liblinear-ruby 0.0.2 → 0.0.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +141 -10
- data/{liblinear-1.93/ruby → ext}/liblinear.i +0 -0
- data/ext/linear.cpp +30 -7
- data/ext/tron.cpp +4 -4
- data/lib/liblinear/model.rb +3 -3
- data/lib/liblinear/parameter.rb +2 -2
- data/lib/liblinear/problem.rb +4 -17
- data/lib/liblinear/version.rb +1 -1
- data/lib/liblinear.rb +46 -13
- data/{liblinear-1.93 → liblinear-1.94}/COPYRIGHT +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/Makefile +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/Makefile.win +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/README +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/blas/Makefile +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/blas/blas.h +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/blas/blasp.h +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/blas/daxpy.c +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/blas/ddot.c +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/blas/dnrm2.c +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/blas/dscal.c +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/heart_scale +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/linear.cpp +30 -7
- data/{liblinear-1.93 → liblinear-1.94}/linear.def +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/linear.h +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/matlab/Makefile +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/matlab/README +2 -1
- data/{liblinear-1.93 → liblinear-1.94}/matlab/libsvmread.c +25 -24
- data/{liblinear-1.93 → liblinear-1.94}/matlab/libsvmwrite.c +15 -1
- data/{liblinear-1.93 → liblinear-1.94}/matlab/linear_model_matlab.c +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/matlab/linear_model_matlab.h +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/matlab/make.m +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/matlab/predict.c +37 -25
- data/{liblinear-1.93 → liblinear-1.94}/matlab/train.c +16 -7
- data/{liblinear-1.93 → liblinear-1.94}/predict.c +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/python/Makefile +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/python/README +1 -1
- data/{liblinear-1.93 → liblinear-1.94}/python/liblinear.py +1 -1
- data/{liblinear-1.93 → liblinear-1.94}/python/liblinearutil.py +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/train.c +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/tron.cpp +4 -4
- data/{liblinear-1.93 → liblinear-1.94}/tron.h +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/windows/liblinear.dll +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/windows/libsvmread.mexw64 +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/windows/libsvmwrite.mexw64 +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/windows/predict.exe +0 -0
- data/liblinear-1.94/windows/predict.mexw64 +0 -0
- data/{liblinear-1.93 → liblinear-1.94}/windows/train.exe +0 -0
- data/liblinear-1.94/windows/train.mexw64 +0 -0
- data/spec/liblinear/model_spec.rb +56 -0
- data/spec/liblinear/parameter_spec.rb +57 -0
- data/spec/liblinear/problem_spec.rb +23 -0
- data/spec/liblinear_spec.rb +104 -0
- metadata +51 -56
- data/ext/linear.rb +0 -357
- data/liblinear-1.93/blas/blas.a +0 -0
- data/liblinear-1.93/blas/daxpy.o +0 -0
- data/liblinear-1.93/blas/ddot.o +0 -0
- data/liblinear-1.93/blas/dnrm2.o +0 -0
- data/liblinear-1.93/blas/dscal.o +0 -0
- data/liblinear-1.93/linear.o +0 -0
- data/liblinear-1.93/predict +0 -0
- data/liblinear-1.93/ruby/liblinear_wrap.cxx +0 -4646
- data/liblinear-1.93/ruby/linear.h +0 -74
- data/liblinear-1.93/ruby/linear.o +0 -0
- data/liblinear-1.93/train +0 -0
- data/liblinear-1.93/tron.o +0 -0
- data/liblinear-1.93/windows/predict.mexw64 +0 -0
- data/liblinear-1.93/windows/train.mexw64 +0 -0
@@ -0,0 +1,104 @@
|
|
1
|
+
$: << File.expand_path(File.join(__FILE__, '..', '..', 'lib'))
|
2
|
+
require 'liblinear'
|
3
|
+
|
4
|
+
describe Liblinear do
|
5
|
+
include Liblinear
|
6
|
+
include Liblinearswig
|
7
|
+
|
8
|
+
before do
|
9
|
+
@int_ruby_array = [1, 2, 3]
|
10
|
+
@double_ruby_array = [1.0, 2.0, 3.0]
|
11
|
+
@int_c_array = new_int_array(@int_ruby_array)
|
12
|
+
@double_c_array = new_double_array(@double_ruby_array)
|
13
|
+
@examples_hash = [{1=>1, 2=>2}, {3=>3, 4=>4}]
|
14
|
+
@examples_array = [[1, 2], [3, 4, 5]]
|
15
|
+
@example_hash = {1=>1, 2=>2, 3=>3}
|
16
|
+
@example_array = [1, 2, 3]
|
17
|
+
end
|
18
|
+
|
19
|
+
describe 'solver type' do
|
20
|
+
it 'solver type equal integer value defined Liblinearswig' do
|
21
|
+
expect(Liblinear::L2R_LR).to eq(Liblinearswig::L2R_LR)
|
22
|
+
expect(Liblinear::L2R_L2LOSS_SVC_DUAL).to eq(Liblinearswig::L2R_L2LOSS_SVC_DUAL)
|
23
|
+
expect(Liblinear::L2R_L2LOSS_SVC).to eq(Liblinearswig::L2R_L2LOSS_SVC)
|
24
|
+
expect(Liblinear::L2R_L1LOSS_SVC_DUAL).to eq(Liblinearswig::L2R_L1LOSS_SVC_DUAL)
|
25
|
+
expect(Liblinear::MCSVM_CS).to eq(Liblinearswig::MCSVM_CS)
|
26
|
+
expect(Liblinear::L1R_L2LOSS_SVC).to eq(Liblinearswig::L1R_L2LOSS_SVC)
|
27
|
+
expect(Liblinear::L1R_LR).to eq(Liblinearswig::L1R_LR)
|
28
|
+
expect(Liblinear::L2R_LR_DUAL).to eq(Liblinearswig::L2R_LR_DUAL)
|
29
|
+
expect(Liblinear::L2R_L2LOSS_SVR).to eq(Liblinearswig::L2R_L2LOSS_SVR)
|
30
|
+
expect(Liblinear::L2R_L2LOSS_SVR_DUAL).to eq(Liblinearswig::L2R_L2LOSS_SVR_DUAL)
|
31
|
+
expect(Liblinear::L2R_L1LOSS_SVR_DUAL).to eq(Liblinearswig::L2R_L1LOSS_SVR_DUAL)
|
32
|
+
end
|
33
|
+
end
|
34
|
+
|
35
|
+
describe '#new_int_array' do
|
36
|
+
it 'returns [SWIG::TYPE_p_int]' do
|
37
|
+
expect(new_int_array(@int_ruby_array).class).to eq(SWIG::TYPE_p_int)
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
describe '#free_int_array' do
|
42
|
+
it 'returns different array when free c array' do
|
43
|
+
expect(int_array_c_to_ruby(@int_c_array, 3)).to eq(@int_ruby_array)
|
44
|
+
free_int_array(@int_c_array)
|
45
|
+
expect(int_array_c_to_ruby(@int_c_array, 3)).not_to eq(@int_ruby_array)
|
46
|
+
end
|
47
|
+
end
|
48
|
+
|
49
|
+
describe '#new_double_array' do
|
50
|
+
it 'returns [SWIG::TYPE_p_double]' do
|
51
|
+
expect(new_double_array(@double_ruby_array).class).to eq(SWIG::TYPE_p_double)
|
52
|
+
end
|
53
|
+
end
|
54
|
+
|
55
|
+
describe '#free_double_array' do
|
56
|
+
it 'returns different array when free c array' do
|
57
|
+
expect(double_array_c_to_ruby(@double_c_array, 3)).to eq(@double_ruby_array)
|
58
|
+
free_double_array(@double_c_array)
|
59
|
+
expect(double_array_c_to_ruby(@double_c_array, 3)).not_to eq(@double_ruby_array)
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
describe '#int_array_c_to_ruby' do
|
64
|
+
it 'returns [Array<Integer>]' do
|
65
|
+
expect(int_array_c_to_ruby(@int_c_array, 3)).to eq(@int_ruby_array)
|
66
|
+
end
|
67
|
+
end
|
68
|
+
|
69
|
+
describe '#double_array_c_to_ruby' do
|
70
|
+
it 'returns [Array<Double>]' do
|
71
|
+
expect(double_array_c_to_ruby(@double_c_array, 3)).to eq(@double_ruby_array)
|
72
|
+
end
|
73
|
+
end
|
74
|
+
|
75
|
+
describe '#max_index' do
|
76
|
+
it 'returns max key when example is [Hash]' do
|
77
|
+
expect(max_index(@examples_hash)).to eq(4)
|
78
|
+
end
|
79
|
+
|
80
|
+
it 'returns max index + 1 when example is [Array]' do
|
81
|
+
expect(max_index(@examples_array)).to eq(3)
|
82
|
+
end
|
83
|
+
end
|
84
|
+
|
85
|
+
describe '#array_to_hash' do
|
86
|
+
it 'returns hash whose key is index + 1 of array' do
|
87
|
+
expect(array_to_hash(@example_array)).to eq(@example_hash)
|
88
|
+
end
|
89
|
+
|
90
|
+
it 'raise ArgumentError when array is not [Array]' do
|
91
|
+
expect{array_to_hash(1)}.to raise_error(ArgumentError)
|
92
|
+
end
|
93
|
+
end
|
94
|
+
|
95
|
+
describe '#convert_to_feature_node_array' do
|
96
|
+
it 'returns [Liblinearswig::Feature_node] when example is [Hash]' do
|
97
|
+
expect(convert_to_feature_node_array(@example_hash, 3).class).to eq(Liblinearswig::Feature_node)
|
98
|
+
end
|
99
|
+
|
100
|
+
it 'returns [Liblinearswig::Feature_node] when examples is [Array]' do
|
101
|
+
expect(convert_to_feature_node_array(@example_array, 3).class).to eq(Liblinearswig::Feature_node)
|
102
|
+
end
|
103
|
+
end
|
104
|
+
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: liblinear-ruby
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.0.
|
4
|
+
version: 0.0.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Kei Tsuchiya
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2014-02-17 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|
@@ -58,10 +58,10 @@ files:
|
|
58
58
|
- ext/dnrm2.c
|
59
59
|
- ext/dscal.c
|
60
60
|
- ext/extconf.rb
|
61
|
+
- ext/liblinear.i
|
61
62
|
- ext/liblinear_wrap.cxx
|
62
63
|
- ext/linear.cpp
|
63
64
|
- ext/linear.h
|
64
|
-
- ext/linear.rb
|
65
65
|
- ext/tron.cpp
|
66
66
|
- ext/tron.h
|
67
67
|
- lib/liblinear.rb
|
@@ -70,59 +70,50 @@ files:
|
|
70
70
|
- lib/liblinear/parameter.rb
|
71
71
|
- lib/liblinear/problem.rb
|
72
72
|
- lib/liblinear/version.rb
|
73
|
-
- liblinear-1.
|
74
|
-
- liblinear-1.
|
75
|
-
- liblinear-1.
|
76
|
-
- liblinear-1.
|
77
|
-
- liblinear-1.
|
78
|
-
- liblinear-1.
|
79
|
-
- liblinear-1.
|
80
|
-
- liblinear-1.
|
81
|
-
- liblinear-1.
|
82
|
-
- liblinear-1.
|
83
|
-
- liblinear-1.
|
84
|
-
- liblinear-1.
|
85
|
-
- liblinear-1.
|
86
|
-
- liblinear-1.
|
87
|
-
- liblinear-1.
|
88
|
-
- liblinear-1.
|
89
|
-
- liblinear-1.
|
90
|
-
- liblinear-1.
|
91
|
-
- liblinear-1.
|
92
|
-
- liblinear-1.
|
93
|
-
- liblinear-1.
|
94
|
-
- liblinear-1.
|
95
|
-
- liblinear-1.
|
96
|
-
- liblinear-1.
|
97
|
-
- liblinear-1.
|
98
|
-
- liblinear-1.
|
99
|
-
- liblinear-1.
|
100
|
-
- liblinear-1.
|
101
|
-
- liblinear-1.
|
102
|
-
- liblinear-1.
|
103
|
-
- liblinear-1.
|
104
|
-
- liblinear-1.
|
105
|
-
- liblinear-1.
|
106
|
-
- liblinear-1.
|
107
|
-
- liblinear-1.
|
108
|
-
- liblinear-1.
|
109
|
-
- liblinear-1.
|
110
|
-
- liblinear-1.
|
111
|
-
- liblinear-1.
|
112
|
-
- liblinear-1.93/ruby/linear.o
|
113
|
-
- liblinear-1.93/train
|
114
|
-
- liblinear-1.93/train.c
|
115
|
-
- liblinear-1.93/tron.cpp
|
116
|
-
- liblinear-1.93/tron.h
|
117
|
-
- liblinear-1.93/tron.o
|
118
|
-
- liblinear-1.93/windows/liblinear.dll
|
119
|
-
- liblinear-1.93/windows/libsvmread.mexw64
|
120
|
-
- liblinear-1.93/windows/libsvmwrite.mexw64
|
121
|
-
- liblinear-1.93/windows/predict.exe
|
122
|
-
- liblinear-1.93/windows/predict.mexw64
|
123
|
-
- liblinear-1.93/windows/train.exe
|
124
|
-
- liblinear-1.93/windows/train.mexw64
|
73
|
+
- liblinear-1.94/COPYRIGHT
|
74
|
+
- liblinear-1.94/Makefile
|
75
|
+
- liblinear-1.94/Makefile.win
|
76
|
+
- liblinear-1.94/README
|
77
|
+
- liblinear-1.94/blas/Makefile
|
78
|
+
- liblinear-1.94/blas/blas.h
|
79
|
+
- liblinear-1.94/blas/blasp.h
|
80
|
+
- liblinear-1.94/blas/daxpy.c
|
81
|
+
- liblinear-1.94/blas/ddot.c
|
82
|
+
- liblinear-1.94/blas/dnrm2.c
|
83
|
+
- liblinear-1.94/blas/dscal.c
|
84
|
+
- liblinear-1.94/heart_scale
|
85
|
+
- liblinear-1.94/linear.cpp
|
86
|
+
- liblinear-1.94/linear.def
|
87
|
+
- liblinear-1.94/linear.h
|
88
|
+
- liblinear-1.94/matlab/Makefile
|
89
|
+
- liblinear-1.94/matlab/README
|
90
|
+
- liblinear-1.94/matlab/libsvmread.c
|
91
|
+
- liblinear-1.94/matlab/libsvmwrite.c
|
92
|
+
- liblinear-1.94/matlab/linear_model_matlab.c
|
93
|
+
- liblinear-1.94/matlab/linear_model_matlab.h
|
94
|
+
- liblinear-1.94/matlab/make.m
|
95
|
+
- liblinear-1.94/matlab/predict.c
|
96
|
+
- liblinear-1.94/matlab/train.c
|
97
|
+
- liblinear-1.94/predict.c
|
98
|
+
- liblinear-1.94/python/Makefile
|
99
|
+
- liblinear-1.94/python/README
|
100
|
+
- liblinear-1.94/python/liblinear.py
|
101
|
+
- liblinear-1.94/python/liblinearutil.py
|
102
|
+
- liblinear-1.94/train.c
|
103
|
+
- liblinear-1.94/tron.cpp
|
104
|
+
- liblinear-1.94/tron.h
|
105
|
+
- liblinear-1.94/windows/liblinear.dll
|
106
|
+
- liblinear-1.94/windows/libsvmread.mexw64
|
107
|
+
- liblinear-1.94/windows/libsvmwrite.mexw64
|
108
|
+
- liblinear-1.94/windows/predict.exe
|
109
|
+
- liblinear-1.94/windows/predict.mexw64
|
110
|
+
- liblinear-1.94/windows/train.exe
|
111
|
+
- liblinear-1.94/windows/train.mexw64
|
125
112
|
- liblinear-ruby.gemspec
|
113
|
+
- spec/liblinear/model_spec.rb
|
114
|
+
- spec/liblinear/parameter_spec.rb
|
115
|
+
- spec/liblinear/problem_spec.rb
|
116
|
+
- spec/liblinear_spec.rb
|
126
117
|
homepage: https://github.com/kei500/liblinear-ruby
|
127
118
|
licenses:
|
128
119
|
- MIT
|
@@ -147,5 +138,9 @@ rubygems_version: 2.0.2
|
|
147
138
|
signing_key:
|
148
139
|
specification_version: 4
|
149
140
|
summary: Ruby wrapper of LIBLINEAR using SWIG
|
150
|
-
test_files:
|
141
|
+
test_files:
|
142
|
+
- spec/liblinear/model_spec.rb
|
143
|
+
- spec/liblinear/parameter_spec.rb
|
144
|
+
- spec/liblinear/problem_spec.rb
|
145
|
+
- spec/liblinear_spec.rb
|
151
146
|
has_rdoc:
|
data/ext/linear.rb
DELETED
@@ -1,357 +0,0 @@
|
|
1
|
-
require 'liblinear'
|
2
|
-
include Liblinear
|
3
|
-
|
4
|
-
def _int_array(seq)
|
5
|
-
size = seq.size
|
6
|
-
array = new_int(size)
|
7
|
-
i = 0
|
8
|
-
for item in seq
|
9
|
-
int_setitem(array,i,item)
|
10
|
-
i = i + 1
|
11
|
-
end
|
12
|
-
return array
|
13
|
-
end
|
14
|
-
|
15
|
-
def _double_array(seq)
|
16
|
-
size = seq.size
|
17
|
-
array = new_double(size)
|
18
|
-
i = 0
|
19
|
-
for item in seq
|
20
|
-
double_setitem(array,i,item)
|
21
|
-
i = i + 1
|
22
|
-
end
|
23
|
-
return array
|
24
|
-
end
|
25
|
-
|
26
|
-
def _free_int_array(x)
|
27
|
-
if !x.nil? # and !x.empty?
|
28
|
-
delete_int(x)
|
29
|
-
end
|
30
|
-
end
|
31
|
-
|
32
|
-
def _free_double_array(x)
|
33
|
-
if !x.nil? # and !x.empty?
|
34
|
-
delete_double(x)
|
35
|
-
end
|
36
|
-
end
|
37
|
-
|
38
|
-
def _int_array_to_list(x,n)
|
39
|
-
list = []
|
40
|
-
(0..n-1).each {|i| list << int_getitem(x,i) }
|
41
|
-
return list
|
42
|
-
end
|
43
|
-
|
44
|
-
def _double_array_to_list(x,n)
|
45
|
-
list = []
|
46
|
-
(0..n-1).each {|i| list << double_getitem(x,i) }
|
47
|
-
return list
|
48
|
-
end
|
49
|
-
|
50
|
-
class LParameter
|
51
|
-
attr_accessor :param
|
52
|
-
|
53
|
-
def initialize(*args)
|
54
|
-
@param = Liblinear::Parameter.new
|
55
|
-
@param.solver_type = L2R_LR
|
56
|
-
@param.C = 1
|
57
|
-
@param.eps = 0.01
|
58
|
-
@param.nr_weight = 0
|
59
|
-
@param.weight_label = _int_array([])
|
60
|
-
@param.weight = _double_array([])
|
61
|
-
|
62
|
-
args[0].each {|k,v|
|
63
|
-
self.send("#{k}=",v)
|
64
|
-
} if !args[0].nil?
|
65
|
-
end
|
66
|
-
|
67
|
-
def method_missing(m, *args)
|
68
|
-
#print m.to_s
|
69
|
-
#puts args.inspect
|
70
|
-
if m.to_s == 'weight_label='
|
71
|
-
@weight_label_len = args[0].size
|
72
|
-
pargs = _int_array(args[0])
|
73
|
-
_free_int_array(@param.weight_label)
|
74
|
-
elsif m.to_s == 'weight='
|
75
|
-
@weight_len = args[0].size
|
76
|
-
pargs = _double_array(args[0])
|
77
|
-
_free_double_array(@param.weight)
|
78
|
-
else
|
79
|
-
pargs = args[0]
|
80
|
-
end
|
81
|
-
|
82
|
-
if m.to_s.index('=')
|
83
|
-
@param.send("#{m}",pargs)
|
84
|
-
else
|
85
|
-
@param.send("#{m}")
|
86
|
-
end
|
87
|
-
|
88
|
-
end
|
89
|
-
|
90
|
-
def inspect
|
91
|
-
"LParameter: solver_type=#{@param.solver_type} C=#{@param.C} eps=#{@param.eps}"
|
92
|
-
end
|
93
|
-
|
94
|
-
def destroy
|
95
|
-
_free_int_array(@param.weight_label)
|
96
|
-
_free_double_array(@param.weight)
|
97
|
-
delete_parameter(@param)
|
98
|
-
@param = nil
|
99
|
-
end
|
100
|
-
end
|
101
|
-
|
102
|
-
def _convert_to_feature_node_array(x, maxlen, bias=-1)
|
103
|
-
# convert a sequence or mapping to an feature_node array
|
104
|
-
|
105
|
-
# Find non zero elements
|
106
|
-
iter_range = []
|
107
|
-
if x.class == Hash
|
108
|
-
x.each {|k, v|
|
109
|
-
# all zeros kept due to the precomputed kernel; no good solution yet
|
110
|
-
iter_range << k #if v != 0
|
111
|
-
}
|
112
|
-
elsif x.class == Array
|
113
|
-
x.each_index {|j|
|
114
|
-
iter_range << j #if x[j] != 0
|
115
|
-
}
|
116
|
-
else
|
117
|
-
raise TypeError,"data must be a hash or an array"
|
118
|
-
end
|
119
|
-
|
120
|
-
iter_range.sort!
|
121
|
-
if bias >=0
|
122
|
-
data = feature_node_array(iter_range.size+2)
|
123
|
-
#puts "bias element (#{iter_range.size},#{bias})"
|
124
|
-
feature_node_array_set(data,iter_range.size,maxlen+1,bias)
|
125
|
-
feature_node_array_set(data,iter_range.size+1,-1,0)
|
126
|
-
else
|
127
|
-
data = feature_node_array(iter_range.size+1)
|
128
|
-
feature_node_array_set(data,iter_range.size,-1,0)
|
129
|
-
end
|
130
|
-
|
131
|
-
j = 0
|
132
|
-
for k in iter_range
|
133
|
-
#puts "element #{j}= (#{k},#{x[k]})"
|
134
|
-
feature_node_array_set(data,j,k,x[k])
|
135
|
-
j = j + 1
|
136
|
-
end
|
137
|
-
return data
|
138
|
-
end
|
139
|
-
|
140
|
-
|
141
|
-
class LProblem
|
142
|
-
attr_accessor :prob, :maxlen, :size
|
143
|
-
|
144
|
-
def initialize(y,x,bias)
|
145
|
-
# assert_equal(y.size, x.size)
|
146
|
-
@prob = prob = Liblinear::Problem.new
|
147
|
-
@size = size = y.size
|
148
|
-
|
149
|
-
@y_array = y_array = new_double(size)
|
150
|
-
for i in (0..size-1)
|
151
|
-
double_setitem(@y_array,i,y[i])
|
152
|
-
end
|
153
|
-
|
154
|
-
@x_matrix = x_matrix = feature_node_matrix(size)
|
155
|
-
@data = []
|
156
|
-
@maxlen = 0 #max number of features
|
157
|
-
len_array=[]
|
158
|
-
|
159
|
-
for i in (0..size-1)
|
160
|
-
data = _convert_to_feature_node_array(x[i], @maxlen, bias)
|
161
|
-
@data << data
|
162
|
-
feature_node_matrix_set(x_matrix,i,data)
|
163
|
-
|
164
|
-
if x[i].class == Hash
|
165
|
-
if x[i].size > 0
|
166
|
-
@maxlen = [@maxlen,x[i].keys.max].max
|
167
|
-
end
|
168
|
-
else
|
169
|
-
@maxlen = [@maxlen,x[i].size].max
|
170
|
-
end
|
171
|
-
len_array << x[i].size
|
172
|
-
end
|
173
|
-
|
174
|
-
if bias >= 0
|
175
|
-
set_bias_index(x_matrix, size, @maxlen, _int_array(len_array))
|
176
|
-
end
|
177
|
-
|
178
|
-
prob.y = y_array
|
179
|
-
prob.x = x_matrix
|
180
|
-
prob.bias = bias
|
181
|
-
prob.l = size
|
182
|
-
prob.n = @maxlen
|
183
|
-
if bias >= 0
|
184
|
-
prob.n += 1
|
185
|
-
end
|
186
|
-
end
|
187
|
-
|
188
|
-
def inspect
|
189
|
-
"LProblem: size = #{size} n=#{prob.n} bias=#{prob.bias} maxlen=#{@maxlen}"
|
190
|
-
end
|
191
|
-
|
192
|
-
def destroy
|
193
|
-
delete_problem(@prob)
|
194
|
-
delete_int(@y_array)
|
195
|
-
for i in (0..size-1)
|
196
|
-
feature_node_array_destroy(@data[i])
|
197
|
-
end
|
198
|
-
feature_node_matrix_destroy(@x_matrix)
|
199
|
-
end
|
200
|
-
end
|
201
|
-
|
202
|
-
class LModel
|
203
|
-
attr_accessor :model, :probability
|
204
|
-
|
205
|
-
def initialize(arg1,arg2=nil)
|
206
|
-
if arg2 == nil
|
207
|
-
# create model from file
|
208
|
-
filename = arg1
|
209
|
-
@model = load_model(filename)
|
210
|
-
else
|
211
|
-
# create model from problem and parameter
|
212
|
-
prob,param = arg1,arg2
|
213
|
-
@prob = prob
|
214
|
-
msg = check_parameter(prob.prob,param.param)
|
215
|
-
raise "ValueError", msg if msg
|
216
|
-
@model = Liblinear::train(prob.prob,param.param)
|
217
|
-
end
|
218
|
-
#setup some classwide variables
|
219
|
-
@nr_class = Liblinear::get_nr_class(@model)
|
220
|
-
#create labels(classes)
|
221
|
-
intarr = new_int(@nr_class)
|
222
|
-
Liblinear::get_labels(@model,intarr)
|
223
|
-
@labels = _int_array_to_list(intarr, @nr_class)
|
224
|
-
delete_int(intarr)
|
225
|
-
end
|
226
|
-
|
227
|
-
def predict(x)
|
228
|
-
data = _convert_to_feature_node_array(x, @model.nr_feature, @model.bias)
|
229
|
-
ret = Liblinear::predict(@model,data)
|
230
|
-
feature_node_array_destroy(data)
|
231
|
-
return ret
|
232
|
-
end
|
233
|
-
|
234
|
-
|
235
|
-
def get_nr_class
|
236
|
-
return @nr_class
|
237
|
-
end
|
238
|
-
|
239
|
-
def get_labels
|
240
|
-
return @labels
|
241
|
-
end
|
242
|
-
|
243
|
-
def predict_values_raw(x)
|
244
|
-
#convert x into feature_node, allocate a double array for return
|
245
|
-
n = (@nr_class*(@nr_class-1)/2).floor
|
246
|
-
data = _convert_to_feature_node_array(x, @model.nr_feature, @model.bias)
|
247
|
-
dblarr = new_double(n)
|
248
|
-
Liblinear::predict_values(@model, data, dblarr)
|
249
|
-
ret = _double_array_to_list(dblarr, n)
|
250
|
-
delete_double(dblarr)
|
251
|
-
feature_node_array_destroy(data)
|
252
|
-
return ret
|
253
|
-
end
|
254
|
-
|
255
|
-
def predict_values(x)
|
256
|
-
v=predict_values_raw(x)
|
257
|
-
#puts v.inspect
|
258
|
-
if false
|
259
|
-
#if @svm_type == NU_SVR or @svm_type == EPSILON_SVR or @svm_type == ONE_CLASS
|
260
|
-
return v[0]
|
261
|
-
else #self.svm_type == C_SVC or self.svm_type == NU_SVC
|
262
|
-
count = 0
|
263
|
-
|
264
|
-
# create a width x height array
|
265
|
-
width = @labels.size
|
266
|
-
height = @labels.size
|
267
|
-
d = Array.new(width)
|
268
|
-
d.map! { Array.new(height) }
|
269
|
-
|
270
|
-
for i in (0..@labels.size-1)
|
271
|
-
for j in (i+1..@labels.size-1)
|
272
|
-
d[@labels[i]][@labels[j]] = v[count]
|
273
|
-
d[@labels[j]][@labels[i]] = -v[count]
|
274
|
-
count += 1
|
275
|
-
end
|
276
|
-
end
|
277
|
-
return d
|
278
|
-
end
|
279
|
-
end
|
280
|
-
|
281
|
-
def predict_probability(x)
|
282
|
-
# if not @probability
|
283
|
-
# raise TypeError, "model does not support probabiliy estimates"
|
284
|
-
# end
|
285
|
-
|
286
|
-
#convert x into feature_node, alloc a double array to receive probabilities
|
287
|
-
data = _convert_to_feature_node_array(x, @model.nr_feature, @model.bias)
|
288
|
-
dblarr = new_double(@nr_class)
|
289
|
-
pred = Liblinear::predict_probability(@model, data, dblarr)
|
290
|
-
pv = _double_array_to_list(dblarr, @nr_class)
|
291
|
-
delete_double(dblarr)
|
292
|
-
feature_node_array_destroy(data)
|
293
|
-
p = {}
|
294
|
-
for i in (0..@labels.size-1)
|
295
|
-
p[@labels[i]] = pv[i]
|
296
|
-
end
|
297
|
-
return pred, p
|
298
|
-
end
|
299
|
-
|
300
|
-
# def get_svr_probability
|
301
|
-
# #leave the Error checking to svm.cpp code
|
302
|
-
# ret = Liblinear::get_svr_probability(@model)
|
303
|
-
# if ret == 0
|
304
|
-
# raise TypeError, "not a regression model or probability information not available"
|
305
|
-
# end
|
306
|
-
# return ret
|
307
|
-
# end
|
308
|
-
|
309
|
-
# def get_svr_pdf
|
310
|
-
# #get_svr_probability will handle error checking
|
311
|
-
# sigma = get_svr_probability()
|
312
|
-
# return Proc.new{|z| exp(-z.abs/sigma)/(2*sigma)} # TODO: verify this works
|
313
|
-
# end
|
314
|
-
|
315
|
-
def save(filename)
|
316
|
-
save_model(filename,@model)
|
317
|
-
end
|
318
|
-
|
319
|
-
def destroy
|
320
|
-
destroy_model(@model)
|
321
|
-
end
|
322
|
-
end
|
323
|
-
|
324
|
-
def cross_validation(prob, param, fold)
|
325
|
-
target = new_int(prob.size)
|
326
|
-
Liblinear::cross_validation(prob.prob, param.param, fold, target)
|
327
|
-
ret = _int_array_to_list(target, prob.size)
|
328
|
-
delete_int(target)
|
329
|
-
return ret
|
330
|
-
end
|
331
|
-
|
332
|
-
def read_file filename
|
333
|
-
labels = []
|
334
|
-
samples = []
|
335
|
-
max_index = 0
|
336
|
-
|
337
|
-
f = File.open(filename)
|
338
|
-
f.each do |line|
|
339
|
-
elems = line.split
|
340
|
-
sample = {}
|
341
|
-
for e in elems[1..-1]
|
342
|
-
points = e.split(":")
|
343
|
-
sample[points[0].to_i] = points[1].to_f
|
344
|
-
if points[0].to_i < max_index
|
345
|
-
max_index = points[0].to_i
|
346
|
-
end
|
347
|
-
end
|
348
|
-
labels << elems[0].to_i
|
349
|
-
samples << sample
|
350
|
-
#print elems[0].to_i
|
351
|
-
#print " - "
|
352
|
-
#puts sample.inspect
|
353
|
-
end
|
354
|
-
puts "#{filename}: #{samples.size} samples loaded."
|
355
|
-
return labels,samples
|
356
|
-
end
|
357
|
-
|
data/liblinear-1.93/blas/blas.a
DELETED
Binary file
|
data/liblinear-1.93/blas/daxpy.o
DELETED
Binary file
|
data/liblinear-1.93/blas/ddot.o
DELETED
Binary file
|
data/liblinear-1.93/blas/dnrm2.o
DELETED
Binary file
|
data/liblinear-1.93/blas/dscal.o
DELETED
Binary file
|
data/liblinear-1.93/linear.o
DELETED
Binary file
|
data/liblinear-1.93/predict
DELETED
Binary file
|