leva 0.2.1 → 0.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +54 -0
  3. data/app/assets/stylesheets/leva/application.css +9 -0
  4. data/app/controllers/leva/dataset_optimizations_controller.rb +64 -0
  5. data/app/controllers/leva/experiments_controller.rb +14 -6
  6. data/app/controllers/leva/workbench_controller.rb +26 -10
  7. data/app/helpers/leva/application_helper.rb +32 -16
  8. data/app/models/leva/dataset.rb +1 -0
  9. data/app/models/leva/experiment.rb +1 -0
  10. data/app/models/leva/optimization_run.rb +137 -0
  11. data/app/models/leva/prompt.rb +10 -0
  12. data/app/services/leva/class_loader.rb +37 -0
  13. data/app/services/leva/dataset_converter.rb +64 -0
  14. data/app/services/leva/optimizers/base.rb +183 -0
  15. data/app/services/leva/optimizers/bootstrap.rb +92 -0
  16. data/app/services/leva/optimizers/gepa_optimizer.rb +59 -0
  17. data/app/services/leva/optimizers/miprov2_optimizer.rb +52 -0
  18. data/app/services/leva/prompt_optimizer.rb +305 -0
  19. data/app/services/leva/signature_generator.rb +129 -0
  20. data/app/views/leva/datasets/show.html.erb +3 -0
  21. data/app/views/leva/experiments/_experiment.html.erb +9 -10
  22. data/app/views/leva/experiments/_form.html.erb +10 -0
  23. data/app/views/leva/experiments/index.html.erb +2 -1
  24. data/app/views/leva/experiments/show.html.erb +20 -21
  25. data/app/views/leva/optimization_runs/show.html.erb +698 -0
  26. data/app/views/leva/runner_results/show.html.erb +18 -48
  27. data/app/views/leva/workbench/_results_section.html.erb +1 -9
  28. data/db/migrate/20241204000001_create_leva_optimization_runs.rb +25 -0
  29. data/lib/generators/leva/templates/eval.rb.erb +4 -2
  30. data/lib/leva/errors.rb +18 -0
  31. data/lib/leva/version.rb +1 -1
  32. data/lib/leva.rb +1 -0
  33. metadata +16 -3
@@ -0,0 +1,129 @@
1
+ # frozen_string_literal: true
2
+
3
+ module Leva
4
+ # Generates DSPy signatures from Leva dataset records.
5
+ #
6
+ # This service analyzes the structure of dataset records and generates
7
+ # a dynamic DSPy::Signature class that matches the input/output schema.
8
+ #
9
+ # @example Generate a signature from a dataset
10
+ # generator = Leva::SignatureGenerator.new(dataset)
11
+ # signature_class = generator.generate
12
+ # predictor = DSPy::Predict.new(signature_class)
13
+ class SignatureGenerator
14
+ # @param dataset [Leva::Dataset] The dataset to analyze
15
+ # @param description [String, nil] Optional description for the signature
16
+ def initialize(dataset, description: nil)
17
+ @dataset = dataset
18
+ @description = description
19
+ @sample_record = dataset.dataset_records.first&.recordable
20
+ end
21
+
22
+ # Generates a DSPy::Signature class based on the dataset structure.
23
+ #
24
+ # @return [Class, nil] A dynamically generated DSPy::Signature subclass, or nil if no sample
25
+ def generate
26
+ return nil unless @sample_record
27
+
28
+ input_fields = extract_input_fields
29
+ output_type = infer_output_type(@sample_record.ground_truth)
30
+ description = @description || generate_description
31
+
32
+ build_signature_class(input_fields, output_type, description)
33
+ end
34
+
35
+ # Returns the input field names that will be used in the signature.
36
+ #
37
+ # @return [Array<Symbol>] Array of input field names
38
+ def input_field_names
39
+ return [] unless @sample_record
40
+
41
+ extract_input_fields.keys
42
+ end
43
+
44
+ private
45
+
46
+ # Extracts input fields from the sample record's LLM context.
47
+ #
48
+ # @return [Hash<Symbol, Class>] Map of field names to their inferred types
49
+ def extract_input_fields
50
+ context = @sample_record.to_llm_context
51
+ context.transform_values { |value| infer_type(value) }
52
+ end
53
+
54
+ # Infers the Ruby type for a given value.
55
+ #
56
+ # @param value [Object] The value to analyze
57
+ # @return [Class] The inferred type (String, Integer, Float, Array, or Hash)
58
+ def infer_type(value)
59
+ case value
60
+ when String then String
61
+ when Integer then Integer
62
+ when Float then Float
63
+ when Array then Array
64
+ when Hash then Hash
65
+ else String
66
+ end
67
+ end
68
+
69
+ # Infers the output type from ground truth.
70
+ #
71
+ # @param ground_truth [Object] The ground truth value to analyze
72
+ # @return [Symbol] The output type (:string, :array, or :hash)
73
+ def infer_output_type(ground_truth)
74
+ case ground_truth
75
+ when String then :string
76
+ when Array then :array
77
+ when Hash then :hash
78
+ else :string
79
+ end
80
+ end
81
+
82
+ # Generates a description for the signature based on the dataset.
83
+ #
84
+ # @return [String] A descriptive string for the signature
85
+ def generate_description
86
+ # Analyze ground truth values to determine task type
87
+ ground_truths = @dataset.dataset_records.limit(20).map { |r| r.recordable.ground_truth }.compact
88
+ unique_outputs = ground_truths.uniq
89
+
90
+ if unique_outputs.size <= 10
91
+ # Classification task - be explicit about output format
92
+ "Classify the input. Respond with ONLY one of these exact values, nothing else: #{unique_outputs.join(', ')}"
93
+ else
94
+ # Generation task
95
+ "Generate output for the given input from dataset: #{@dataset.name}"
96
+ end
97
+ end
98
+
99
+ # Builds the DSPy::Signature class dynamically.
100
+ #
101
+ # @param input_fields [Hash<Symbol, Class>] Input field definitions
102
+ # @param output_type [Symbol] The output type
103
+ # @param description [String] Description for the signature
104
+ # @return [Class] The generated DSPy::Signature subclass
105
+ # @raise [Leva::DspyConfigurationError] If DSPy is not available
106
+ def build_signature_class(input_fields, output_type, description)
107
+ unless defined?(DSPy::Signature)
108
+ raise DspyConfigurationError, "DSPy is required for signature generation"
109
+ end
110
+
111
+ captured_input_fields = input_fields
112
+ captured_description = description
113
+
114
+ Class.new(DSPy::Signature) do
115
+ description captured_description
116
+
117
+ input do
118
+ captured_input_fields.each do |name, _type|
119
+ const name, String
120
+ end
121
+ end
122
+
123
+ output do
124
+ const :output, String
125
+ end
126
+ end
127
+ end
128
+ end
129
+ end
@@ -84,6 +84,9 @@
84
84
  <% end %>
85
85
  </section>
86
86
 
87
+ <%# Optimized Prompts Section - TODO: Enable when DSPy routes are added %>
88
+ <%# This feature is available in the PromptOptimizer service but UI routes are pending %>
89
+
87
90
  <%# Experiments Section %>
88
91
  <section>
89
92
  <div class="section-header">
@@ -8,6 +8,9 @@
8
8
  else 'status-dot-pending'
9
9
  end
10
10
  run_count = experiment.runner_results.count
11
+
12
+ # Group evaluation results by evaluator_class to avoid N+1 queries
13
+ grouped_results = experiment.evaluation_results.group_by(&:evaluator_class)
11
14
  %>
12
15
  <tr class="experiment-row" onclick="window.location='<%= experiment_path(experiment) %>'">
13
16
  <td>
@@ -21,6 +24,9 @@
21
24
  <td>
22
25
  <span class="cell-dataset"><%= experiment.dataset&.name || '—' %></span>
23
26
  </td>
27
+ <td>
28
+ <span class="cell-model font-mono text-sm"><%= experiment.metadata&.dig("model") || '—' %></span>
29
+ </td>
24
30
  <td class="text-right text-nowrap">
25
31
  <span class="cell-timestamp"><%= time_ago_in_words(experiment.created_at) %></span>
26
32
  </td>
@@ -33,22 +39,15 @@
33
39
  <td class="text-right">
34
40
  <span class="cell-count"><%= run_count %></span>
35
41
  </td>
36
- <% Leva::EvaluationResult.distinct.pluck(:evaluator_class).each do |evaluator_class| %>
42
+ <% @evaluator_classes.each do |evaluator_class| %>
37
43
  <td class="text-right">
38
- <% results = experiment.evaluation_results.where(evaluator_class: evaluator_class) %>
44
+ <% results = grouped_results[evaluator_class] || [] %>
39
45
  <% if results.any? %>
40
46
  <%
41
47
  avg_score = (results.sum(&:score) / results.size.to_f)
42
48
  score_pct = (avg_score * 100).round
43
- score_class = case avg_score
44
- when 0...0.2 then 'score-bad'
45
- when 0.2...0.4 then 'score-poor'
46
- when 0.4...0.6 then 'score-fair'
47
- when 0.6...0.8 then 'score-good'
48
- else 'score-excellent'
49
- end
50
49
  %>
51
- <span class="score-pill <%= score_class %>"><%= score_pct %>%</span>
50
+ <span class="score-pill <%= score_class(avg_score) %>"><%= score_pct %>%</span>
52
51
  <% else %>
53
52
  <span class="score-empty">—</span>
54
53
  <% end %>
@@ -50,6 +50,16 @@
50
50
  class: "form-select" %>
51
51
  <p class="form-hint">The runner executes your model logic for each dataset record.</p>
52
52
  </div>
53
+
54
+ <div class="form-group" id="model-selection-group">
55
+ <label for="experiment_metadata_model" class="form-label">Model (for LLM runners)</label>
56
+ <select name="experiment[metadata][model]" id="experiment_metadata_model" class="form-select">
57
+ <% Leva::PromptOptimizer.available_models.each do |m| %>
58
+ <option value="<%= m.id %>" <%= 'selected' if @experiment.metadata&.dig("model") == m.id || (@experiment.metadata.blank? && m.id == "gemini-2.5-flash") %>><%= m.name %></option>
59
+ <% end %>
60
+ </select>
61
+ <p class="form-hint">The AI model to use when running LLM-based runners like SentimentLlmRun.</p>
62
+ </div>
53
63
  </div>
54
64
 
55
65
  <hr class="form-divider">
@@ -21,10 +21,11 @@
21
21
  <tr>
22
22
  <th>Experiment</th>
23
23
  <th style="width: 140px;">Dataset</th>
24
+ <th style="width: 140px;">Model</th>
24
25
  <th class="text-right" style="width: 90px;">Created</th>
25
26
  <th class="text-center" style="width: 90px;">Status</th>
26
27
  <th class="text-right" style="width: 60px;">Runs</th>
27
- <% Leva::EvaluationResult.distinct.pluck(:evaluator_class).each do |evaluator_class| %>
28
+ <% @evaluator_classes.each do |evaluator_class| %>
28
29
  <%
29
30
  # Clean up evaluator name: "SentimentAccuracyEval" -> "Accuracy"
30
31
  # Remove common prefixes/suffixes and module names
@@ -55,12 +55,27 @@
55
55
  </div>
56
56
  <div class="exp-meta-item">
57
57
  <span class="exp-meta-label">Prompt</span>
58
- <span class="exp-meta-value"><%= @experiment.prompt ? @experiment.prompt.name : '—' %></span>
58
+ <span class="exp-meta-value">
59
+ <% if @experiment.prompt %>
60
+ <%= @experiment.prompt.name %>
61
+ <% if @experiment.prompt.optimized? %>
62
+ <span class="badge badge-optimized" title="Generated by <%= @experiment.prompt.optimizer_name&.titleize || 'optimizer' %>">Optimized</span>
63
+ <% end %>
64
+ <% else %>
65
+
66
+ <% end %>
67
+ </span>
59
68
  </div>
60
69
  <div class="exp-meta-item">
61
70
  <span class="exp-meta-label">Runner</span>
62
71
  <span class="exp-meta-value font-mono text-sm"><%= @experiment.runner_class&.demodulize || '—' %></span>
63
72
  </div>
73
+ <% if @experiment.metadata&.dig("model").present? %>
74
+ <div class="exp-meta-item">
75
+ <span class="exp-meta-label">Model</span>
76
+ <span class="exp-meta-value font-mono text-sm"><%= @experiment.metadata["model"] %></span>
77
+ </div>
78
+ <% end %>
64
79
  <div class="exp-meta-item">
65
80
  <span class="exp-meta-label">Created</span>
66
81
  <span class="exp-meta-value"><%= time_ago_in_words(@experiment.created_at) %> ago</span>
@@ -79,13 +94,6 @@
79
94
  <%
80
95
  avg_score = (results.sum(&:score) / results.size.to_f).round(2)
81
96
  score_pct = (avg_score * 100).round
82
- score_class = case avg_score
83
- when 0...0.2 then 'score-bad'
84
- when 0.2...0.4 then 'score-poor'
85
- when 0.4...0.6 then 'score-fair'
86
- when 0.6...0.8 then 'score-good'
87
- else 'score-excellent'
88
- end
89
97
  short_name = evaluator_class.demodulize
90
98
  .gsub(/Evaluator$/, '')
91
99
  .gsub(/Eval$/, '')
@@ -93,10 +101,10 @@
93
101
  short_name = short_name.presence || evaluator_class.demodulize.gsub(/Eval(uator)?$/, '')
94
102
  %>
95
103
  <div class="eval-summary-card" title="<%= results.size %> evaluations">
96
- <span class="eval-summary-score <%= score_class %>"><%= score_pct %><span class="eval-summary-pct">%</span></span>
104
+ <span class="eval-summary-score <%= score_class(avg_score) %>"><%= score_pct %><span class="eval-summary-pct">%</span></span>
97
105
  <span class="eval-summary-name"><%= short_name %></span>
98
106
  <div class="eval-summary-bar">
99
- <div class="eval-summary-bar-fill <%= score_class %>" style="width: <%= score_pct %>%"></div>
107
+ <div class="eval-summary-bar-fill <%= score_class(avg_score) %>" style="width: <%= score_pct %>%"></div>
100
108
  </div>
101
109
  <span class="eval-summary-count"><%= results.size %> runs</span>
102
110
  </div>
@@ -139,7 +147,7 @@
139
147
  <span class="row-title"><%= runner_result.dataset_record.display_name %></span>
140
148
  </td>
141
149
  <td>
142
- <span class="prediction-badge"><%= truncate(runner_result.prediction.to_s.strip, length: 25) %></span>
150
+ <span class="prediction-badge"><%= truncate(runner_result.parsed_predictions.first.to_s.presence || runner_result.prediction.to_s.strip, length: 25) %></span>
143
151
  </td>
144
152
  <td class="text-muted"><%= truncate(runner_result.ground_truth.to_s.strip.presence || '—', length: 25) %></td>
145
153
  <% @experiment.evaluation_results.group_by(&:evaluator_class).keys.each do |evaluator_class| %>
@@ -147,16 +155,7 @@
147
155
  <% eval_result = runner_result.evaluation_results.find_by(evaluator_class: evaluator_class) %>
148
156
  <% if eval_result %>
149
157
  <% score = eval_result.score %>
150
- <%
151
- score_class = case score
152
- when 0...0.2 then 'score-bad'
153
- when 0.2...0.4 then 'score-poor'
154
- when 0.4...0.6 then 'score-fair'
155
- when 0.6...0.8 then 'score-good'
156
- else 'score-excellent'
157
- end
158
- %>
159
- <span class="score-inline <%= score_class %>"><%= sprintf('%.2f', score) %></span>
158
+ <span class="score-inline <%= score_class(score) %>"><%= sprintf('%.2f', score) %></span>
160
159
  <% else %>
161
160
  <span class="text-subtle">—</span>
162
161
  <% end %>