478
+ 2279 5 4.1
479
+ 1655 22 2.0
480
+ 1461 6 5.0
481
+ 1461 8 3.0
482
+ 893 128 5.1
483
+ 190 1 3.6
484
+ 1523 95 3.1
485
+ 611 35 5.1
486
+ 1738 1272 5.1
487
+ 904 5 4.1
488
+ 1860 80 4.6
489
+ 82 84 4.1
490
+ 1689 4 1.1
491
+ 2052 42 2.6
492
+ 1781 84 4.1
493
+ 875 26 4.0
494
+ 2200 104 3.0
495
+ 816 8 5.0
496
+ 1042 30 3.1
497
+ 696 3 3.1
498
+ 60 909 2.6
499
+ 819 7 4.0
500
+ 706 6 2.1
501
+ 437 84 4.0
502
+ 60 745 3.1
503
+ 1830 7 2.1
504
+ 839 1 5.0
505
+ 1359 74 4.1
506
+ 1813 9 3.1
507
+ 260 43 3.0
508
+ 2111 25 4.1
509
+ 147 26 4.0
510
+ 260 35 4.0
511
+ 812 2 3.5
512
+ 2115 166 4.0
513
+ 2168 5 2.0
514
+ 2039 26 3.0
515
+ 935 23 3.0
516
+ 1722 17 2.0
517
+ 881 84 5.0
518
+ 838 27 3.0
519
+ 1430 17 4.0
520
+ 1689 73 1.0
521
+ 260 4 3.1
522
+ 222 1 5.1
523
+ 834 58 5.1
524
+ 687 35 4.1
525
+ 1010 5 4.1
526
+ 1052 84 4.0
527
+ 1755 5 4.1
528
+ 221 7 4.1
529
+ 295 39 1.1
530
+ 600 178 5.0
531
+ 289 43 3.1
532
+ 1340 17 3.1
533
+ 122 2 3.1
534
+ 2173 191 1.6
535
+ 2115 1 5.1
536
+ 1754 31 4.0
537
+ 405 27 5.1
538
+ 586 128 4.1
539
+ 1672 191 3.1
540
+ 168 9 4.1
541
+ 1758 20 5.1
542
+ 1528 836 4.5
543
+ 1069 13 3.0
544
+ 1802 7 4.1
545
+ 1035 6 5.0
546
+ 175 26 4.0
547
+ 1530 45 5.1
548
+ 669 5 5.1
549
+ 2136 7 3.1
550
+ 886 1 4.1
551
+ 1896 45 4.6
552
+ 2041 45 4.1
553
+ 2206 7 4.1
554
+ 1963 155 4.5
555
+ 1829 45 5.0
556
+ 1466 7 5.1
557
+ 1386 55 4.6
558
+ 1206 26 4.0
559
+ 1236 836 4.0
560
+ 557 20 4.0
561
+ 899 43 2.0
562
+ 1827 7 4.0
563
+ 1897 26 3.0
564
+ 1755 45 4.6
565
+ 1685 157 3.1
566
+ 25 8 4.0
567
+ 1865 31 3.6
568
+ 1027 35 4.5
569
+ 1582 1 3.6
570
+ 152 6 3.0
571
+ 788 84 2.5
572
+ 1430 81 2.1
573
+ 899 803 3.6
574
+ 1665 1272 4.1
575
+ 593 1 4.6
576
+ 328 3 4.0
577
+ 706 11 4.1
578
+ 1847 4 5.1
579
+ 2070 84 4.0
580
+ 287 45 3.0
581
+ 954 84 1.1
582
+ 1335 83 2.6
583
+ 1065 41 5.0
584
+ 650 909 0.6
585
+ 468 131 4.0
586
+ 1616 69 1.0
587
+ 1022 1227 4.1
588
+ 749 5 3.5
589
+ 1654 181 3.5
590
+ 1523 74 3.0
591
+ 1160 43 1.0
592
+ 1791 68 5.1
593
+ 1357 5 2.6
594
+ 193 777 4.0
595
+ 241 6 2.0
596
+ 1304 26 4.0
597
+ 520 8 4.1
598
+ 1970 84 3.0
599
+ 1239 5 3.0
600
+ 1737 6 3.0
601
+ 470 166 3.5
602
+ 259 45 4.1
603
+ 2277 3 4.1
604
+ 1567 46 1.0
605
+ 1792 23 1.0
606
+ 476 23 3.0
607
+ 1688 178 4.1
608
+ 741 35 4.0
609
+ 1348 1 4.5
610
+ 1823 45 2.0
611
+ 1455 68 4.0
612
+ 2293 41 4.1
613
+ 845 4 3.0
614
+ 1501 63 5.1
615
+ 1381 37 3.0
616
+ 175 84 3.0
617
+ 600 26 5.1
618
+ 706 3 3.1
619
+ 351 84 4.1
620
+ 1069 4 4.1
621
+ 1236 74 3.5
622
+ 942 3 3.6
623
+ 904 125 4.1
624
+ 1054 146 4.1
625
+ 2139 84 3.1
626
+ 1441 29 4.1
627
+ 1734 49 4.0
628
+ 241 23 4.0
629
+ 765 8 5.1
630
+ 1900 45 4.6
631
+ 296 136 4.1
632
+ 14 46 1.0
633
+ 493 19 4.0
634
+ 1022 83 2.1
635
+ 476 35 3.0
636
+ 75 1272 3.0
637
+ 999 26 2.1
638
+ 2016 84 1.5
639
+ 728 25 4.5
640
+ 1607 26 4.1
641
+ 1489 64 3.1
642
+ 60 178 2.6
643
+ 2173 136 2.5
644
+ 1089 11 4.0
645
+ 1725 1 4.1
646
+ 1252 7 3.1
647
+ 1791 45 4.0
648
+ 414 27 4.6
649
+ 1262 26 5.1
650
+ 1450 20 3.0
651
+ 2286 1 3.1
652
+ 1995 27 4.1
653
+ 463 17 5.0
654
+ 1614 84 5.1
655
+ 757 1 5.1
656
+ 557 25 5.0
657
+ 1461 30 4.1
658
+ 330 7 3.0
659
+ 271 45 3.1
660
+ 750 87 2.0
661
+ 534 3 5.0
662
+ 805 7 3.0
663
+ 93 1 4.0
664
+ 1404 3 4.0
665
+ 2174 68 4.0
666
+ 1049 44 4.0
667
+ 2173 134 1.5
668
+ 383 84 4.0
669
+ 461 836 4.6
670
+ 92 39 3.1
671
+ 560 131 1.6
672
+ 195 66 5.0
673
+ 2070 1227 4.5
674
+ 1781 1 3.5
675
+ 1979 6 4.0
676
+ 1431 1227 4.0
677
+ 969 1 4.1
678
+ 1957 1 5.1
679
+ 899 146 3.0
680
+ 748 43 4.0
681
+ 713 5 5.0
682
+ 1307 26 4.1
683
+ 993 131 3.0
684
+ 520 25 4.0
685
+ 506 75 3.0
686
+ 84 58 4.0
687
+ 1304 7 2.0
688
+ 1530 39 3.0
689
+ 1865 1 4.5
690
+ 928 27 3.1
691
+ 1106 6 3.0
692
+ 1860 112 3.0
693
+ 1613 1 5.0
694
+ 1357 565 2.1
695
+ 91 8 2.1
696
+ 1782 1 4.1
697
+ 1810 20 3.1
698
+ 2058 7 0.6
699
+ 567 3 4.0
700
+ 750 43 3.0
701
+ 637 26 5.0
702
+ 1860 143 3.0
703
+ 749 131 2.6
704
+ 695 93 1.1
705
+ 53 26 3.1
706
+ 1915 45 4.1
707
+ 1225 42 4.1
708
+ 1111 1 4.5
709
+ 1638 8 3.1
710
+ 1339 26 4.0
711
+ 1206 128 5.1
712
+ 1849 75 4.1
713
+ 21 25 5.0
714
+ 1431 1224 4.1
715
+ 1537 8 2.0
716
+ 1022 1063 3.0
717
+ 1311 5 2.0
718
+ 502 26 3.1
719
+ 73 6 3.1
720
+ 1069 35 3.1
721
+ 1523 3 3.6
722
+ 1743 7 4.0
723
+ 278 5 4.0
724
+ 1656 45 2.6
725
+ 587 84 2.0
726
+ 1069 20 4.6
727
+ 1691 58 4.1
728
+ 1245 84 5.1
729
+ 1431 27 4.0
730
+ 993 128 4.1
731
+ 568 26 5.1
732
+ 971 6 3.0
733
+ 370 7 3.0
734
+ 250 7 3.1
735
+ 1821 6 3.0
736
+ 2267 45 4.1
737
+ 1413 8 3.1
738
+ 2276 68 5.1
739
+ 2270 1 5.0
740
+ 520 1 3.0
741
+ 767 66 3.0
742
+ 317 84 3.0
743
+ 789 1 5.1
744
+ 2248 69 4.1
745
+ 524 25 4.6
746
+ 132 6 3.0
747
+ 1374 7 2.6
748
+ 1400 7 3.1
749
+ 591 43 4.1
750
+ 60 61 3.0
751
+ 2087 143 4.6
752
+ 1421 24 4.1
753
+ 587 39 4.1
754
+ 982 13 3.1
755
+ 1411 42 5.1
756
+ 1983 45 4.1
757
+ 1660 166 2.5
758
+ 617 5 4.1
759
+ 1735 5 3.0
760
+ 1090 17 4.1
761
+ 1259 1 4.0
762
+ 1762 43 4.1
763
+ 1564 7 3.1
764
+ 1869 26 5.0
765
+ 1691 1 4.0
766
+ 1140 25 4.5
767
+ 2013 23 4.1
768
+ 597 1 3.0
769
+ 2199 990 2.1
770
+ 2267 58 4.1
771
+ 592 49 1.1
772
+ 2194 25 2.0
773
+ 1456 58 5.0
774
+ 1422 803 3.5
775
+ 859 178 4.0
776
+ 736 29 5.0
777
+ 599 131 4.0
778
+ 1631 27 4.1
779
+ 1200 131 2.5
780
+ 1090 128 4.0
781
+ 545 7 3.1
782
+ 822 1 4.6
783
+ 1317 6 2.5
784
+ 1794 43 4.0
785
+ 1731 9 1.0
786
+ 1185 26 5.0
787
+ 465 22 5.0
788
+ 1221 8 4.0
789
+ 1783 1 4.0
790
+ 433 5 4.0
791
+ 465 6 3.0
792
+ 1317 43 2.5
793
+ 1445 188 3.0
794
+ 438 84 3.0