liblinear-ruby 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +19 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +46 -0
- data/Rakefile +1 -0
- data/ext/Makefile +237 -0
- data/ext/blas.h +25 -0
- data/ext/blasp.h +430 -0
- data/ext/daxpy.c +49 -0
- data/ext/ddot.c +50 -0
- data/ext/dnrm2.c +62 -0
- data/ext/dscal.c +44 -0
- data/ext/extconf.rb +12 -0
- data/ext/liblinear_wrap.cxx +4646 -0
- data/ext/linear.cpp +2811 -0
- data/ext/linear.h +74 -0
- data/ext/linear.rb +357 -0
- data/ext/tron.cpp +235 -0
- data/ext/tron.h +34 -0
- data/lib/liblinear.rb +89 -0
- data/lib/liblinear/error.rb +4 -0
- data/lib/liblinear/model.rb +66 -0
- data/lib/liblinear/parameter.rb +42 -0
- data/lib/liblinear/problem.rb +55 -0
- data/lib/liblinear/version.rb +3 -0
- data/liblinear-1.93/COPYRIGHT +31 -0
- data/liblinear-1.93/Makefile +37 -0
- data/liblinear-1.93/Makefile.win +30 -0
- data/liblinear-1.93/README +531 -0
- data/liblinear-1.93/blas/Makefile +22 -0
- data/liblinear-1.93/blas/blas.a +0 -0
- data/liblinear-1.93/blas/blas.h +25 -0
- data/liblinear-1.93/blas/blasp.h +430 -0
- data/liblinear-1.93/blas/daxpy.c +49 -0
- data/liblinear-1.93/blas/daxpy.o +0 -0
- data/liblinear-1.93/blas/ddot.c +50 -0
- data/liblinear-1.93/blas/ddot.o +0 -0
- data/liblinear-1.93/blas/dnrm2.c +62 -0
- data/liblinear-1.93/blas/dnrm2.o +0 -0
- data/liblinear-1.93/blas/dscal.c +44 -0
- data/liblinear-1.93/blas/dscal.o +0 -0
- data/liblinear-1.93/heart_scale +270 -0
- data/liblinear-1.93/linear.cpp +2811 -0
- data/liblinear-1.93/linear.def +18 -0
- data/liblinear-1.93/linear.h +74 -0
- data/liblinear-1.93/linear.o +0 -0
- data/liblinear-1.93/matlab/Makefile +58 -0
- data/liblinear-1.93/matlab/README +197 -0
- data/liblinear-1.93/matlab/libsvmread.c +212 -0
- data/liblinear-1.93/matlab/libsvmwrite.c +106 -0
- data/liblinear-1.93/matlab/linear_model_matlab.c +176 -0
- data/liblinear-1.93/matlab/linear_model_matlab.h +2 -0
- data/liblinear-1.93/matlab/make.m +21 -0
- data/liblinear-1.93/matlab/predict.c +331 -0
- data/liblinear-1.93/matlab/train.c +418 -0
- data/liblinear-1.93/predict +0 -0
- data/liblinear-1.93/predict.c +245 -0
- data/liblinear-1.93/python/Makefile +4 -0
- data/liblinear-1.93/python/README +343 -0
- data/liblinear-1.93/python/liblinear.py +277 -0
- data/liblinear-1.93/python/liblinearutil.py +250 -0
- data/liblinear-1.93/ruby/liblinear.i +41 -0
- data/liblinear-1.93/ruby/liblinear_wrap.cxx +4646 -0
- data/liblinear-1.93/ruby/linear.h +74 -0
- data/liblinear-1.93/ruby/linear.o +0 -0
- data/liblinear-1.93/train +0 -0
- data/liblinear-1.93/train.c +399 -0
- data/liblinear-1.93/tron.cpp +235 -0
- data/liblinear-1.93/tron.h +34 -0
- data/liblinear-1.93/tron.o +0 -0
- data/liblinear-1.93/windows/liblinear.dll +0 -0
- data/liblinear-1.93/windows/libsvmread.mexw64 +0 -0
- data/liblinear-1.93/windows/libsvmwrite.mexw64 +0 -0
- data/liblinear-1.93/windows/predict.exe +0 -0
- data/liblinear-1.93/windows/predict.mexw64 +0 -0
- data/liblinear-1.93/windows/train.exe +0 -0
- data/liblinear-1.93/windows/train.mexw64 +0 -0
- data/liblinear-ruby.gemspec +24 -0
- metadata +152 -0
data/ext/linear.h
ADDED
@@ -0,0 +1,74 @@
|
|
1
|
+
#ifndef _LIBLINEAR_H
|
2
|
+
#define _LIBLINEAR_H
|
3
|
+
|
4
|
+
#ifdef __cplusplus
|
5
|
+
extern "C" {
|
6
|
+
#endif
|
7
|
+
|
8
|
+
struct feature_node
|
9
|
+
{
|
10
|
+
int index;
|
11
|
+
double value;
|
12
|
+
};
|
13
|
+
|
14
|
+
struct problem
|
15
|
+
{
|
16
|
+
int l, n;
|
17
|
+
double *y;
|
18
|
+
struct feature_node **x;
|
19
|
+
double bias; /* < 0 if no bias term */
|
20
|
+
};
|
21
|
+
|
22
|
+
enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL, L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL }; /* solver_type */
|
23
|
+
|
24
|
+
struct parameter
|
25
|
+
{
|
26
|
+
int solver_type;
|
27
|
+
|
28
|
+
/* these are for training only */
|
29
|
+
double eps; /* stopping criteria */
|
30
|
+
double C;
|
31
|
+
int nr_weight;
|
32
|
+
int *weight_label;
|
33
|
+
double* weight;
|
34
|
+
double p;
|
35
|
+
};
|
36
|
+
|
37
|
+
struct model
|
38
|
+
{
|
39
|
+
struct parameter param;
|
40
|
+
int nr_class; /* number of classes */
|
41
|
+
int nr_feature;
|
42
|
+
double *w;
|
43
|
+
int *label; /* label of each class */
|
44
|
+
double bias;
|
45
|
+
};
|
46
|
+
|
47
|
+
struct model* train(const struct problem *prob, const struct parameter *param);
|
48
|
+
void cross_validation(const struct problem *prob, const struct parameter *param, int nr_fold, double *target);
|
49
|
+
|
50
|
+
double predict_values(const struct model *model_, const struct feature_node *x, double* dec_values);
|
51
|
+
double predict(const struct model *model_, const struct feature_node *x);
|
52
|
+
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates);
|
53
|
+
|
54
|
+
int save_model(const char *model_file_name, const struct model *model_);
|
55
|
+
struct model *load_model(const char *model_file_name);
|
56
|
+
|
57
|
+
int get_nr_feature(const struct model *model_);
|
58
|
+
int get_nr_class(const struct model *model_);
|
59
|
+
void get_labels(const struct model *model_, int* label);
|
60
|
+
|
61
|
+
void free_model_content(struct model *model_ptr);
|
62
|
+
void free_and_destroy_model(struct model **model_ptr_ptr);
|
63
|
+
void destroy_param(struct parameter *param);
|
64
|
+
|
65
|
+
const char *check_parameter(const struct problem *prob, const struct parameter *param);
|
66
|
+
int check_probability_model(const struct model *model);
|
67
|
+
void set_print_string_function(void (*print_func) (const char*));
|
68
|
+
|
69
|
+
#ifdef __cplusplus
|
70
|
+
}
|
71
|
+
#endif
|
72
|
+
|
73
|
+
#endif /* _LIBLINEAR_H */
|
74
|
+
|
data/ext/linear.rb
ADDED
@@ -0,0 +1,357 @@
|
|
1
|
+
require 'liblinear'
|
2
|
+
include Liblinear
|
3
|
+
|
4
|
+
def _int_array(seq)
|
5
|
+
size = seq.size
|
6
|
+
array = new_int(size)
|
7
|
+
i = 0
|
8
|
+
for item in seq
|
9
|
+
int_setitem(array,i,item)
|
10
|
+
i = i + 1
|
11
|
+
end
|
12
|
+
return array
|
13
|
+
end
|
14
|
+
|
15
|
+
def _double_array(seq)
|
16
|
+
size = seq.size
|
17
|
+
array = new_double(size)
|
18
|
+
i = 0
|
19
|
+
for item in seq
|
20
|
+
double_setitem(array,i,item)
|
21
|
+
i = i + 1
|
22
|
+
end
|
23
|
+
return array
|
24
|
+
end
|
25
|
+
|
26
|
+
def _free_int_array(x)
|
27
|
+
if !x.nil? # and !x.empty?
|
28
|
+
delete_int(x)
|
29
|
+
end
|
30
|
+
end
|
31
|
+
|
32
|
+
def _free_double_array(x)
|
33
|
+
if !x.nil? # and !x.empty?
|
34
|
+
delete_double(x)
|
35
|
+
end
|
36
|
+
end
|
37
|
+
|
38
|
+
def _int_array_to_list(x,n)
|
39
|
+
list = []
|
40
|
+
(0..n-1).each {|i| list << int_getitem(x,i) }
|
41
|
+
return list
|
42
|
+
end
|
43
|
+
|
44
|
+
def _double_array_to_list(x,n)
|
45
|
+
list = []
|
46
|
+
(0..n-1).each {|i| list << double_getitem(x,i) }
|
47
|
+
return list
|
48
|
+
end
|
49
|
+
|
50
|
+
class LParameter
|
51
|
+
attr_accessor :param
|
52
|
+
|
53
|
+
def initialize(*args)
|
54
|
+
@param = Liblinear::Parameter.new
|
55
|
+
@param.solver_type = L2R_LR
|
56
|
+
@param.C = 1
|
57
|
+
@param.eps = 0.01
|
58
|
+
@param.nr_weight = 0
|
59
|
+
@param.weight_label = _int_array([])
|
60
|
+
@param.weight = _double_array([])
|
61
|
+
|
62
|
+
args[0].each {|k,v|
|
63
|
+
self.send("#{k}=",v)
|
64
|
+
} if !args[0].nil?
|
65
|
+
end
|
66
|
+
|
67
|
+
def method_missing(m, *args)
|
68
|
+
#print m.to_s
|
69
|
+
#puts args.inspect
|
70
|
+
if m.to_s == 'weight_label='
|
71
|
+
@weight_label_len = args[0].size
|
72
|
+
pargs = _int_array(args[0])
|
73
|
+
_free_int_array(@param.weight_label)
|
74
|
+
elsif m.to_s == 'weight='
|
75
|
+
@weight_len = args[0].size
|
76
|
+
pargs = _double_array(args[0])
|
77
|
+
_free_double_array(@param.weight)
|
78
|
+
else
|
79
|
+
pargs = args[0]
|
80
|
+
end
|
81
|
+
|
82
|
+
if m.to_s.index('=')
|
83
|
+
@param.send("#{m}",pargs)
|
84
|
+
else
|
85
|
+
@param.send("#{m}")
|
86
|
+
end
|
87
|
+
|
88
|
+
end
|
89
|
+
|
90
|
+
def inspect
|
91
|
+
"LParameter: solver_type=#{@param.solver_type} C=#{@param.C} eps=#{@param.eps}"
|
92
|
+
end
|
93
|
+
|
94
|
+
def destroy
|
95
|
+
_free_int_array(@param.weight_label)
|
96
|
+
_free_double_array(@param.weight)
|
97
|
+
delete_parameter(@param)
|
98
|
+
@param = nil
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
102
|
+
def _convert_to_feature_node_array(x, maxlen, bias=-1)
|
103
|
+
# convert a sequence or mapping to an feature_node array
|
104
|
+
|
105
|
+
# Find non zero elements
|
106
|
+
iter_range = []
|
107
|
+
if x.class == Hash
|
108
|
+
x.each {|k, v|
|
109
|
+
# all zeros kept due to the precomputed kernel; no good solution yet
|
110
|
+
iter_range << k #if v != 0
|
111
|
+
}
|
112
|
+
elsif x.class == Array
|
113
|
+
x.each_index {|j|
|
114
|
+
iter_range << j #if x[j] != 0
|
115
|
+
}
|
116
|
+
else
|
117
|
+
raise TypeError,"data must be a hash or an array"
|
118
|
+
end
|
119
|
+
|
120
|
+
iter_range.sort!
|
121
|
+
if bias >=0
|
122
|
+
data = feature_node_array(iter_range.size+2)
|
123
|
+
#puts "bias element (#{iter_range.size},#{bias})"
|
124
|
+
feature_node_array_set(data,iter_range.size,maxlen+1,bias)
|
125
|
+
feature_node_array_set(data,iter_range.size+1,-1,0)
|
126
|
+
else
|
127
|
+
data = feature_node_array(iter_range.size+1)
|
128
|
+
feature_node_array_set(data,iter_range.size,-1,0)
|
129
|
+
end
|
130
|
+
|
131
|
+
j = 0
|
132
|
+
for k in iter_range
|
133
|
+
#puts "element #{j}= (#{k},#{x[k]})"
|
134
|
+
feature_node_array_set(data,j,k,x[k])
|
135
|
+
j = j + 1
|
136
|
+
end
|
137
|
+
return data
|
138
|
+
end
|
139
|
+
|
140
|
+
|
141
|
+
class LProblem
|
142
|
+
attr_accessor :prob, :maxlen, :size
|
143
|
+
|
144
|
+
def initialize(y,x,bias)
|
145
|
+
# assert_equal(y.size, x.size)
|
146
|
+
@prob = prob = Liblinear::Problem.new
|
147
|
+
@size = size = y.size
|
148
|
+
|
149
|
+
@y_array = y_array = new_double(size)
|
150
|
+
for i in (0..size-1)
|
151
|
+
double_setitem(@y_array,i,y[i])
|
152
|
+
end
|
153
|
+
|
154
|
+
@x_matrix = x_matrix = feature_node_matrix(size)
|
155
|
+
@data = []
|
156
|
+
@maxlen = 0 #max number of features
|
157
|
+
len_array=[]
|
158
|
+
|
159
|
+
for i in (0..size-1)
|
160
|
+
data = _convert_to_feature_node_array(x[i], @maxlen, bias)
|
161
|
+
@data << data
|
162
|
+
feature_node_matrix_set(x_matrix,i,data)
|
163
|
+
|
164
|
+
if x[i].class == Hash
|
165
|
+
if x[i].size > 0
|
166
|
+
@maxlen = [@maxlen,x[i].keys.max].max
|
167
|
+
end
|
168
|
+
else
|
169
|
+
@maxlen = [@maxlen,x[i].size].max
|
170
|
+
end
|
171
|
+
len_array << x[i].size
|
172
|
+
end
|
173
|
+
|
174
|
+
if bias >= 0
|
175
|
+
set_bias_index(x_matrix, size, @maxlen, _int_array(len_array))
|
176
|
+
end
|
177
|
+
|
178
|
+
prob.y = y_array
|
179
|
+
prob.x = x_matrix
|
180
|
+
prob.bias = bias
|
181
|
+
prob.l = size
|
182
|
+
prob.n = @maxlen
|
183
|
+
if bias >= 0
|
184
|
+
prob.n += 1
|
185
|
+
end
|
186
|
+
end
|
187
|
+
|
188
|
+
def inspect
|
189
|
+
"LProblem: size = #{size} n=#{prob.n} bias=#{prob.bias} maxlen=#{@maxlen}"
|
190
|
+
end
|
191
|
+
|
192
|
+
def destroy
|
193
|
+
delete_problem(@prob)
|
194
|
+
delete_int(@y_array)
|
195
|
+
for i in (0..size-1)
|
196
|
+
feature_node_array_destroy(@data[i])
|
197
|
+
end
|
198
|
+
feature_node_matrix_destroy(@x_matrix)
|
199
|
+
end
|
200
|
+
end
|
201
|
+
|
202
|
+
class LModel
|
203
|
+
attr_accessor :model, :probability
|
204
|
+
|
205
|
+
def initialize(arg1,arg2=nil)
|
206
|
+
if arg2 == nil
|
207
|
+
# create model from file
|
208
|
+
filename = arg1
|
209
|
+
@model = load_model(filename)
|
210
|
+
else
|
211
|
+
# create model from problem and parameter
|
212
|
+
prob,param = arg1,arg2
|
213
|
+
@prob = prob
|
214
|
+
msg = check_parameter(prob.prob,param.param)
|
215
|
+
raise "ValueError", msg if msg
|
216
|
+
@model = Liblinear::train(prob.prob,param.param)
|
217
|
+
end
|
218
|
+
#setup some classwide variables
|
219
|
+
@nr_class = Liblinear::get_nr_class(@model)
|
220
|
+
#create labels(classes)
|
221
|
+
intarr = new_int(@nr_class)
|
222
|
+
Liblinear::get_labels(@model,intarr)
|
223
|
+
@labels = _int_array_to_list(intarr, @nr_class)
|
224
|
+
delete_int(intarr)
|
225
|
+
end
|
226
|
+
|
227
|
+
def predict(x)
|
228
|
+
data = _convert_to_feature_node_array(x, @model.nr_feature, @model.bias)
|
229
|
+
ret = Liblinear::predict(@model,data)
|
230
|
+
feature_node_array_destroy(data)
|
231
|
+
return ret
|
232
|
+
end
|
233
|
+
|
234
|
+
|
235
|
+
def get_nr_class
|
236
|
+
return @nr_class
|
237
|
+
end
|
238
|
+
|
239
|
+
def get_labels
|
240
|
+
return @labels
|
241
|
+
end
|
242
|
+
|
243
|
+
def predict_values_raw(x)
|
244
|
+
#convert x into feature_node, allocate a double array for return
|
245
|
+
n = (@nr_class*(@nr_class-1)/2).floor
|
246
|
+
data = _convert_to_feature_node_array(x, @model.nr_feature, @model.bias)
|
247
|
+
dblarr = new_double(n)
|
248
|
+
Liblinear::predict_values(@model, data, dblarr)
|
249
|
+
ret = _double_array_to_list(dblarr, n)
|
250
|
+
delete_double(dblarr)
|
251
|
+
feature_node_array_destroy(data)
|
252
|
+
return ret
|
253
|
+
end
|
254
|
+
|
255
|
+
def predict_values(x)
|
256
|
+
v=predict_values_raw(x)
|
257
|
+
#puts v.inspect
|
258
|
+
if false
|
259
|
+
#if @svm_type == NU_SVR or @svm_type == EPSILON_SVR or @svm_type == ONE_CLASS
|
260
|
+
return v[0]
|
261
|
+
else #self.svm_type == C_SVC or self.svm_type == NU_SVC
|
262
|
+
count = 0
|
263
|
+
|
264
|
+
# create a width x height array
|
265
|
+
width = @labels.size
|
266
|
+
height = @labels.size
|
267
|
+
d = Array.new(width)
|
268
|
+
d.map! { Array.new(height) }
|
269
|
+
|
270
|
+
for i in (0..@labels.size-1)
|
271
|
+
for j in (i+1..@labels.size-1)
|
272
|
+
d[@labels[i]][@labels[j]] = v[count]
|
273
|
+
d[@labels[j]][@labels[i]] = -v[count]
|
274
|
+
count += 1
|
275
|
+
end
|
276
|
+
end
|
277
|
+
return d
|
278
|
+
end
|
279
|
+
end
|
280
|
+
|
281
|
+
def predict_probability(x)
|
282
|
+
# if not @probability
|
283
|
+
# raise TypeError, "model does not support probabiliy estimates"
|
284
|
+
# end
|
285
|
+
|
286
|
+
#convert x into feature_node, alloc a double array to receive probabilities
|
287
|
+
data = _convert_to_feature_node_array(x, @model.nr_feature, @model.bias)
|
288
|
+
dblarr = new_double(@nr_class)
|
289
|
+
pred = Liblinear::predict_probability(@model, data, dblarr)
|
290
|
+
pv = _double_array_to_list(dblarr, @nr_class)
|
291
|
+
delete_double(dblarr)
|
292
|
+
feature_node_array_destroy(data)
|
293
|
+
p = {}
|
294
|
+
for i in (0..@labels.size-1)
|
295
|
+
p[@labels[i]] = pv[i]
|
296
|
+
end
|
297
|
+
return pred, p
|
298
|
+
end
|
299
|
+
|
300
|
+
# def get_svr_probability
|
301
|
+
# #leave the Error checking to svm.cpp code
|
302
|
+
# ret = Liblinear::get_svr_probability(@model)
|
303
|
+
# if ret == 0
|
304
|
+
# raise TypeError, "not a regression model or probability information not available"
|
305
|
+
# end
|
306
|
+
# return ret
|
307
|
+
# end
|
308
|
+
|
309
|
+
# def get_svr_pdf
|
310
|
+
# #get_svr_probability will handle error checking
|
311
|
+
# sigma = get_svr_probability()
|
312
|
+
# return Proc.new{|z| exp(-z.abs/sigma)/(2*sigma)} # TODO: verify this works
|
313
|
+
# end
|
314
|
+
|
315
|
+
def save(filename)
|
316
|
+
save_model(filename,@model)
|
317
|
+
end
|
318
|
+
|
319
|
+
def destroy
|
320
|
+
destroy_model(@model)
|
321
|
+
end
|
322
|
+
end
|
323
|
+
|
324
|
+
def cross_validation(prob, param, fold)
|
325
|
+
target = new_int(prob.size)
|
326
|
+
Liblinear::cross_validation(prob.prob, param.param, fold, target)
|
327
|
+
ret = _int_array_to_list(target, prob.size)
|
328
|
+
delete_int(target)
|
329
|
+
return ret
|
330
|
+
end
|
331
|
+
|
332
|
+
def read_file filename
|
333
|
+
labels = []
|
334
|
+
samples = []
|
335
|
+
max_index = 0
|
336
|
+
|
337
|
+
f = File.open(filename)
|
338
|
+
f.each do |line|
|
339
|
+
elems = line.split
|
340
|
+
sample = {}
|
341
|
+
for e in elems[1..-1]
|
342
|
+
points = e.split(":")
|
343
|
+
sample[points[0].to_i] = points[1].to_f
|
344
|
+
if points[0].to_i < max_index
|
345
|
+
max_index = points[0].to_i
|
346
|
+
end
|
347
|
+
end
|
348
|
+
labels << elems[0].to_i
|
349
|
+
samples << sample
|
350
|
+
#print elems[0].to_i
|
351
|
+
#print " - "
|
352
|
+
#puts sample.inspect
|
353
|
+
end
|
354
|
+
puts "#{filename}: #{samples.size} samples loaded."
|
355
|
+
return labels,samples
|
356
|
+
end
|
357
|
+
|
data/ext/tron.cpp
ADDED
@@ -0,0 +1,235 @@
|
|
1
|
+
#include <math.h>
|
2
|
+
#include <stdio.h>
|
3
|
+
#include <string.h>
|
4
|
+
#include <stdarg.h>
|
5
|
+
#include "tron.h"
|
6
|
+
|
7
|
+
#ifndef min
|
8
|
+
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
|
9
|
+
#endif
|
10
|
+
|
11
|
+
#ifndef max
|
12
|
+
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
|
13
|
+
#endif
|
14
|
+
|
15
|
+
#ifdef __cplusplus
|
16
|
+
extern "C" {
|
17
|
+
#endif
|
18
|
+
|
19
|
+
extern double dnrm2_(int *, double *, int *);
|
20
|
+
extern double ddot_(int *, double *, int *, double *, int *);
|
21
|
+
extern int daxpy_(int *, double *, double *, int *, double *, int *);
|
22
|
+
extern int dscal_(int *, double *, double *, int *);
|
23
|
+
|
24
|
+
#ifdef __cplusplus
|
25
|
+
}
|
26
|
+
#endif
|
27
|
+
|
28
|
+
static void default_print(const char *buf)
|
29
|
+
{
|
30
|
+
fputs(buf,stdout);
|
31
|
+
fflush(stdout);
|
32
|
+
}
|
33
|
+
|
34
|
+
void TRON::info(const char *fmt,...)
|
35
|
+
{
|
36
|
+
char buf[BUFSIZ];
|
37
|
+
va_list ap;
|
38
|
+
va_start(ap,fmt);
|
39
|
+
vsprintf(buf,fmt,ap);
|
40
|
+
va_end(ap);
|
41
|
+
(*tron_print_string)(buf);
|
42
|
+
}
|
43
|
+
|
44
|
+
TRON::TRON(const function *fun_obj, double eps, int max_iter)
|
45
|
+
{
|
46
|
+
this->fun_obj=const_cast<function *>(fun_obj);
|
47
|
+
this->eps=eps;
|
48
|
+
this->max_iter=max_iter;
|
49
|
+
tron_print_string = default_print;
|
50
|
+
}
|
51
|
+
|
52
|
+
TRON::~TRON()
|
53
|
+
{
|
54
|
+
}
|
55
|
+
|
56
|
+
void TRON::tron(double *w)
|
57
|
+
{
|
58
|
+
// Parameters for updating the iterates.
|
59
|
+
double eta0 = 1e-4, eta1 = 0.25, eta2 = 0.75;
|
60
|
+
|
61
|
+
// Parameters for updating the trust region size delta.
|
62
|
+
double sigma1 = 0.25, sigma2 = 0.5, sigma3 = 4;
|
63
|
+
|
64
|
+
int n = fun_obj->get_nr_variable();
|
65
|
+
int i, cg_iter;
|
66
|
+
double delta, snorm, one=1.0;
|
67
|
+
double alpha, f, fnew, prered, actred, gs;
|
68
|
+
int search = 1, iter = 1, inc = 1;
|
69
|
+
double *s = new double[n];
|
70
|
+
double *r = new double[n];
|
71
|
+
double *w_new = new double[n];
|
72
|
+
double *g = new double[n];
|
73
|
+
|
74
|
+
for (i=0; i<n; i++)
|
75
|
+
w[i] = 0;
|
76
|
+
|
77
|
+
f = fun_obj->fun(w);
|
78
|
+
fun_obj->grad(w, g);
|
79
|
+
delta = dnrm2_(&n, g, &inc);
|
80
|
+
double gnorm1 = delta;
|
81
|
+
double gnorm = gnorm1;
|
82
|
+
|
83
|
+
if (gnorm <= eps*gnorm1)
|
84
|
+
search = 0;
|
85
|
+
|
86
|
+
iter = 1;
|
87
|
+
|
88
|
+
while (iter <= max_iter && search)
|
89
|
+
{
|
90
|
+
cg_iter = trcg(delta, g, s, r);
|
91
|
+
|
92
|
+
memcpy(w_new, w, sizeof(double)*n);
|
93
|
+
daxpy_(&n, &one, s, &inc, w_new, &inc);
|
94
|
+
|
95
|
+
gs = ddot_(&n, g, &inc, s, &inc);
|
96
|
+
prered = -0.5*(gs-ddot_(&n, s, &inc, r, &inc));
|
97
|
+
fnew = fun_obj->fun(w_new);
|
98
|
+
|
99
|
+
// Compute the actual reduction.
|
100
|
+
actred = f - fnew;
|
101
|
+
|
102
|
+
// On the first iteration, adjust the initial step bound.
|
103
|
+
snorm = dnrm2_(&n, s, &inc);
|
104
|
+
if (iter == 1)
|
105
|
+
delta = min(delta, snorm);
|
106
|
+
|
107
|
+
// Compute prediction alpha*snorm of the step.
|
108
|
+
if (fnew - f - gs <= 0)
|
109
|
+
alpha = sigma3;
|
110
|
+
else
|
111
|
+
alpha = max(sigma1, -0.5*(gs/(fnew - f - gs)));
|
112
|
+
|
113
|
+
// Update the trust region bound according to the ratio of actual to predicted reduction.
|
114
|
+
if (actred < eta0*prered)
|
115
|
+
delta = min(max(alpha, sigma1)*snorm, sigma2*delta);
|
116
|
+
else if (actred < eta1*prered)
|
117
|
+
delta = max(sigma1*delta, min(alpha*snorm, sigma2*delta));
|
118
|
+
else if (actred < eta2*prered)
|
119
|
+
delta = max(sigma1*delta, min(alpha*snorm, sigma3*delta));
|
120
|
+
else
|
121
|
+
delta = max(delta, min(alpha*snorm, sigma3*delta));
|
122
|
+
|
123
|
+
info("iter %2d act %5.3e pre %5.3e delta %5.3e f %5.3e |g| %5.3e CG %3d\n", iter, actred, prered, delta, f, gnorm, cg_iter);
|
124
|
+
|
125
|
+
if (actred > eta0*prered)
|
126
|
+
{
|
127
|
+
iter++;
|
128
|
+
memcpy(w, w_new, sizeof(double)*n);
|
129
|
+
f = fnew;
|
130
|
+
fun_obj->grad(w, g);
|
131
|
+
|
132
|
+
gnorm = dnrm2_(&n, g, &inc);
|
133
|
+
if (gnorm <= eps*gnorm1)
|
134
|
+
break;
|
135
|
+
}
|
136
|
+
if (f < -1.0e+32)
|
137
|
+
{
|
138
|
+
info("WARNING: f < -1.0e+32\n");
|
139
|
+
break;
|
140
|
+
}
|
141
|
+
if (fabs(actred) <= 0 && prered <= 0)
|
142
|
+
{
|
143
|
+
info("WARNING: actred and prered <= 0\n");
|
144
|
+
break;
|
145
|
+
}
|
146
|
+
if (fabs(actred) <= 1.0e-12*fabs(f) &&
|
147
|
+
fabs(prered) <= 1.0e-12*fabs(f))
|
148
|
+
{
|
149
|
+
info("WARNING: actred and prered too small\n");
|
150
|
+
break;
|
151
|
+
}
|
152
|
+
}
|
153
|
+
|
154
|
+
delete[] g;
|
155
|
+
delete[] r;
|
156
|
+
delete[] w_new;
|
157
|
+
delete[] s;
|
158
|
+
}
|
159
|
+
|
160
|
+
int TRON::trcg(double delta, double *g, double *s, double *r)
|
161
|
+
{
|
162
|
+
int i, inc = 1;
|
163
|
+
int n = fun_obj->get_nr_variable();
|
164
|
+
double one = 1;
|
165
|
+
double *d = new double[n];
|
166
|
+
double *Hd = new double[n];
|
167
|
+
double rTr, rnewTrnew, alpha, beta, cgtol;
|
168
|
+
|
169
|
+
for (i=0; i<n; i++)
|
170
|
+
{
|
171
|
+
s[i] = 0;
|
172
|
+
r[i] = -g[i];
|
173
|
+
d[i] = r[i];
|
174
|
+
}
|
175
|
+
cgtol = 0.1*dnrm2_(&n, g, &inc);
|
176
|
+
|
177
|
+
int cg_iter = 0;
|
178
|
+
rTr = ddot_(&n, r, &inc, r, &inc);
|
179
|
+
while (1)
|
180
|
+
{
|
181
|
+
if (dnrm2_(&n, r, &inc) <= cgtol)
|
182
|
+
break;
|
183
|
+
cg_iter++;
|
184
|
+
fun_obj->Hv(d, Hd);
|
185
|
+
|
186
|
+
alpha = rTr/ddot_(&n, d, &inc, Hd, &inc);
|
187
|
+
daxpy_(&n, &alpha, d, &inc, s, &inc);
|
188
|
+
if (dnrm2_(&n, s, &inc) > delta)
|
189
|
+
{
|
190
|
+
info("cg reaches trust region boundary\n");
|
191
|
+
alpha = -alpha;
|
192
|
+
daxpy_(&n, &alpha, d, &inc, s, &inc);
|
193
|
+
|
194
|
+
double std = ddot_(&n, s, &inc, d, &inc);
|
195
|
+
double sts = ddot_(&n, s, &inc, s, &inc);
|
196
|
+
double dtd = ddot_(&n, d, &inc, d, &inc);
|
197
|
+
double dsq = delta*delta;
|
198
|
+
double rad = sqrt(std*std + dtd*(dsq-sts));
|
199
|
+
if (std >= 0)
|
200
|
+
alpha = (dsq - sts)/(std + rad);
|
201
|
+
else
|
202
|
+
alpha = (rad - std)/dtd;
|
203
|
+
daxpy_(&n, &alpha, d, &inc, s, &inc);
|
204
|
+
alpha = -alpha;
|
205
|
+
daxpy_(&n, &alpha, Hd, &inc, r, &inc);
|
206
|
+
break;
|
207
|
+
}
|
208
|
+
alpha = -alpha;
|
209
|
+
daxpy_(&n, &alpha, Hd, &inc, r, &inc);
|
210
|
+
rnewTrnew = ddot_(&n, r, &inc, r, &inc);
|
211
|
+
beta = rnewTrnew/rTr;
|
212
|
+
dscal_(&n, &beta, d, &inc);
|
213
|
+
daxpy_(&n, &one, r, &inc, d, &inc);
|
214
|
+
rTr = rnewTrnew;
|
215
|
+
}
|
216
|
+
|
217
|
+
delete[] d;
|
218
|
+
delete[] Hd;
|
219
|
+
|
220
|
+
return(cg_iter);
|
221
|
+
}
|
222
|
+
|
223
|
+
double TRON::norm_inf(int n, double *x)
|
224
|
+
{
|
225
|
+
double dmax = fabs(x[0]);
|
226
|
+
for (int i=1; i<n; i++)
|
227
|
+
if (fabs(x[i]) >= dmax)
|
228
|
+
dmax = fabs(x[i]);
|
229
|
+
return(dmax);
|
230
|
+
}
|
231
|
+
|
232
|
+
void TRON::set_print_string(void (*print_string) (const char *buf))
|
233
|
+
{
|
234
|
+
tron_print_string = print_string;
|
235
|
+
}
|